

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

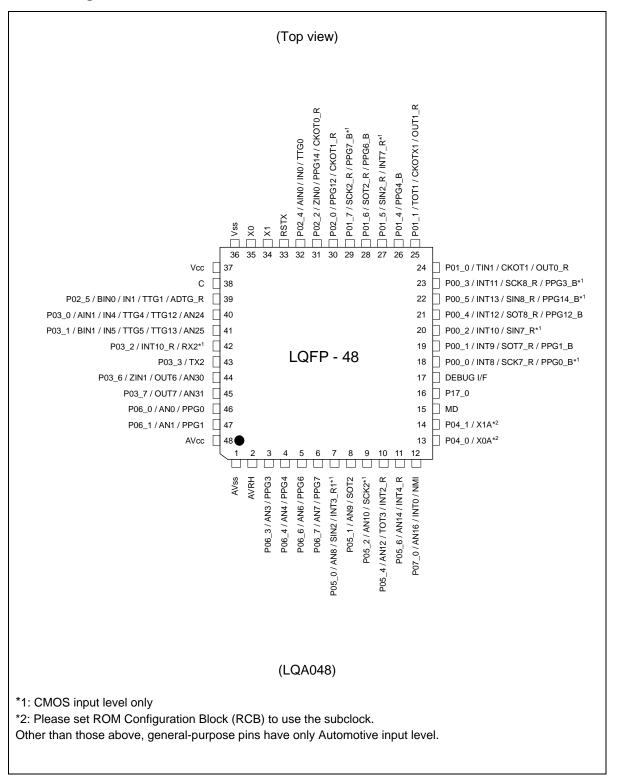
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

5-XFI

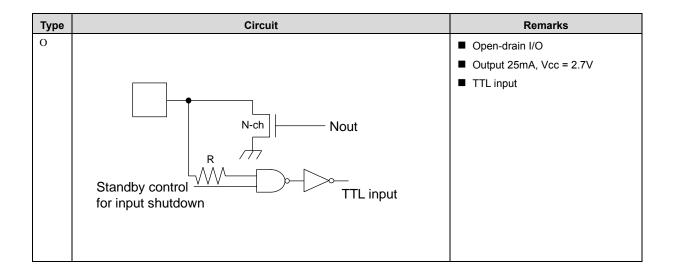
Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f615rbpmc-gse2

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time	
14.5.3 Definition of A/D Converter Terms	
14.6 Low Voltage Detection Function Characteristics	
14.7 Flash Memory Write/Erase Characteristics	
15. Example Characteristics	
16. Ordering Information	
17. Package Dimension	
18. Major Changes	
Document History	
Sales, Solutions, and Legal Information	64

3. Pin Assignment



4. Pin Description

Pin Name	Feature	Description
ADTG_R	ADC	Relocated A/D converter trigger input pin
AINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin
ANn	ADC	A/D converter channel n input pin
AVcc	Supply	Analog circuits power supply pin
AVRH	ADC	A/D converter high reference voltage input pin
AVss	Supply	Analog circuits power supply pin
BINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin
CKOTn	Clock Output function	Clock Output function n output pin
CKOTn_R	Clock Output function	Relocated Clock Output function n output pin
CKOTXn	Clock Output function	Clock Output function n inverted output pin
DEBUG I/F	OCD	On Chip Debugger input/output pin
INn	ICU	Input Capture Unit n input pin
INTn	External Interrupt	External Interrupt n input pin
INTn_R	External Interrupt	Relocated External Interrupt n input pin
INTn_R1	External Interrupt	Relocated External Interrupt n input pin
MD	Core	Input pin for specifying the operating mode
NMI	External Interrupt	Non-Maskable Interrupt input pin
OUTn	OCU	Output Compare Unit n waveform output pin
OUTn_R	OCU	Relocated Output Compare Unit n waveform output pin
Pnn_m	GPIO	General purpose I/O pin
PPGn	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_B	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
RSTX	Core	Reset input pin
RXn	CAN	CAN interface n RX input pin
SCKn	USART	USART n serial clock input/output pin
SCKn_R	USART	Relocated USART n serial clock input/output pin
SINn	USART	USART n serial data input pin
SINn_R	USART	Relocated USART n serial data input pin
SOTn	USART	USART n serial data output pin
SOTn_R	USART	Relocated USART n serial data output pin
TINn	Reload Timer	Reload Timer n event input pin
TOTn	Reload Timer	Reload Timer n output pin
TTGn	PPG	Programmable Pulse Generator n trigger input pin
TXn	CAN	CAN interface n TX output pin
V _{cc}	Supply	Power supply pin
V _{ss}	Supply	Power supply pin
X0	Clock	Oscillator input pin
X0A	Clock	Subclock Oscillator input pin
X1	Clock	Oscillator output pin
X1A	Clock	Subclock Oscillator output pin

9. User ROM Memory Map for Flash Devices

		CY96F612	CY96F613	CY96F615	
		01901012	01901013	01901015	
CPU mode address	Flash memory mode address	Flash size 32.5KB + 32KB	Flash size 64.5KB + 32KB	Flash size 128.5KB + 32KB	
FF:FFFF _H FF:8000 _H	3F:FFFF _H 3F:8000 _H	SA39 - 32KB	SA39 - 64KB	SA39 - 64KB	
FF:7FFF _H FF:0000 _H	3F:7FFF _H 3F:0000 _H		SA39 - 04NB	5A39 - 04KB	Bank A of Flash A
FE:FFFF _H	3E:FFFF _H			SA38 - 64KB	BunkA of HushA
FE:0000 _H	3E:0000 _H	-			
FD:FFFF _H		Reserved	Reserved	Reserved	
DF:9FFF _H DF:8000 _H	1F:9FFF _H 1F:8000 _H	SA4 - 8KB	SA4 - 8KB	SA4 - 8KB	7
DF:7FFF _H DF:6000 _H	1F:7FFF _H 1F:6000 _H	SA3 - 8KB	SA3 - 8KB	SA3 - 8KB	Darely D. of Elev. L. A.
DF:5FFF _H DF:4000 _H	1F:5FFF _н 1F:4000 _н	SA2 - 8KB	SA2 - 8KB	SA2 - 8KB	Bank B of Flash A
DF:3FFF _H DF:2000 _H	1F:3FFF _H 1F:2000 _H	SA1 - 8KB	SA1 - 8KB	SA1 - 8KB	
DF:1FFF _H DF:0000 _H	1F:1FFF _H 1F:0000 _H	SAS - 512B*	SAS - 512B*	SAS - 512B*	Bank A of Flash A
DE:FFFF _H DE:0000 _H	**	Reserved	Reserved	Reserved	

*: Physical address area of SAS-512B is from DF:0000_H to DF:01FF_H. Others (from DF:0200_H to DF:1FFF_H) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000_H -DF:01FF_H. SAS can not be used for E²PROM emulation.

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
40	35C _н	-	-	40	Reserved
41	358 _н	PPG3	Yes	41	Programmable Pulse Generator 3
42	354 _H	PPG4	Yes	42	Programmable Pulse Generator 4
43	350 _н	-	-	43	Reserved
44	34C _H	PPG6	Yes	44	Programmable Pulse Generator 6
45	348 _H	PPG7	Yes	45	Programmable Pulse Generator 7
46	344 _H	-	-	46	Reserved
47	340 _H	-	-	47	Reserved
48	33C _н	-	-	48	Reserved
49	338 _H	-	-	49	Reserved
50	334 _H	PPG12	Yes	50	Programmable Pulse Generator 12
51	330 _н	-	-	51	Reserved
52	32C _H	PPG14	Yes	52	Programmable Pulse Generator 14
53	328 _H	-	-	53	Reserved
54	324 _H	-	-	54	Reserved
55	320 _H	-	-	55	Reserved
56	31C _н	-	-	56	Reserved
57	318 _н	-	-	57	Reserved
58	314 _H	-	-	58	Reserved
59	310 _н	RLT1	Yes	59	Reload Timer 1
60	30C _н	-	-	60	Reserved
61	308 _H	RLT3	Yes	61	Reload Timer 3
62	304 _H	-	-	62	Reserved
63	300 _H	-	-	63	Reserved
64	2FC _H	RLT6	Yes	64	Reload Timer 6
65	2F8 _H	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0 _H	-	-	67	Reserved
68	2EC _H	-	-	68	Reserved
69	2E8 _н	ICU4	Yes	69	Input Capture Unit 4
70	2E4 _H	ICU5	Yes	70	Input Capture Unit 5
71	2E0 _H	ICU6	Yes	71	Input Capture Unit 6
72	2DC _H	-	-	72	Reserved
73	2D8 _H	-	-	73	Reserved
74	2D4 _H	ICU9	Yes	74	Input Capture Unit 9
75	2D0 _H	ICU10	Yes	75	Input Capture Unit 10
76	2CC _H	-	-	76	Reserved
77	2C8 _H	OCU0	Yes	77	Output Compare Unit 0
78	2C4 _H	OCU1	Yes	78	Output Compare Unit 1
79	2C0 _Н	-	-	79	Reserved
80	2BC _H	-	-	80	Reserved

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION:

When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styro foam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION:

Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

		A 1111	Ra	Rating		– –
Parameter	Symbol	Condition	Min	Max	Unit	Remarks
Power supply voltage ^[1]	V _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	
Analog power supply voltage ^[1]	AV _{cc}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{[2]}$
Analog reference voltage ^[1]	AVRH	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{cc} ≥ AVRH, AVRH ≥ AV _{ss}
Input voltage ^[1]	VI	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{I} \le V_{CC} + 0.3 V^{[3]}$
Output voltage ^[1]	Vo	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_0 \le V_{CC} + 0.3 V^{[3]}$
Maximum Clamp Current	I _{CLAMP}	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins ^[4]
Total Maximum Clamp Current	Σ I _{CLAMP}	-	-	13	mA	Applicable to general purpose I/O pins ^[4]
"L" level maximum output current	I _{OL}	-	-	15	mA	
"L" level average output current	I _{OLAV}	-	-	4	mA	
"L" level maximum overall output current	ΣI _{OL}	-	-	32	mA	
"L" level average overall output current	ΣI _{OLAV}	-	-	16	mA	
"H" level maximum output current	I _{он}	-	-	-15	mA	
"H" level average output current	I _{OHAV}	-	-	-4	mA	
"H" level maximum overall output current	ΣI _{OH}	-	-	-32	mA	
"H" level average overall output current	Σι _{οнаν}	-	-	-16	mA	
Power consumption ^[5]	P _D	T _A = +125°C	-	284 ^[6]	mW	
Operating ambient temperature	T _A	-	-40	+125 ^[7]	°C	
Storage temperature	T _{STG}	-	-55	+150	°C	

[1]: This parameter is based on V_{SS} = AV_{SS} = 0V.

[2]: AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.

[3]: V_1 and V_0 should not exceed V_{CC} + 0.3V. V_1 should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V₁ rating. Input/Output voltages of standard ports depend on V_{CC}.

[4]:

- Applicable to all general purpose I/O pins (Pnn_m).
- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.

14.2 Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0V)$

Deverseden	Cumphiel		Value		Unit	Demerica
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Dower europhy voltage		2.7	-	5.5	V	
Power supply voltage V _{CC} , AV _C		2.0	-	5.5	V	Maintains RAM data in stop mode
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	$\begin{array}{l} 1.0 \mu F \mbox{ (Allowance within \pm 50\%) \\ 3.9 \mu F \mbox{ (Allowance within \pm 20\%) \\ Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at V_{cc} must use the one of a capacity value that is larger than C_s. \end{array}$

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

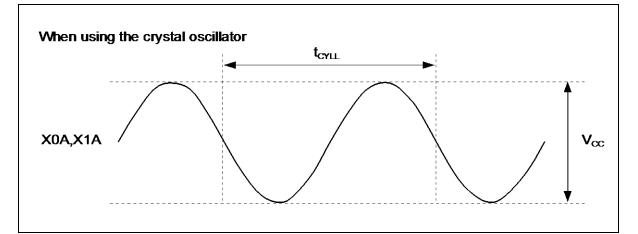
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

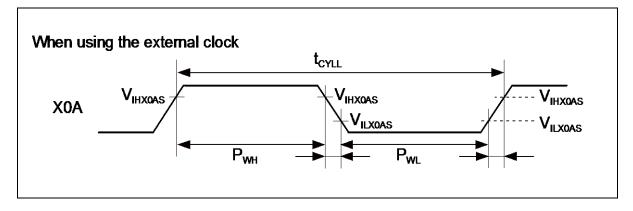
		Pin			Value			
Parameter	Symbol	Nam e	Conditions	Min	Тур	Мах	Unit	Remarks
				-	6.5	-	mA	T _A = +25°C
			PLL Sleep mode with CLKS1/2 = CLKP1/2 = 32MHz	-	-	13	mA	T _A = +105°C
			(CLKRC and CLKSC stopped)	-	-	14	mA	T _A = +125°C
	Main Sleep mode with	-	0.9	-	mA	T _A = +25°C		
	I _{CCSMAIN}		CLKS1/2 = CLKP1/2 = 4MHz, SMCR:LPMSS = 0 (CLKPLL, CLKRC and CLKSC stopped)	-	-	4	mA	T _A = +105°C
				-	-	5	mA	T _A = +125°C
	I _{CCSRCH} VCC		RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz,	-	0.5	-	mA	T _A = +25°C
Power supply current in Sleep modes ^[1]		Vcc		-	-	3.5	mA	T _A = +105°C
				-	-	4.5	mA	T _A = +125°C
				-	0.06	-	mA	T _A = +25°C
	I _{CCSRCL}			-	-	2.7	mA	T _A = +105°C
				-	-	3.7	mA	T _A = +125°C
			Sub Sleep mode with	-	0.04	-	mA	T _A = +25°C
	ICCSSUB		CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and CLKRC	-	-	2.5	mA	T _A = +105°C
			stopped)	-	-	3.5	mA	T _A = +125°C

14.3.2 Pin Characteristics

 $(V_{CC}$ = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = - 40°C to + 125°C)

			a		Value				
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	nit Remarks	
		Dent innute	-	V _{cc} ×0.7	-	V _{CC} + 0.3	V	CMOS Hysteresis input	
	V _{IH}	Port inputs Pnn_m	-	V _{cc} ×0.8	-	V _{cc} + 0.3	V	AUTOMOTIVE Hysteresis input	
"H" level input	VIHXOS	XO	External clock in "Fast Clock Input mode"	VD×0.8	-	VD	v	VD=1.8V±0.15V	
voltage	VIHXOAS	X0A	External clock in "Oscillation mode"	V _{CC} ×0.8	-	V _{cc} + 0.3	V		
	VIHR	RSTX	-	V _{CC} ×0.8	-	V _{cc} + 0.3	V	CMOS Hysteresis input	
	V _{IHM}	MD	-	V _{cc} - 0.3	-	V _{cc} + 0.3	V	CMOS Hysteresis input	
	V _{IHD}	DEBUG I/F	-	2.0	-	V _{CC} + 0.3	V	TTL Input	
			-	V _{SS} - 0.3	-	V _{CC} ×0.3	V	CMOS Hysteresis input	
	V _{IL}	Port inputs Pnn_m	-	V _{SS} - 0.3	-	V _{CC} ×0.5	V	AUTOMOTIVE Hysteresis input	
"L" level input	VILX0S	XO	External clock in "Fast Clock Input mode"	V _{SS}	-	VD×0.2	v	VD=1.8V±0.15V	
voltage	voltage V _{ILX0AS} X0A		External clock in "Oscillation mode"	V _{SS} - 0.3	-	V _{cc} ×0.2	V		
	V _{ILR}	RSTX	-	V _{SS} - 0.3	-	V _{CC} ×0.2	V	CMOS Hysteresis input	
	VILM	MD	-	V _{SS} - 0.3	-	V _{SS} + 0.3	V	CMOS Hysteresis input	
	V _{ILD}	DEBUG I/F	-	V _{SS} - 0.3	-	0.8	V	TTL Input	
"H" level output voltage	V _{OH4}	4mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OH} = -4mA$ $2.7V \le V_{CC} < 4.5V$ $I_{OH} = -1.5mA$	- V _{cc} - 0.5	-	V _{cc}	v		
"L" level output voltage	V _{OL4}	4mA type	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OL} = +4mA \\ 2.7V \leq V_{CC} < 4.5V \\ I_{OL} = +1.7mA \end{array}$		-	0.4	v		
	V _{old}	DEBUG I/F	$V_{CC} = 2.7V$ $I_{OL} = +25mA$	0	-	0.25	V		
Input leak current	IIL	Pnn_m	$V_{SS} < V_I < V_{CC}$ AV _{SS} < V _I <av<sub>CC, AVRH</av<sub>	V _I < V _{CC} < V _I < AV _{CC} , -1 - +1 μA		μA			
Pull-up resistance value	R _{PU}	Pnn_m	V _{CC} = 5.0V ±10%	25	50	100	kΩ		
Input capacitance	C _{IN}	Other than C, Vcc, Vss, AVcc, AVss, AVRH	-	-	5	15	pF		





14.4.2 Sub Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Demonstern	Quarter	Pin	Conditions		Value		11	Demode	
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks	
Input frequency f _{CL}		VOA	-	-	32.768	-	kHz	When using an oscillation circuit	
	f _{CL}	X0A, X1A	-	-	-	100	kHz	When using an opposite phase external clock	
		X0A	-	-	-	50	kHz	When using a single phase external clock	
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs		
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%		

14.4.3 Built-in RC Oscillation Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

– <i>i</i>			Value			- .
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Clock frequency	f _{BC}	50	100	200	kHz	When using slow frequency of RC oscillator
Clock inequency	IRC	1	2	4	MHz	When using fast frequency of RC oscillator
		80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)
RC clock stabilization time	t _{RCSTAB}	64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)

14.4.4 Internal Clock Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

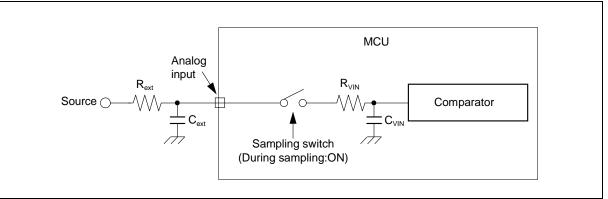
Deservator	Current of	Va	Unit	
Parameter	Symbol	Min	Мах	Unit
Internal System clock frequency (CLKS1 and CLKS2)	fclks1, fclks2	-	54	MHz
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{clkb} , f _{clkp1}	-	32	MHz
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz

14.5 A/D Converter

14.5.1 Electrical Characteristics for the A/D Converter

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Value				
			Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	10	bit	
Total error	-	-	- 3.0	-	+ 3.0	LSB	
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB	
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB	
Zero transition voltage	V _{ot}	ANn	Тур - 20	AV _{SS} + 0.5LSB	Тур + 20	mV	
Full scale transition voltage	V _{FST}	ANn	Тур - 20	AVRH- 1.5LSB	Тур + 20	mV	
0	-	-	1.0	-	5.0	μs	$4.5V \le AV_{CC} \le 5.5V$
Compare time*			2.2	-	8.0	μs	$2.7V \le AV_{CC} < 4.5V$
0*	-	-	0.5	-	-	μs	$4.5V \le AV_{CC} \le 5.5V$
Sampling time*			1.2	-	-	μs	$2.7V \le AV_{CC} < 4.5V$
Power supply current	I _A	AV _{cc}	-	2.0	3.1	mA	A/D Converter active
	I _{AH}		-	-	3.3	μA	A/D Converter not operated
Reference power supply current	I _R	AVRH	-	520	810	μA	A/D Converter active
(between AVRH and AV_{SS})	I _{RH}		-	-	1.0	μA	A/D Converter not operated
Analog input capacity	C _{VIN}	ANn	-	-	15.6	pF	
Analog impodonce	R _{VIN}	ANn	-	-	2050	Ω	$4.5V \le AV_{CC} \le 5.5V$
Analog impedance			-	-	3600	Ω	$2.7V \le AV_{CC} < 4.5V$
Analog port input current (during conversion)	I _{AIN}	ANn	- 0.3	-	+ 0.3	Ω	AV _{SS} <v<sub>AIN <av<sub>CC, AVRH</av<sub></v<sub>
Analog input voltage	V _{AIN}	ANn	AV _{SS}	-	AVRH	V	
Reference voltage range	-	AVRH	AV _{cc} - 0.1	-	AV _{cc}	V	
Variation between channels	-	ANn	-	-	4.0	LSB	


*: Time for each channel.

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

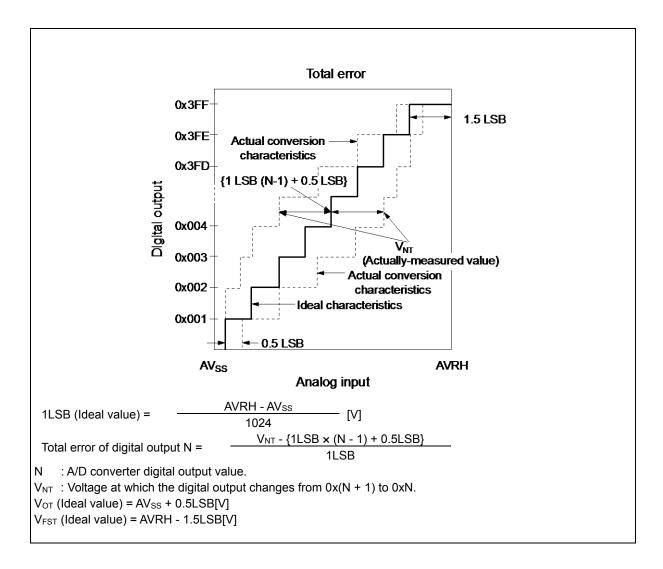
To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance R_{ext}, the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

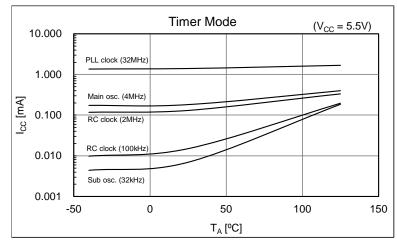
CVIN: Analog input capacity (I/O, analog switch and ADC are contained)

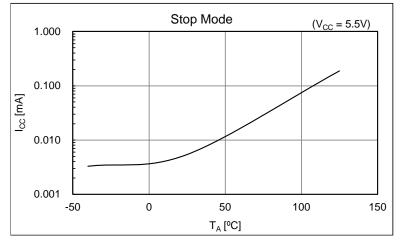
Rvin: Analog input impedance (I/O, analog switch and ADC are contained)


The following approximation formula for the replacement model above can be used: Tsamp = $7.62 \times (\text{Rext} \times \text{Cext} + (\text{Rext} + \text{R}_{\text{VIN}}) \times \text{C}_{\text{VIN}})$

- Do not select a sampling time below the absolute minimum permitted value. (0.5µs for 4.5V ≤ AV_{CC} ≤ 5.5V, 1.2µs for 2.7V ≤ AV_{CC} < 4.5V)
- If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

14.5.3 Definition of A/D Converter Terms


- Resolution : Analog variation that is recognized by an A/D converter.
- Nonlinearity error : Deviation of the actual conversion characteristics from a straight line that connects the zero transition point (0b0000000000 ←→ 0b000000001) to the full-scale transition point (0b1111111110 ←→ 0b111111111).
- Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by 1LSB.
- Total error : Difference between the actual value and the theoretical value. The total error includes zero transition error, full-scale transition error and nonlinearity error.
- Zero transition voltage: Input voltage which results in the minimum conversion value.
- Full scale transition voltage: Input voltage which results in the maximum conversion value.



CY96F615

Used Setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings			
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz			
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz			
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz			
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz			
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz			
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz Regulator in High Power Mode, (CLKB is stopped in this mode)			
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz Regulator in High Power Mode, (CLKB is stopped in this mode)			
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz Regulator in High Power Mode, (CLKB is stopped in this mode)			
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)			
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)			
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode			
	Main osc.	CLKMC = 4MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode			
	RC clock fast	CLKMC = 2MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode			
	RC clock slow	CLKMC = 100kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode			
	Sub osc.	CLKMC = 32 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode			
Stop mode	stopped	(All clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode			

18. Major Changes

Spansion Publication Number: MB96610_DS704-00007

Page	Section	Change Results				
Revision 3.0						
	■FEATURES	Changed the description of "External Interrupts"				
4		Interrupt mask and pending bit per channel				
		Interrupt mask bit per channel				
23 to 26	■HANDLING PRECAUTIONS	Added a section				
34	■ELECTRICAL CHARACTERISTICS	Changed the Conditions for I _{CCSRCH}				
	3. DC Characteristics	CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz,				
	(1) Current Rating	CLKS1/2 = CLKP1/2 = CLKRC = 2MHz,				
		Changed the Conditions for I _{CCSRCL}				
		CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz				
		CLKS1/2 = CLKP1/2 = CLKRC = 100kHz				
		Changed the Conditions for I _{CCTPLL}				
		PLL Timer mode with CLKP1 = 32MHz				
		PLL Timer mode with CLKPLL = 32MHz				
		Changed the Value of "Power supply current in Timer modes"				
		Typ: 2480 μ A \rightarrow 1800 μ A (T _A = +25°C)				
25		Max: 2710 μ A \rightarrow 2245 μ A (T _A = +25°C)				
35		Max: 3985 μ A \rightarrow 3165 μ A (T _A = +105°C)				
		Max: 4830 μ A \rightarrow 3975 μ A (T _A = +125°C)				
		Changed the Conditions for ICCTRCL				
		RC Timer mode with CLKRC = 100kHz,				
		SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped)				
		RC Timer mode with CLKRC = 100kHz				
		(CLKPLL, CLKMC and CLKSC stopped)				
36		Changed the annotation *2				
		Power supply for "On Chip Debugger" part is not included.				
		Power supply current in Run mode does not include				
		Flash Write / Erase current.				
		The current for "On Chip Debugger" part is not included.				
47	5. A/D Converter (2) Accuracy and Setting of the A/D Converter Sampling Time	Deleted the unit "[Min]" from approximation formula of Sampling time				
52	7. Flash Memory Write/Erase Characteristics	Changed the condition				
		$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V\pm0.15V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$				
		(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C to + 125°C)				