

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

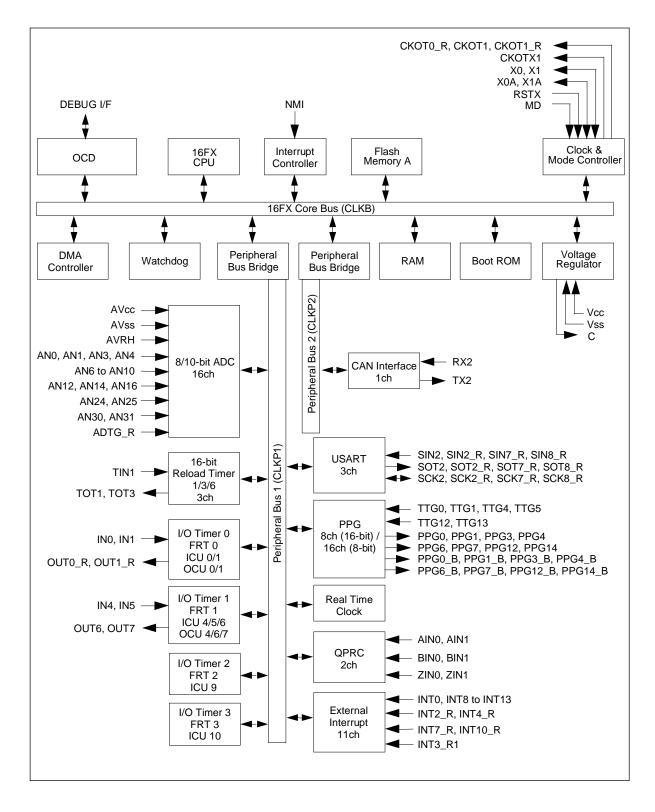
5-XFI

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f615rbpmc-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

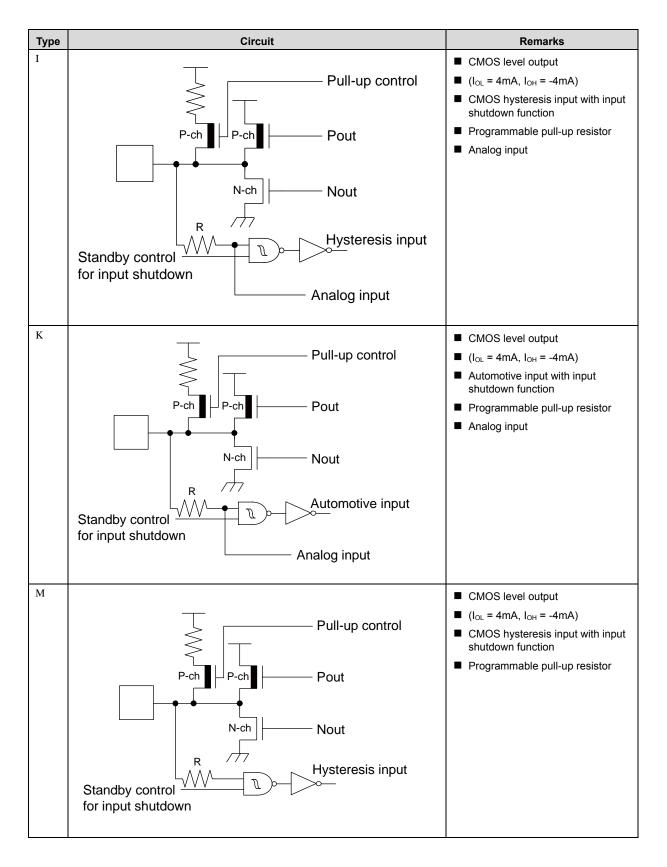
Built-in On Chip Debugger (OCD)

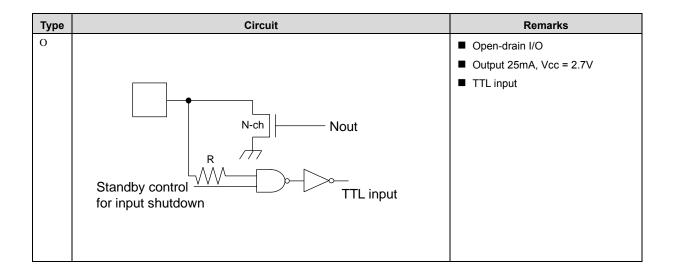

- One-wire debug tool interface
- Break function:
 - □ Hardware break: 6 points (shared with code event)
 - □ Software break: 4096 points
- Event function
 - □ Code event: 6 points (shared with hardware break)
 - Data event: 6 points
 - Event sequencer: 2 levels + reset
- Execution time measurement function
- Trace function: 42 branches
- Security function

Flash Memory

- Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
- Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
- Supports automatic programming, Embedded Algorithm
- Write/Erase/Erase-Suspend/Resume commands
- A flag indicating completion of the automatic algorithm
- Erase can be performed on each sector individually
- Sector protection
- Flash Security feature to protect the content of the Flash
- Low voltage detection during Flash erase or write

2. Block Diagram




4. Pin Description

Pin Name	Feature	Description
ADTG_R	ADC	Relocated A/D converter trigger input pin
AINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin
ANn	ADC	A/D converter channel n input pin
AVcc	Supply	Analog circuits power supply pin
AVRH	ADC	A/D converter high reference voltage input pin
AVss	Supply	Analog circuits power supply pin
BINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin
CKOTn	Clock Output function	Clock Output function n output pin
CKOTn_R	Clock Output function	Relocated Clock Output function n output pin
CKOTXn	Clock Output function	Clock Output function n inverted output pin
DEBUG I/F	OCD	On Chip Debugger input/output pin
INn	ICU	Input Capture Unit n input pin
INTn	External Interrupt	External Interrupt n input pin
INTn_R	External Interrupt	Relocated External Interrupt n input pin
INTn_R1	External Interrupt	Relocated External Interrupt n input pin
MD	Core	Input pin for specifying the operating mode
NMI	External Interrupt	Non-Maskable Interrupt input pin
OUTn	OCU	Output Compare Unit n waveform output pin
OUTn_R	OCU	Relocated Output Compare Unit n waveform output pin
Pnn_m	GPIO	General purpose I/O pin
PPGn	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_B	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
RSTX	Core	Reset input pin
RXn	CAN	CAN interface n RX input pin
SCKn	USART	USART n serial clock input/output pin
SCKn_R	USART	Relocated USART n serial clock input/output pin
SINn	USART	USART n serial data input pin
SINn_R	USART	Relocated USART n serial data input pin
SOTn	USART	USART n serial data output pin
SOTn_R	USART	Relocated USART n serial data output pin
TINn	Reload Timer	Reload Timer n event input pin
TOTn	Reload Timer	Reload Timer n output pin
TTGn	PPG	Programmable Pulse Generator n trigger input pin
TXn	CAN	CAN interface n TX output pin
V _{cc}	Supply	Power supply pin
V _{ss}	Supply	Power supply pin
X0	Clock	Oscillator input pin
X0A	Clock	Subclock Oscillator input pin
X1	Clock	Oscillator output pin
X1A	Clock	Subclock Oscillator output pin

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
81	2B8 _H	OCU4	Yes	81	Output Compare Unit 4
82	2B4 _H	-	-	82	Reserved
83	2B0 _H	OCU6	Yes	83	Output Compare Unit 6
84	2AC _H	OCU7	Yes	84	Output Compare Unit 7
85	2A8 _H	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2A0 _H	-	-	87	Reserved
88	29C _H	-	-	88	Reserved
89	298 _H	FRT0	Yes	89	Free-Running Timer 0
90	294 _H	FRT1	Yes	90	Free-Running Timer 1
91	290 _H	FRT2	Yes	91	Free-Running Timer 2
92	28C _H	FRT3	Yes	92	Free-Running Timer 3
93	288 _H	RTC0	No	93	Real Time Clock
94	284 _H	CAL0	No	94	Clock Calibration Unit
95	280 _H	-	-	95	Reserved
96	27C _H	-	-	96	Reserved
97	278 _H	-	-	97	Reserved
98	274 _H	ADC0	Yes	98	A/D Converter 0
99	270 _H	-	-	99	Reserved
100	26C _H	-	-	100	Reserved
101	268 _H	-	-	101	Reserved
102	264 _H	-	-	102	Reserved
103	260 _H	-	-	103	Reserved
104	25C _H	-	-	104	Reserved
105	258 _H	LINR2	Yes	105	LIN USART 2 RX
106	254 _H	LINT2	Yes	106	LIN USART 2 TX
107	250 _H	-	-	107	Reserved
108	24C _H	-	-	108	Reserved
109	248 _H	-	-	109	Reserved
110	244 _H	-	-	110	Reserved
111	240 _H	-	-	111	Reserved
112	23C _H	-	-	112	Reserved
113	238 _H	-	-	113	Reserved
114	234 _H	-	-	114	Reserved
115	230 _H	LINR7	Yes	115	LIN USART 7 RX
116	22C _H	LINT7	Yes	116	LIN USART 7 TX
117	228 _H	LINR8	Yes	117	LIN USART 8 RX
118	224 _H	LINT8	Yes	118	LIN USART 8 TX
119	220 _H	-	-	119	Reserved
120	21C _H	-	-	120	Reserved
121	218 _H	-	-	121	Reserved

CAUTION:

YPRESS

The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■ Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). *CAUTION:*

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION:

When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styro foam or other highly static-prone materials for storage of completed board assemblies.

13. Handling Devices

Special Care is Required for the Following when Handling the Device:

- Latch-up prevention
- Unused pins handling
- External clock usage
- Notes on PLL clock mode operation
- Power supply pins (Vcc/Vss)
- Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- Pin handling when not using the A/D converter
- Notes on Power-on
- Stabilization of power supply voltage
- Serial communication
- Mode Pin (MD)

13.1 Latch-Up Prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc pins and Vss pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

13.2 Unused Pins Handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent

damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.

13.3 External Clock Usage

The permitted frequency range of an external clock depends on the oscillator type and configuration. See

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

	Rating		ating			
Parameter	Symbol	Condition	Min	Max	Unit	Remarks
Power supply voltage ^[1]	V _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	
Analog power supply voltage ^[1]	AV _{cc}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{[2]}$
Analog reference voltage ^[1]	AVRH	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{cc} ≥ AVRH, AVRH ≥ AV _{ss}
Input voltage ^[1]	VI	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{I} \le V_{CC} + 0.3 V^{[3]}$
Output voltage ^[1]	Vo	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_0 \le V_{CC} + 0.3 V^{[3]}$
Maximum Clamp Current	I _{CLAMP}	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins ^[4]
Total Maximum Clamp Current	Σ I _{CLAMP}	-	-	13	mA	Applicable to general purpose I/O pins ^[4]
"L" level maximum output current	I _{OL}	-	-	15	mA	
"L" level average output current	I _{OLAV}	-	-	4	mA	
"L" level maximum overall output current	ΣI _{OL}	-	-	32	mA	
"L" level average overall output current	ΣI _{OLAV}	-	-	16	mA	
"H" level maximum output current	I _{он}	-	-	-15	mA	
"H" level average output current	I _{OHAV}	-	-	-4	mA	
"H" level maximum overall output current	ΣI _{OH}	-	-	-32	mA	
"H" level average overall output current	Σι _{οнаν}	-	-	-16	mA	
Power consumption ^[5]	P _D	T _A = +125°C	-	284 ^[6]	mW	
Operating ambient temperature	T _A	-	-40	+125 ^[7]	°C	
Storage temperature	T _{STG}	-	-55	+150	°C	

[1]: This parameter is based on V_{SS} = AV_{SS} = 0V.

[2]: AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.

[3]: V_1 and V_0 should not exceed V_{CC} + 0.3V. V_1 should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V₁ rating. Input/Output voltages of standard ports depend on V_{CC}.

[4]:

- Applicable to all general purpose I/O pins (Pnn_m).
- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.

14.3 DC Characteristics

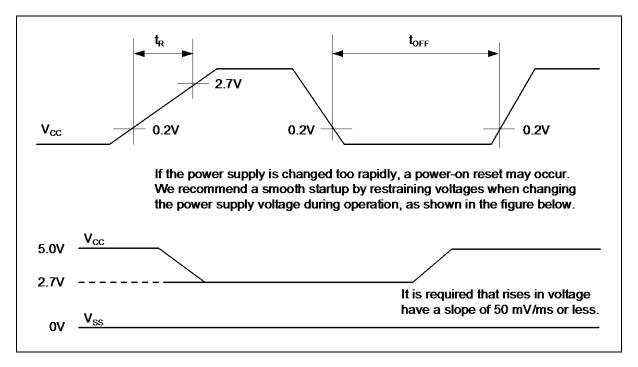
14.3.1 Current Rating

 $(V_{CC}$ = AV_{CC} = 2.7V to 5.5V, Vss = AVss = 0V, T_A = - 40°C to + 125°C)

Parameter	Symbol Pin		Conditions		Value		Unit	Remarks
Farameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Run mode with CLKS1/2 =	-	25	-	mA	T _A = +25°C
	I _{CCPLL}		CLKB = CLKP1/2 = 32MHz Flash 0 wait (CLKRC and CLKSC stopped)	-	-	34	mA	T _A = +105°C
				-	-	35	mA	T _A = +125°C
			Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz	-	3.5	-	mA	T _A = +25°C
			Flash 0 wait (CLKPLL, CLKSC and CLKRC	-	-	7.5	mA	T _A = +105°C
			stopped)	-	-	8.5	mA	T _A = +125°C
			(CLKMC, CLKPLL and CLKSC	-	1.7	-	mA	T _A = +25°C
Power supply current in Run modes ^[1]	I _{CCRCH}	Vcc		-	-	5.5	mA	T _A = +105°C
			stopped)	-	-	6.5	mA	T _A = +125°C
			RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC =		0.15	-	mA	T _A = +25°C
	I _{CCRCL}		100kHz Flash 0 wait (CLKMC, CLKPLL and CLKSC	-	-	3.2	mA	T _A = +105°C
		-	stopped)	-	-	4.2	mA	T _A = +125°C
			Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz	-	0.1	-	mA	T _A = +25°C
	I _{CCSUB}		Flash 0 wait (CLKMC, CLKPLL and CLKRC	-	-	3	mA	T _A = +105°C
			stopped)	-	-	4	mA	T _A = +125°C

14.3.2 Pin Characteristics

 $(V_{CC}$ = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = - 40°C to + 125°C)


_				Value			Unit		
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Typ Max		Remarks	
		Dent innute	-	V _{cc} ×0.7	-	V _{CC} + 0.3	V	CMOS Hysteresis input	
	V _{IH}	Port inputs Pnn_m	-	V _{cc} ×0.8	-	V _{cc} + 0.3	V	AUTOMOTIVE Hysteresis input	
"H" level input	VIHXOS	XO	External clock in "Fast Clock Input mode"	VD×0.8	-	VD	v	VD=1.8V±0.15V	
voltage	VIHXOAS	X0A	External clock in "Oscillation mode"	V _{CC} ×0.8	-	V _{cc} + 0.3	V		
	VIHR	RSTX	-	V _{CC} ×0.8	-	V _{cc} + 0.3	V	CMOS Hysteresis input	
	V _{IHM}	MD	-	V _{cc} - 0.3	-	V _{cc} + 0.3	V	CMOS Hysteresis input	
	V _{IHD}	DEBUG I/F	-	2.0	-	V _{CC} + 0.3	V	TTL Input	
			-	V _{SS} - 0.3	-	V _{CC} ×0.3	V	CMOS Hysteresis input	
	V _{IL}	Port inputs Pnn_m	-	V _{SS} - 0.3	-	V _{CC} ×0.5	V	AUTOMOTIVE Hysteresis input	
"L" level input	VILX0S	XO	External clock in "Fast Clock Input mode"	V _{SS}	-	VD×0.2	v	VD=1.8V±0.15V	
voltage	VILXOAS	X0A	External clock in "Oscillation mode"	V _{SS} - 0.3	-	V _{cc} ×0.2	V		
	V _{ILR}	RSTX	-	V _{SS} - 0.3	-	V _{CC} ×0.2	V	CMOS Hysteresis input	
	VILM	MD	-	V _{SS} - 0.3	-	V _{SS} + 0.3	V	CMOS Hysteresis input	
	V _{ILD}	DEBUG I/F	-	V _{SS} - 0.3	-	0.8	V	TTL Input	
"H" level output voltage	V _{OH4}	4mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OH} = -4mA$ $2.7V \le V_{CC} < 4.5V$ $I_{OH} = -1.5mA$	- V _{cc} - 0.5	-	V _{cc}	v		
"L" level output voltage	V _{OL4}	4mA type	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OL} = +4mA \\ 2.7V \leq V_{CC} < 4.5V \\ I_{OL} = +1.7mA \end{array}$		-	0.4	v		
	V _{old}	DEBUG I/F	$V_{CC} = 2.7V$ $I_{OL} = +25mA$	0	-	0.25	V		
Input leak current	IIL	Pnn_m	$V_{SS} < V_I < V_{CC}$ AV _{SS} < V _I <av<sub>CC, AVRH</av<sub>	- 1	-	+ 1	μA		
Pull-up resistance value	R _{PU}	Pnn_m	V _{CC} = 5.0V ±10%	25	50	100	kΩ		
Input capacitance	C _{IN}	Other than C, Vcc, Vss, AVcc, AVss, AVRH	-	-	5	15	pF		

14.4.7 Power-on Reset Timing

$(V_{CC} - A)/_{CC} - 2.7)/_{to} 5.5)/$	$V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$	
$v_{00} - \pi v_{00} - 2.7 v_{10} 0.0 v$	1×10^{-1}	

_		D : N		11-24		
Parameter	Symbol	Pin Name	Min	Тур	Мах	Unit
Power on rise time	t _R	Vcc	0.05	-	30	ms
Power off time	t _{OFF}	Vcc	1	-	-	ms

14.4.8 USART Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C, C_L=50pF)$

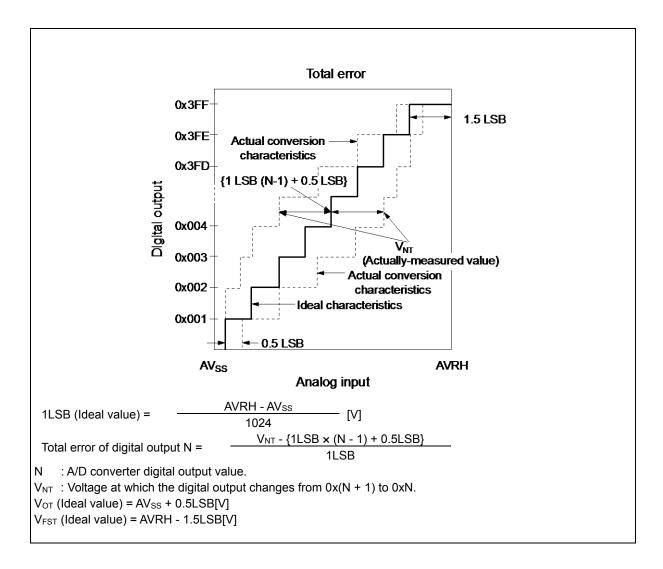
Parameter Symbol Pin name Conditions		Conditions	$4.5V \leq V_{CC} <\!\! 5.5V$		$2.7V \leq V_{CC} <\!\!4.5V$		Uni	
Falameter	Symbol	Finnanie	Conditions	Min	Max	Min	Max	t
Serial clock cycle time	t _{SCYC}	SCKn		4t _{CLKP1}	-	4t _{CLKP1}	-	ns
$SCK \downarrow {\rightarrow} SOT \text{ delay time}$	t _{SLOVI}	SCKn, SOTn		- 20	+ 20	- 30	+ 30	ns
$SOT \to SCK \uparrow delay \ time$	t _{ovsн}	SCKn, SOTn	Internal shift clock	N×t _{CLKP1} – 20 [*]	-	N×tclkp1– 30 [*]	-	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHI}	SCKn, SINn	mode	tclkp1+ 45	-	t _{CLKP1} + 55	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	t _{shixi}	SCKn, SINn		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKn, SOTn	External	-	2t _{CLKP1} + 45	-	2t _{CLKP1} + 55	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHE}	SCKn, SINn	shift clock mode	t _{CLKP1} /2+ 10	-	t _{CLKP1} /2 + 10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKn, SINn		tclkp1+ 10	-	t _{CLKP1} + 10	-	ns
SCK fall time	t _F	SCKn		-	20	-	20	ns
SCK rise time	t _R	SCKn		-	20	-	20	ns

Notes:

- AC characteristic in CLK synchronized mode
- C_L is he load capacity value of pins when testing.
- Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "CY96600 series HARDWARE MANUAL".

 t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit: ns These characteristics only guarantee the same relocate port number.

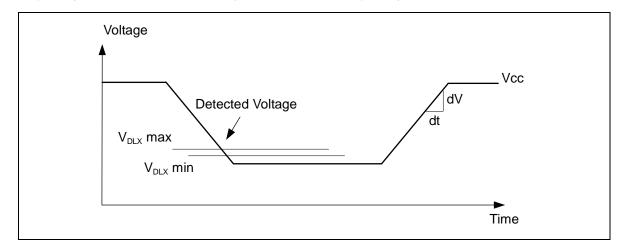
For example, the combination of SCKn and SOTn_R is not guaranteed.


*: Parameter N depends on $t_{\mbox{\scriptsize SCYC}}$ and can be calculated as follows:

■ If t_{SCYC} = 2 ×k ×tclkP1, then N = k, where k is an integer > 2

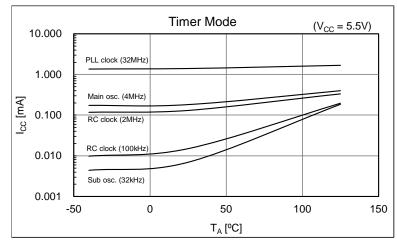
■ If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1 Examples:

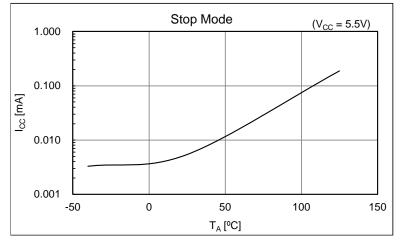
tscyc	Ν
4 xtclkp1	2
5 xtclkp1, 6 xtclkp1	3
7 xtclkp1, 8 xtclkp1	4


14.6 Low Voltage Detection Function Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Demonster	Gumbal	Conditions		Value			
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
	V _{DL0}	$CILCR:LVL = 0000_B$	2.70	2.90	3.10	V	
	V _{DL1}	CILCR:LVL = 0001 _B	2.79	3.00	3.21	V	
	V _{DL2}	CILCR:LVL = 0010 _B	2.98	3.20	3.42	V	
Detected voltage ^[1]	V _{DL3}	CILCR:LVL = 0011 _B	3.26	3.50	3.74	V	
	V _{DL4}	$CILCR:LVL = 0100_{B}$	3.45	3.70	3.95	V	
	V _{DL5}	CILCR:LVL = 0111 _B	3.73	4.00	4.27	V	
	V _{DL6}	CILCR:LVL = 1001 _B	3.91	4.20	4.49	V	
Power supply voltage change rate ^[2]	dV/dt	-	- 0.004	-	+ 0.004	V/µs	
		CILCR:LVHYS=0	-	-	50	mV	
Hysteresis width	V _{HYS}	CILCR:LVHYS=1	80	100	120	mV	
Stabilization time	T _{LVDSTAB}	-	-	-	75	μs	
Detection delay time	t _d	-	-	-	30	μs	


[1]: If the power supply voltage fluctuates within the time less than the detection delay time (t_d), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.


[2]: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ratio of power supply voltage.

CY96F615

CY96610 Series

Page	Section	Change Results
	■ELECTRICAL CHARACTERISTICS	Changed the Note
52	7. Flash Memory Write/Erase Characteristics	While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing, be sure to turn the power off by using an external voltage detector.
		While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.
	■ORDERING INFORMATION	Deleted the Part number
		MCU with CAN controller
		MB96F612RBPMC-GTE2
		MB96F613RBPMC-GTE2
56		MB96F615RBPMC-GTE2
		MCU without CAN controller
		MB96F612ABPMC-GTE2
		MB96F613ABPMC-GTE2
		MB96F615ABPMC-GTE2
Revision 3.	1	
-	-	Company name and layout design change
Rev.*B		
	1. Product Lineup	
6, 8, 58,	3. Pin Assignment	Package description modified to JEDEC description.
59	16. Ordering Information	$FPT\text{-}48P\text{-}M26 \rightarrow LQA048$
	17. Package Dimension	
		Added the following part number.
		MB96F612RBPMC-GS-UJE1,
		MB96F612RBPMC-GS-UJE2,
		MB96F613RBPMC-GS-UJE1,
		MB96F613RBPMC-GS-UJE2,
		MB96F615RBPMC-GS-UJE1,
58	16. Ordering Information	MB96F615RBPMC-GS-UJE2,
		MB96F612ABPMC-GS-UJE1,
		MB96F612ABPMC-GS-UJE2
		MB96F613ABPMC-GS-UJE1,
		MB96F613ABPMC-GS-UJE2
		MB96F615ABPMC-GS-UJE1,
_		MB96F615ABPMC-GS-UJE2
Rev.*C		
58	16. Ordering Information	Deleted the Part number
		MCU without CAN controller
		MB96F615ABPMC-GS-UJE2
Rev.*D		
-	Marketing Part Numbers changed from an MB pr	efix to a CY prefix.

Document History

Document Title: CY96610 Series, F²MC, 16FX, 16-bit Proprietary Microcontroller Document Number: 002-04709

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	_	KSUN	01/31/2014	Migrated to Cypress and assigned document number 002-04709. No change to document contents or format.
*A	5146534	KSUN	02/29/2016	Updated to Cypress template
*B	5735123	KUME	05/15/2017	Updated the Ordering Information and the Package Dimension For details, please see 18. Major Changes.
*C	5809040	MIYH	07/11/2017	Updated the Ordering Information For details, please see 18. Major Changes.
*D	5978072	MIYH	11/30/2017	Revised the following items: Marketing Part Numbers changed from an MB prefix to a CY prefix. 16. Ordering Information For details, please see 18. Major Changes.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuccitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress form any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.