

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 4x14b; D/A 4x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c28403-24pvxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC Functional Overview

The PSoC family consists of many devices with On-Chip Controllers. These devices are designed to replace multiple traditional MCU based system components with one low cost single chip programmable component. A PSoC device includes configurable analog blocks, digital blocks, and interconnections. This architecture enables the user to create customized peripheral configurations to match the requirements of each individual application. In addition, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages.

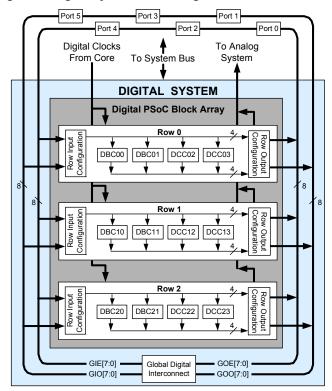
The CY8C28xxx group of PSoC devices described in this datasheet have multiple resource configuration options available. Therefore, not every resource mentioned in this datasheet is available for each CY8C28xxx subgroup. The CY8C28x45 subgroup has a full feature set of all resources described. There are six more segmented subgroups that allow designers to use a device with only the resources and functionality necessary for a specific application. See Table 2 on page 9 to determine the resources available for each CY8C28xxx subgroup. The same information is also presented in more detail in the Ordering Information section.

The architecture for this specific PSoC device family, as shown in the Logic Block Diagram on page 1, consists of four main areas: PSoC Core, Digital System, Analog System, and System Resources. The configurable global bus system allows all the device resources to be combined into a complete custom system. PSoC CY8C28xxx family devices have up to six I/O ports that connect to the global digital and analog interconnects, providing access to up to 12 digital blocks and up to 16 analog blocks.

The PSoC Core

The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable general Purpose I/O (GPIO). The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four MIPS 8-bit Harvard architecture microcontroller.

Memory encompasses 16K bytes of Flash for program storage, 1K bytes of SRAM for data storage. The PSoC device incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to 2.5% over temperature and voltage. A low power 32 kHz internal low speed oscillator (ILO) is provided for the sleep timer and watch dog timer (WDT). The 32.768 kHz external crystal oscillator (ECO) is available for use as a real time clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL.


PSoC GPIOs provide connections to the CPU, and digital and analog resources. Each pin's drive mode may be selected from 8 options, which allows great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

The Digital System

The Digital System is composed of up to 12 configurable digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to create 8, 16, 24, and

32-bit peripherals, which are called user modules. The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin.

Figure 2. Digital System Block Diagram^[1]

Digital peripheral configurations include:

- PWMs (8- and 16-bit, One-shot and Multi-shot capability)
- PWMs with Dead band/Kill (8- and 16-bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- Full-duplex 8-bit UARTs (up to 3) with selectable parity
- Half-duplex 8-bit UARTs (up to 6) with selectable parity
- Variable length SPI slave and master
 Up to 6 total slaves and masters (8-bit)
 Supports 8 to 16 bit operation
- I²C slave, master, or multi-master (up to 2 available as System Resources)
- IrDA (up to 3)
- Pseudo Random Sequence Generators (8 to 32 bit)
- Cyclical Redundancy Checker/Generator (16 bit)
- Shift Register (2 to 32 bit)

Note

1. CY8C28x52 devices do not have digital block row 2. They have two digital rows with eight total digital blocks.

Figure 6. Analog System Block Diagram for CY8C28x23 Devices

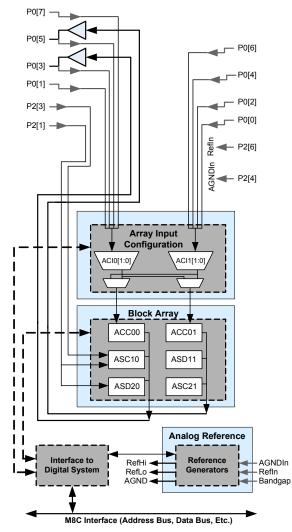
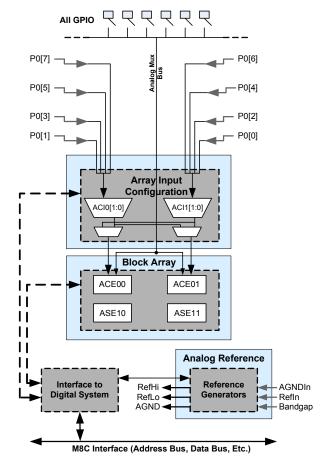



Figure 7. Analog System Block Diagram for CY8C28x13 Devices

The devices covered by this datasheet all have the same architecture, specifications, and ratings. However, the amount of some hardware resources varies from device to device within the group. The following table lists resources available for the specific device subgroups covered by this datasheet.

Table 2.	CY8C28xxx Device Characteristics	
----------	----------------------------------	--

PSoC Part Number	CapSense	Digital Blocks	Regular Analog Blocks	Limited Analog Blocks	HW I ² C	Decimators	Digital I/O	Analog Inputs	Analog Outputs	Analog Mux Buses
CY8C28x03	Ν	12	0	0	2	0	up to 24	up to 8	0	0
CY8C28x13	Y	12	0	4	1	2	up to 40	up to 40	0	2
CY8C28x23	Ν	12	6	0	2	2	up to 44	up to 10	2	0
CY8C28x33	Y	12	6	4	1	4	up to 40	up to 40	2	2
CY8C28x43	Ν	12	12	0	2	4	up to 44	up to 44	4	2
CY8C28x45	Y	12	12	4	2	4	up to 44	up to 44	4	2
CY8C28x52	Y	8	12	4	1	4	up to 24	up to 24	4	2

Register Reference

This section lists the registers of the CY8C28xxx PSoC devices. For detailed register information, reference the *PSoC Technical Reference Manual* for CY8C28xxx PSoC devices.

Register Conventions

The register conventions specific to this section are listed in the following table.

Convention	Description						
R	Read register or bit(s)						
W	Write register or bit(s)						
L	Logical register or bit(s)						
С	Clearable register or bit(s)						
#	Access is bit specific						

Register Mapping Tables

CY8C28xxx PSoC devices have a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XIO bit in the Flag register (CPU_F) determines which bank of registers CPU instructions access. When the XIO bit is set the registers in Bank 1 are accessed by CPU instructions. When the XIO bit is cleared the registers in Bank 0 are accessed by CPU instructions.

Note In the following register mapping tables, blank fields are reserved and should not be accessed.

Table 10. CY8C28x13 Register Map Bank 0 Table: User Space

	CY8C28X13 R							-			-
Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR PRT0IE	00	RW RW	DBC20DR0 DBC20DR1	40	# W		80 81		RDI2RI RDI2SYN	C0 C1	RW
				41							
PRTOGS	02	RW	DBC20DR2	42	RW		82		RDI2IS	C2	RW
PRT0DM2	03	RW	DBC20CR0	43	#		83		RDI2LT0	C3	
PRT1DR	04	RW	DBC21DR0	44	#		84		RDI2LT1	C4	RW
PRT1IE	05	RW	DBC21DR1	45	W	-	85		RDI2RO0	C5	RW
PRT1GS	06	RW	DBC21DR2	46	RW	-	86		RDI2RO1	C6	RW
PRT1DM2	07	RW	DBC21CR0	47	#		87		RDI2DSM	C7	RW
PRT2DR	08	RW	DCC22DR0	48	#		88			C8	
PRT2IE	09	RW	DCC22DR1	49	W		89			C9	
PRT2GS	0A	RW	DCC22DR2	4A	RW		8A			CA	!
PRT2DM2	0B	RW	DCC22CR0	4B	#		8B			CB	'
PRT3DR	0C	RW	DCC23DR0	4C	#		8C			CC	
PRT3IE	0D	RW	DCC23DR1	4D	W		8D			CD	
PRT3GS	0E	RW	DCC23DR2	4E	RW		8E			CE	
PRT3DM2	0F	RW	DCC23CR0	4F	#		8F			CF	
PRT4DR	10	RW		50			90		CUR_PP	D0	RW
PRT4IE	11	RW		51			91		STK_PP	D1	RW
PRT4GS	12	RW		52			92			D2	
PRT4DM2	13	RW		53			93		IDX_PP	D3	RW
PRT5DR	14	RW		54			94		MVR_PP	D4	RW
PRT5IE	15	RW		55			95		MVW_PP	D5	RW
PRT5GS	16	RW		56			96		I2C0_CFG	D6	RW
PRT5DM2	17	RW		57			97		I2C0_SCR	D7	#
	18			58			98		12C0_DR	D8	RW
	19			59			99		I2C0_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C		INT_CLR2	DC	RW
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F		INT_MSK2	DF	RW
DBC00DR0	20	#		60		DEC0_DH	A0	RC	INT_MSK0	E0	RW
DBC00DR1	21	W	AMUX_CFG	61	RW	DEC0_DL	A1	RC	INT_MSK1	E1	RW
DBC00DR2	22	RW		62		DEC1_DH	A2	RC	INT_VC	E2	RC
DBC00CR0	23	#		63		DEC1_DL	A3	RC	RES_WDT	E3	W
DBC01DR0	24	#		64			A4			E4	
DBC01DR1	25	W		65			A5			E5	
DBC01DR2	26	RW		66			A6		DEC_CR0*	E6	RW
DBC01CR0	27	#		67			A7		DEC_CR1*	E7	RW
DCC02DR0	28	#		68		MUL1_X	A8	W	MUL0_X	E8	W
DCC02DR1	29	W		69		MUL1_Y	A9	W	MUL0_Y	E9	W
DCC02DR2	2A	RW	SADC_DH	6A	RW	MUL1_DH	AA	R	MUL0_DH	EA	R
DCC02CR0	2B	#	SADC_DL	6B	RW	MUL1_DL	AB	R	MUL0_DL	EB	R
DCC03DR0	2C	#	TMP_DR0	6C	RW	ACC1_DR1	AC	RW	ACC0_DR1	EC	RW
DCC03DR1	2D	W	TMP_DR1	6D	RW	ACC1_DR0	AD	RW	ACC0_DR0	ED	RW
DCC03DR2	2E	RW	TMP_DR2	6E	RW	ACC1_DR3	AE	RW	ACC0_DR3	EE	RW
DCC03CR0	2F	#	TMP_DR3	6F	RW	ACC1_DR2	AF	RW	ACC0_DR2	EF	RW
DBC10DR0	30	#		70		RDI0RI	B0	RW		F0	
DBC10DR1	31	W		71		RDI0SYN	B1	RW		F1	
DBC10DR2	32	RW		72		RDI0IS	B2	RW		F2	
DBC10CR0	33	#		73		RDI0LT0	B3	RW		F3	
DBC11DR0	34	#		74		RDI0LT1	B4	RW		F4	
DBC11DR1	35	W		75		RDI0RO0	B5	RW		F5	
DBC11DR2	36	RW		76		RDI0RO1	B6	RW		F6	
DBC11CR0	37	#		77	1	RDI0DSM	B7	RW	CPU_F	F7	RL
DCC12DR0	38	#		78	1	RDI1RI	B8	RW		F8	1
DCC12DR1	39	W		79		RDI1SYN	B9	RW		F9	
DCC12DR2	3A	RW		7A		RDI1IS	BA	RW		FA	1
DCC12CR0	3B	#		7B		RDI1LT0	BB	RW		FB	+
DCC13DR0	3C	#		7D 7C		RDI1LT1	BC	RW	DAC1 D	FC	RW
	30 3D	# W		70 7D		RDI1R00	BD	RW	DACI_D DAC0 D	FD	RW
DCC13DR1	50	~~									
DCC13DR1 DCC13DR2	3E	RW/		7E		RDI1RO1	RF	R\//	CPU SCR1	FF	
DCC13DR1 DCC13DR2 DCC13CR0	3E 3F	RW #		7E 7F		RDI1RO1 RDI1DSM	BE BF	RW RW	CPU_SCR1 CPU_SCR0	FE FF	#

Table 13. CY8C28x23 Register Map Bank 1 Table: Configuration Space

			мар валк 1								
Name PRT0DM0	Addr (1,Hex)	Access RW	Name DBC20FN	Addr (1,Hex) 40	Access RW	Name	Addr (1,Hex) 80	Access	Name RDI2RI	Addr (1,Hex) C0	Access RW
PRT0DM0	00	RW	DBC20FN DBC20IN	40	RW		81		RDI2RI RDI2SYN	C0 C1	RW
PRTODMI	01	RW	DBC200U		RW		82		RDI2STN	C1 C2	RW
				42							
PRT0IC1 PRT1DM0	03	RW	DBC20CR1	43	RW		83		RDI2LT0	C3	RW
	04	RW	DBC21FN	44	RW		84		RDI2LT1 RDI2RO0	C4	RW
PRT1DM1	05	RW	DBC21IN	45	RW		85			C5	RW
PRT1IC0	06	RW	DBC21OU	46	RW		86		RDI2RO1	C6	RW
PRT1IC1	07	RW	DBC21CR1	47	RW		87		RDI2DSM	C7	RW
PRT2DM0	08	RW	DCC22FN	48	RW		88			C8	
PRT2DM1	09	RW	DCC22IN	49	RW		89			C9	
PRT2IC0	0A	RW	DCC22OU	4A	RW		8A			CA	
PRT2IC1	0B	RW	DCC22CR1	4B	RW		8B			СВ	
PRT3DM0	00	RW	DCC23FN	4C	RW		8C			CC	
PRT3DM1	0D	RW	DCC23IN	4D	RW		8D			CD	
PRT3IC0	0E	RW	DCC23OU	4E	RW		8E			CE	
PRT3IC1	0F	RW	DCC23CR1	4F	RW		8F			CF	
PRT4DM0	10	RW		50			90		GDI_O_IN	D0	RW
PRT4DM1	11	RW		51		DEC0_CR0	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW		52		DEC_CR3	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW		53			93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW		54			94	RW	DEC0_CR	D4	RW
PRT5DM1	15	RW		55		DEC1_CR0	95	RW	DEC1_CR	D5	RW
PRT5IC0	16	RW		56			96			D6	
PRT5IC1	17	RW		57			97			D7	
	18			58			98			D8	
	19			59			99			D9	
	1A			5A		DEC_CR5	9A	RW		DA	
	1B			5B			9B			DB	
	1C			5C			9C			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBC00FN	20	RW	CLK_CR0	60	RW	GDI_O_IN_CR	A0	RW	OSC_CR0	E0	RW
DBC00IN	21	RW	CLK_CR1	61	RW	GDI_E_IN_CR	A1	RW	OSC_CR1	E1	RW
DBC00OU	22	RW	ABF_CR0	62	RW	GDI_O_OU_CR	A2	RW	OSC_CR2	E2	RW
DBC00CR1	23	RW	AMD_CR0	63	RW	GDI_E_OU_CR	A3	RW	VLT_CR	E3	RW
DBC01FN	24	RW	CMP_GO_EN	64	RW	RTC_H	A4	RW	VLT_CMP	E4	RW
DBC01IN	25	RW		65		RTC_M	A5	RW		E5	
DBC01OU	26	RW	AMD_CR1	66	RW	RTC_S	A6	RW		E6	
DBC01CR1	27	RW	ALT_CR0	67	RW	RTC_CR	A7	RW		E7	
DCC02FN	28	RW		68			A8		IMO_TR	E8	RW
DCC02IN	29	RW	CLK_CR2	69	RW		A9		ILO_TR	E9	RW
DCC02OU	2A	RW		6A			AA		BDG_TR	EA	RW
DCC02CR1	2B	RW	I2C1_CFG	6B	RW		AB		ECO_TR	EB	RW
DCC03FN	2C	RW	TMP_DR0	6C	RW		AC			EC	
DCC03IN	2D	RW	TMP_DR1	6D	RW	I2C0_ADDR	AD	RW		ED	
DCC03OU	2E	RW	TMP_DR2	6E	RW	I2C1_ADDR	AE	RW		EE	
DCC03CR1	2F	RW	TMP_DR3	6F	RW	AMUX_CLK	AF	RW		EF	
DBC10FN	30	RW		70		RDIORI	B0	RW		F0	
DBC10IN	31	RW		71		RDI0SYN	B1	RW		F1	
DBC10OU	32	RW		72		RDI0IS	B2	RW		F2	
DBC10CR1	33	RW		73		RDI0LT0	B3	RW		F3	
DBC11FN	34	RW		74		RDI0LT1	B4	RW		F4	
DBC11IN	35	RW		75		RDI0RO0	B5	RW		F5	
DBC110U	36	RW		76		RDI0RO1	B6	RW		F6	
DBC11CR1	37	RW		77		RDIODSM	B7	RW	CPU_F	F7	RL
DCC12FN	38	RW	ľ	78		RDI1RI	B8	RW		F8	
DCC12IN	39	RW		79		RDI1SYN	В9	RW		F9	
DCC12OU	3A	RW		7A		RDI1IS	BA	RW	FLS_PR1	FA	RW
DCC12CR1	3B	RW		7B		RDI1LT0	BB	RW		FB	
DCC13FN	3C	RW	l	7C		RDI1LT1	BC	RW		FC	
DCC13IN	3D	RW		7D		RDI1RO0	BD	RW		FD	
	35 3E	RW		76 7E		RDI1R01	BE	RW	CPU SCR1	FE	#
DCC13CU			8		ļ						
DCC13OU DCC13CR1	3F	RW		7F		RDI1DSM	BF	RW	CPU SCR0	FF	#

Table 16. CY8C28x43 Register Map Bank 0 Table: User Space

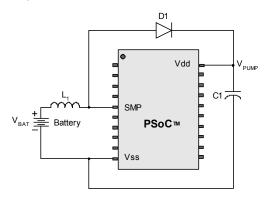
	C10C20X43 K							_			
Name	Addr (0,Hex)		Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	
PRT0DR	00	RW	DBC20DR0	40	#	ASC10CR0	80	RW	RDI2RI	C0	RW
PRTOIE	01	RW	DBC20DR1	41	W	ASC10CR1	81	RW	RDI2SYN	C1	RW
PRT0GS	02	RW	DBC20DR2	42	RW	ASC10CR2	82	RW	RDI2IS	C2	RW
PRT0DM2	03	RW	DBC20CR0	43	#	ASC10CR3	83	RW	RDI2LT0	C3	RW
PRT1DR	04	RW	DBC21DR0	44	#	ASD11CR0	84	RW	RDI2LT1	C4	RW
PRT1IE	05	RW	DBC21DR1	45	W	ASD11CR1	85	RW	RDI2RO0	C5	RW
PRT1GS	06	RW	DBC21DR2	46	RW	ASD11CR2	86	RW	RDI2RO1	C6	RW
PRT1DM2	07	RW	DBC21CR0	47	#	ASD11CR3	87	RW	RDI2DSM	C7	RW
PRT2DR	08	RW	DCC22DR0	48	#	ASC12CR0	88	RW		C8	
PRT2IE	09	RW	DCC22DR1	49	W	ASC12CR1	89	RW		C9	
PRT2GS	0A	RW	DCC22DR2	4A	RW	ASC12CR2	8A	RW		CA	
PRT2DM2	0B	RW	DCC22CR0	4B	#	ASC12CR3	8B	RW		CB	
PRT3DR	0C	RW	DCC23DR0	4C	#	ASD13CR0	8C	RW		CC	
PRT3IE	0D	RW	DCC23DR1	4D	W	ASD13CR1	8D	RW		CD	
PRT3GS	0E	RW	DCC23DR2	4E	RW	ASD13CR2	8E	RW		CE	
PRT3DM2	0F	RW	DCC23CR0	4F	#	ASD13CR3	8F	RW		CF	
PRT4DR	10	RW		50		ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW		51		ASD20CR1	91	RW	STK_PP	D1	RW
PRT4GS	12	RW		52		ASD20CR2	92	RW		D2	
PRT4DM2	13	RW		53		ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW		54		ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW		55		ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW		56		ASC21CR2	96	RW	I2C0_CFG	D6	RW
PRT5DM2	17	RW		57		ASC21CR3	97	RW	I2C0_SCR	D7	#
	18			58		ASD22CR0	98	RW	I2C0_DR	D8	RW
	19			59		ASD22CR1	99	RW	I2C0_MSCR	D9	#
	1A			5A		ASD22CR2	9A	RW	INT_CLR0	DA	RW
	1B			5B		ASD22CR3	9B	RW	INT_CLR1	DB	RW
	1C			5C		ASC23CR0	9C	RW	INT_CLR2	DC	RW
	1D			5D		ASC23CR1	9D	RW	INT_CLR3	DD	RW
	1E			5E		ASC23CR2	9E	RW	INT_MSK3	DE	RW
	1F			5F		ASC23CR3	9F	RW	INT_MSK2	DF	RW
DBC00DR0	20	#	AMX_IN	60	RW	DEC0_DH	A0	RC	INT_MSK0	E0	RW
DBC00DR1	21	W	AMUX CFG	61	RW	DEC0 DL	A1	RC	INT MSK1	E1	RW
DBC00DR2	22	RW	CLK CR3	62	RW	DEC1 DH	A2	RC	INT VC	E2	RC
DBC00CR0	23	#	ARF CR	63	RW	DEC1 DL	A3	RC	RES WDT	E3	W
DBC01DR0	24	#	CMP_CR0	64	#	DEC2 DH	A4	RC	I2C1 SCR	E4	#
DBC01DR1	25	W	ASY CR	65	#	DEC2 DL	A5	RC	I2C1 MSCR	E5	#
DBC01DR2	26	RW	CMP CR1	66	RW	DEC3 DH	A6	RC	DEC CR0*	E6	RW
DBC01CR0	27	#	I2C1 DR	67	RW	DEC3 DL	A7	RC	DEC CR1*	E7	RW
DCC02DR0	28	#		68		MUL1 X	A8	W	MUL0 X	E8	W
DCC02DR1	29	W		69		MUL1 Y	A9	W	MULO Y	E9	W
DCC02DR2	20 2A	RW	SADC DH	6A	RW	MUL1 DH	AA	R	MUL0 DH	EA	R
DCC02CR0	2B	#	SADC DL	6B	RW	MUL1 DL	AB	R	MULO DL	EB	R
DCC03DR0	20	#	TMP DR0	6C	RW	ACC1 DR1	AC	RW	ACC0 DR1	EC	RW
DCC03DR1	20 2D	W	TMP_DR1	6D	RW	ACC1 DR0	AD	RW	ACC0 DR0	ED	RW
DCC03DR2	25 2E	RW	TMP_DR2	6E	RW	ACC1_DR3	AE		ACC0_DR3	EE	RW
DCC03DR2	2E 2F	#	TMP_DR3	6F	RW	ACC1_DR3	AL	RW	ACC0_DR2	EF	RW
DBC10DR0	30	#	ACB00CR3	70	RW	RDIORI	B0	RW	A000_DI12	F0	1.00
DBC10DR0	31	W W	ACB00CR0	70	RW	RDIOSYN	B1	RW		F1	
DBC10DR1	32	RW	ACB00CR0	71	RW	RDIOIS	B1 B2	RW		F2	┼────
DBC10DR2 DBC10CR0	33	#	ACB00CR1 ACB00CR2	72	RW	RDI0LT0	B2 B3	RW		F2 F3	
DBC10CR0 DBC11DR0	33	#	ACB00CR2 ACB01CR3	73	RW	RDI0LT1	B3 B4	RW		F3 F4	
DBC11DR1	35	W	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	┨─────
DBC11DR2	36	RW	ACB01CR1	76	RW	RDIORO1	B6	RW	CDU E	F6	
DBC11CR0	37	#	ACB01CR2	77	RW	RDIODSM	B7	RW	CPU_F	F7	RL
DCC12DR0	38	#	ACB02CR3	78	RW	RDI1RI	B8	RW		F8	───
DCC12DR1	39	W	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	───
DCC12DR2	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	───
DCC12CR0	3B	#	ACB02CR2	7B	RW	RDI1LT0	BB	RW		FB	───
DCC13DR0	3C	#	ACB03CR3	7C	RW	RDI1LT1	BC	RW		FC	<u> </u>
DCC13DR1	3D	W	ACB03CR0	7D	RW	RDI1RO0	BD	RW		FD	
DCC13DR2	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCC13CR0	3F e Reserved and should	#	ACB03CR2	7F # Access is bit	RW	RDI1DSM	BF	RW	CPU_SCR0 ceptions" on page 25	FF	#

DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. The Operational Amplifiers covered by these specifications are components of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOACT}	Input Offset Voltage CT Block (absolute value) Power = Low, Opamp bias = High Power = Medium, Opamp bias = High Power = High, Opamp bias = High		1.6 1.3 1.2	8 8 8	mV mV mV	
V _{OSOA}	Input Offset Voltage SC and AGND Opamps (absolute value)	-	1	6	mV	Applies to High and Low Opamp bias.
TCV _{OSOA}	Average Input Offset Voltage Drift	-	7.0	35.0	μV/°C	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	200	-	pА	Gross tested to 1 µA.
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common Mode Voltage Range Common Mode Voltage Range (high power or high Opamp bias)	0.0 0.5		V _{DD} V _{DD} – 0.5	V V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common Mode Rejection Ratio Power = Low Power = Medium Power = High	60 60 60		- - -	dB dB dB	
G _{OLOA}	Open Loop Gain Power = Low Power = Medium Power = High	60 60 80		- - -	dB dB dB	
V _{OHIGHOA}	High Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High	V _{DD} -0.2 V _{DD} -0.2 V _{DD} -0.5	- -	_ _ _	V V V	
V _{OLOWOA}	Low Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High		- -	0.2 0.2 0.5	V V V	
I _{SOA}	Supply Current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - - -	200 400 700 1400 2400 4600	300 600 1100 2000 3600 7700	μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	60	_	_	dB	

Table 26. 5 V DC Operational Amplifier Specifications


DC Switch Mode Pump Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 33.	DC Switch	Mode	Pump	(SMP)	Specifications
					opooniounono

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PUMP} 5 V	5 V output voltage	4.75	5.0	5.25	V	Configuration of footnote. ^[14] Average, neglecting ripple. SMP trip voltage is set to 5.0 V.
V _{PUMP} 3 V	3 V output voltage	3.00	3.25	3.60	V	Configuration of footnote. ^[14] Average, neglecting ripple. SMP trip voltage is set to 3.25 V.
I _{PUMP}	Available output current V _{BAT} = 1.5 V, V _{PUMP} = 3.25 V V _{BAT} = 1.8 V, V _{PUMP} = 5.0 V	8 5			mA mA	Configuration of footnote. ^[14] SMP trip voltage is set to 3.25 V. SMP trip voltage is set to 5.0 V.
V _{BAT} 5 V	Input voltage range from battery	1.8	-	5.0	V	Configuration of footnote. ^[14] SMP trip voltage is set to 5.0 V.
V _{BAT} 3 V	Input voltage range from battery	1.5	-	3.3	V	Configuration of footnote. ^[14] SMP trip voltage is set to 3.25 V.
VBATSTART	Minimum input voltage from battery to start pump	2.6	-	_	V	Configuration of footnote. ^[14]
ΔV_{PUMP}_{Line}	Line regulation (over V _{BAT} range)	_	5	_	%V _O	Configuration of footnote. ^[14] V_0 is the " V_{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 40 on page 52.
ΔV_{PUMP_Load}	Load regulation	_	5	_	%V _O	Configuration of footnote. ^[14] V_O is the " V_{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 40 on page 52.
ΔV_{PUMP}_{Ripple}	Output voltage ripple (depends on capacitor/load)	-	100	-	mVpp	Configuration of footnote. ^[14] Load is 5mA.
E ₃	Efficiency	35	50	-	%	Configuration of footnote. ^[14] Load is 5 mA. SMP trip voltage is set to 3.25 V.
F _{PUMP}	Switching frequency	_	1.3	_	MHz	
DC _{PUMP}	Switching duty cycle	-	50	_	%	

Figure 9. Basic Switch Mode Pump Circuit

Note 14. L₁ = 2 μ H inductor, C₁ = 10 μ F capacitor, D₁ = Schottky diode. See Figure 9.

Table 35. 3.3-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b001	RefPower = High Opamp bias = High	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.045	P2[4] + P2[6] – 0.017	P2[4]+P2[6]+ 0.016	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.019	P2[4] – P2[6] + 0.004	P2[4]-P2[6]+ 0.023	V
	RefPower = High Opamp bias = Low	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.036	P2[4] + P2[6] – 0.012	P2[4]+P2[6]+ 0.013	V
1		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.021	P2[4] – P2[6] – 0.001	P2[4]-P2[6]+ 0.021	V
	RefPower = Medium	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.034	P2[4] + P2[6] – 0.011	P2[4]+P2[6]+ 0.013	V
	Opamp bias = High	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.023	P2[4] – P2[6] – 0.002	P2[4]-P2[6]+ 0.016	V
	RefPower = Medium Opamp bias = Low	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.033	P2[4] + P2[6] - 0.009	P2[4]+P2[6]+ 0.014	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.024	P2[4] – P2[6] – 0.003	P2[4]-P2[6]+ 0.020	V
0b010	RefPower = High Opamp bias = High	V _{REFHI}	Ref high	V _{DD}	V _{DD} - 0.042	V _{DD} – 0.008	V _{DD}	V
		V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.035	V _{DD} /2 – 0.001	V _{DD} /2 + 0.031	V
		V _{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.0165 V	V
	RefPower = High	V _{REFHI}	Ref high	V _{DD}	V _{DD} – 0.035	V _{DD} – 0.005	V _{DD}	V
	Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.031	$V_{DD}/2 - 0.001$	$V_{DD}/2 + 0.028$	V
		V _{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.012	V
	RefPower =	V _{REFHI}	Ref high	V _{DD}	V _{DD} – 0.044	V _{DD} – 0.005	V _{DD}	V
	Medium Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.052	V _{DD} /2	$V_{DD}/2 + 0.046$	V
		V _{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.014	V
	RefPower =	V _{REFHI}	Ref high	V _{DD}	V _{DD} – 0.036	V _{DD} – 0.004	V _{DD}	V
	Medium Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.032	V _{DD} /2	$V_{DD}/2 + 0.029$	V
	· ·	V _{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.001	V _{SS} + 0.012	V
0b011	All power settings. Not allowed for 3.3 V.	-	-	-	-	-	-	-
0b100	All power settings. Not allowed for 3.3 V.	-	-	_	-	-	-	-

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the *PSoC Technical Reference Manual* for CY8C28xxx PSoC devices, for more information on the VLT_CR register.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0R} V _{PPOR1R} V _{PPOR2R}	V _{DD} Value for PPOR Trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	- - -	2.91 4.39 4.55	2.985 4.49 4.65	V V V	V_{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog.
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V _{DD} Value for PPOR Trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_ _ _	2.82 4.39 4.55	2.90 4.49 4.64	V V V	V_{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog.
V _{PH0} V _{PH1} V _{PH2}	PPOR Hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	- - -	92 0 0		mV mV mV	
$\begin{array}{c} V_{LVD0} \\ V_{LVD1} \\ V_{LVD2} \\ V_{LVD3} \\ V_{LVD4} \\ V_{LVD5} \\ V_{LVD6} \\ V_{LVD7} \end{array}$	$\begin{array}{l} V_{DD} \mbox{ Value for LVD Trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \end{array}$	2.83 2.93 3.04 3.90 4.38 4.54 4.62 4.71	2.91 3.01 3.12 3.99 4.47 4.63 4.71 4.80	3.00 ^[16] 3.10 3.21 4.09 4.58 4.74 ^[17] 4.83 4.92	V V V V V V V V	
Vpumpo Vpump1 Vpump2 Vpump3 Vpump4 Vpump5 Vpump6 Vpump7	$\begin{array}{l} V_{DD} \mbox{ Value for PUMP Trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \end{array}$	2.93 3.00 3.16 4.09 4.53 4.61 4.70 4.88	3.01 3.08 3.24 4.17 4.62 4.71 4.80 4.98	3.10 3.17 3.33 4.28 4.74 4.82 4.91 5.10	V V V V V V V V V	

Table 40. DC POR and LVD Specifications

Notes

16. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply. 17. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 41. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools.
V _{DDLV}	Low V _{DD} for verify	3	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools.
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools.
V _{DDIWRITE}	Supply Voltage for Flash write operation	3	-	5.25	V	This specification applies to this device when it is executing internal flash writes.
I _{DDP}	Supply Current During Programming or Verify	-	5	25	mA	
V _{ILP}	Input Low Voltage During Programming or Verify	-	_	0.8	V	
V _{IHP}	Input High Voltage During Programming or Verify	2.2	-	-	V	
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	-	-	0.21	mA	Driving internal pull-down resistor.
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	-	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output Low Voltage During Programming or Verify	-	-	0.75	V	
V _{OHV}	Output High Voltage During Programming or Verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash Endurance (per block)	50,000 ^[18]	-	_	-	Erase/write cycles per block.
Flash _{ENT}	Flash Endurance (total) ^[19]	1,800,000	_	_	-	Erase/write cycles. Must be programmed and read at the same voltage to meet this.
Flash _{DR}	Flash Data Retention	10	_	-	Years	

Notes

18. The 50,000 cycle Flash endurance per block will only be guaranteed if the Flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V.

19. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 A maximum of 36 × 50,000 block endurance cycles is anowed. This may be balanced between operations on 30x1 blocks of 30,000 maximum cycles each, soz blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

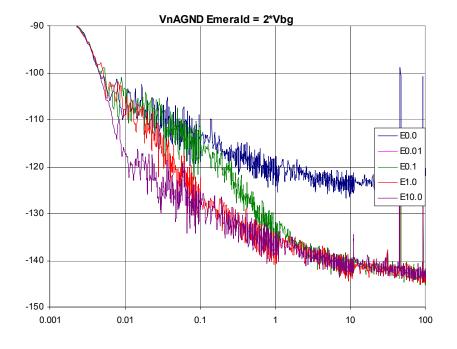
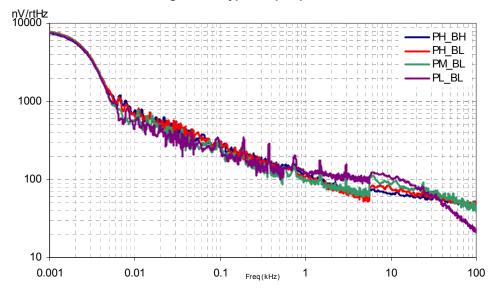



Figure 14. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

AC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 50. 5 V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{ROB}	Rising Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High	_		2.5 2.9	μs μs	
t _{SOB}	Falling Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High	-		2.3 2.3	μs μs	
SR _{ROB}	Rising Slew Rate (20% to 80%), 1 V Step, 100 pF Load Power = Low Power = High	0.65 0.65			V/μs V/μs	
SR _{FOB}	Falling Slew Rate (80% to 20%), 1 V Step, 100 pF Load Power = Low Power = High	0.65 0.65			V/μs V/μs	
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	0.8 0.8			MHz MHz	
BW _{OB}	Large Signal Bandwidth, 1 V _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	300 300		-	kHz kHz	

Table 51. 3.3 V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{ROB}	Rising Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High			3.8 3.8	μs μs	
t _{SOB}	Falling Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High			3.2 2.9	μs μs	
SR _{ROB}	Rising Slew Rate (20% to 80%), 1 V Step, 100 pF Load Power = Low Power = High	0.5 0.5		_ _	V/μs V/μs	
SR _{FOB}	Falling Slew Rate (80% to 20%), 1 V Step, 100 pF Load Power = Low Power = High	0.5 0.5		_ _	V/μs V/μs	
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	0.64 0.64		_ _	MHz MHz	
BW _{OB}	Large Signal Bandwidth, 1 V _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	200 200			kHz kHz	

AC SAR10 ADC Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 52. AC SAR10 ADC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{INSAR10}	Input clock frequency for SAR10 ADC	-	-	2.0	MHz	
F _{SSAR10}	Sample rate for SAR10 ADC SAR10 ADC Resolution = 10 bits	_	Ι	142.9	•	For 10-bit resolution, the sample rate is the ADC's input clock divided by 14.

AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 53. 5 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency	0.093	-	24.6	MHz	
-	High Period	20.6	-	5300	ns	
-	Low Period	20.6	-	-	ns	
-	Power-up IMO to Switch	150	-	-	μS	

Table 54. 3.3 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency with CPU Clock divide by 1 ^[28]	0.093	-	12.3	MHz	
FOSCEXT	Frequency with CPU Clock divide by 2 or greater $^{[29]}$	0.186	-	24.6	MHz	
-	High Period with CPU Clock divide by 1	41.7	-	5300	ns	
-	Low Period with CPU Clock divide by 1	41.7	-	-	ns	
-	Power-up IMO to Switch	150	-	-	μS	

Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
 If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.

Development Tool Selection

This section presents the development tools available for all current PSoC device families including the CY8C28xxx family.

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for over half a decade. PSoC Designer is available free of charge at http://www.cypress.com.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC Programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits can be purchased from the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface allows users to run, halt, and single step the processor and view the content of specific memory locations. Advanced emulation features are supported in PSoC Designer. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- Pod kit for CY8C29x66 PSoC Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466-24PXI 28-PDIP Chip Samples

Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Ordering Information

The following table lists the CY8C28xxx PSoC devices key package features and ordering codes.

Package	Ordering Code	Temperature Range	CapSense	Digital Blocks	Regular Analog Blocks	Limited Analog Blocks	HW I ² C	Decimators	10-bit SAR ADC	Digital I/O Pins	Analog Inputs	Analog Outputs	Flash (KBytes)	RAM (KBytes)	XRES Pin
28-Pin (210-Mil) SSOP	CY8C28403-24PVXI	–40 °C to 85 °C	Ν	12	0	0	2	0	Y	24	8	0	16	1	Y
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28403-24PVXIT	–40 °C to 85 °C	Ν	12	0	0	2	0	Y	24	8	0	16	1	Y
28-Pin (210-Mil) SSOP	CY8C28413-24PVXI	–40 °C to 85 °C	Y	12	0	4	1	2	Y	24	24	0	16	1	Y
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28413-24PVXIT	–40 °C to 85 °C	Y	12	0	4	1	2	Y	24	24	0	16	1	Y
44-Pin TQFP	CY8C28513-24AXI	–40 °C to 85 °C	Y	12	0	4	1	2	Y	40	40	0	16	1	Y
44-Pin TQFP (Tape and Reel)	CY8C28513-24AXIT	–40 °C to 85 °C	Y	12	0	4	1	2	Y	40	40	0	16	1	Y
48-Pin Sawn QFN	CY8C28623-24LTXI	–40 °C to 85 °C	Ν	12	6	0	2	2	Ν	44	10	2	16	1	Y
48-Pin Sawn QFN (Tape and Reel)	CY8C28623-24LTXIT	–40 °C to 85 °C	Ν	12	6	0	2	2	Ν	44	10	2	16	1	Y
28-Pin (210-Mil) SSOP	CY8C28433-24PVXI	–40 °C to 85 °C	Y	12	6	4	1	4	Y	24	24	2	16	1	Y
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28433-24PVXIT	–40 °C to 85 °C	Y	12	6	4	1	4	Y	24	24	2	16	1	Y
20-Pin (210-Mil) SSOP	CY8C28243-24PVXI	–40 °C to 85 °C	Ν	12	12	0	2	4	Y	16	16	4	16	1	Y
20-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28243-24PVXIT	–40 °C to 85 °C	Ν	12	12	0	2	4	Y	16	16	4	16	1	Y
48-Pin Sawn QFN	CY8C28643-24LTXI	–40 °C to 85 °C	N	12	12	0	2	4	Y	44	44	4	16	1	Υ
48-Pin Sawn QFN (Tape and Reel)	CY8C28643-24LTXIT	–40 °C to 85 °C	Ν	12	12	0	2	4	Y	44	44	4	16	1	Y
28-Pin (210-Mil) SSOP	CY8C28445-24PVXI	–40 °C to 85 °C	Y	12	12	4	2	4	Y	24	24	4	16	1	Y
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28445-24PVXIT	–40 °C to 85 °C	Y	12	12	4	2	4	Y	24	24	4	16	1	Y
44-Pin TQFP	CY8C28545-24AXI	–40 °C to 85 °C	Y	12	12	4	2	4	Y	40	40	4	16	1	Υ
44-Pin TQFP (Tape and Reel)	CY8C28545-24AXIT	–40 °C to 85 °C	Y	12	12	4	2	4	Y	40	40	4	16	1	Y
48-Pin Sawn QFN	CY8C28645-24LTXI	–40 °C to 85 °C	Y	12	12	4	2	4	Y	44	44	4	16	1	Y
48-Pin Sawn QFN (Tape and Reel)	CY8C28645-24LTXIT	–40 °C to 85 °C	Y	12	12	4	2	4	Y	44	44	4	16	1	Y
28-Pin (210-Mil) SSOP	CY8C28452-24PVXI	–40 °C to 85 °C	Y	8	12	4	1	4	Ν	24	24	4	16	1	Y
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28452-24PVXIT	–40 °C to 85 °C	Y	8	12	4	1	4	N	24	24	4	16	1	Y
56-Pin SSOP OCD	CY8C28000-24PVXI	–40 °C to 85 °C	Y	12	12	4	2	4	Y	44	44	4	16	1	Y

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

Glossary (continued)

shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device allowing users to store and retrieve data at a high rate of speed. The term static is used because, after a value has been loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Errata

This section describes the errata for CY8C28243, CY8C28403, CY8C28413, CY8C28433, CY8C28445, CY8C28452, CY8C28513, CY8C28545, CY8C28623, CY8C28643, CY8C28645 PSoC devices. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability.

Please contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Device Characteristics
CY8C28403	All Variants
CY8C28243	All Variants
CY8C28413	All Variants
CY8C28433	All Variants
CY8C28445	All Variants
CY8C28513	All Variants
CY8C28545	All Variants
CY8C28643	All Variants
CY8C28645	All Variants
CY8C28452	All Variants
CY8C28623	All Variants

Qualification Status

Engineering Samples

Errata Summary

The following table defines the errata applicability to CY8C28xxx devices.

Note Each erratum in the table below is hyperlinked. Click on the item entry to jump to its description.

Items	MPN	Silicon Revision	Fix Status
10-bit SAR ADC does not meet DNL/INL specification	CY8C28403 CY8C28413 CY8C28513 CY8C28433 CY8C28243 CY8C28643 CY8C28643 CY8C28445 CY8C28545 CY8C28645	*A	Silicon fix is not planned. The workaround mentioned above should be used.
Wrong data read from IDAC_CRx and DACx_D registers	CY8C28413 CY8C28513 CY8C28433 CY8C28445 CY8C28545 CY8C28645 CY8C28452	*A	Silicon fix is not planned. The workaround mentioned above should be used.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2008-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-48111 Rev. *O

Revised September 10, 2015

Page 87 of 87

PSoC Designer[™] and Programmable System-on-Chip[™] are trademarks and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I⁴C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.