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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 2.1. C8051F85x/86x Family Block Diagram (QSOP-24 Shown)
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2.7.  Reset Sources
Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this 
reset state, the following occur:

The core halts program execution.

Module registers are initialized to their defined reset values unless the bits reset only with a power-
on reset.

External port pins are forced to a known state.

Interrupts and timers are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset 
with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is 
preserved as long as power is not lost.

The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the 
reset. For VDD Supply Monitor and power-on resets, the RST pin is driven low until the device exits the 
reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the 
internal low-power oscillator. The Watchdog Timer is enabled with the Low Frequency Oscillator (LFO0) as 
its clock source. Program execution begins at location 0x0000.

2.8.  On-Chip Debugging
The C8051F85x/86x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash 
programming and in-system debugging with the production part installed in the end application. The C2 
interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information 
between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.
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8.  Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are 
two separate memory spaces: program memory and data memory. Program and data memory share the 
same address space but are accessed via different instruction types. The memory organization of the 
C8051F85x/86x device family is shown in Figure 8.1.

Figure 8.1. C8051F85x/86x Memory Map (8 kB flash version shown)
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The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the 
same address space as the Special Function Registers (SFR) but is physically separate from the SFR 
space. The addressing mode used by an instruction when accessing locations above 0x7F determines 
whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use 
direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the 
upper 128 bytes of data memory. Figure 8.1 illustrates the data memory organization of the C8051F85x/
86x. 

Revision C C8051F852/5 and C8051F862/5 devices implement the upper four bytes of internal RAM as a 
32-bit Unique Identifier. More information can be found in “Device Identification and Unique Identifier” on 
page 68.

8.2.1.1.  General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of 
general-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. 
Only one of these banks may be enabled at a time. Two bits in the program status word (PSW) register, 
RS0 and RS1, select the active register bank. This allows fast context switching when entering subroutines 
and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

8.2.1.2.  Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 
through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 
0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit7 of the byte at 0x20 has bit address 
0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by 
the type of instruction used (bit source or destination operands as opposed to a byte source or 
destination). 

The MCS-51™ assembly language allows an alternate notation for bit addressing of the form XX.B where 
XX is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h 
moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

8.2.1.3.  Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is 
designated using the Stack Pointer (SP) SFR. The SP will point to the last location used. The next value 
pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to 
location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the 
first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be 
initialized to a location in the data memory not being used for data storage. The stack depth can extend up 
to 256 bytes.

8.2.2. External RAM

On devices with 512 bytes total RAM, there are 256 bytes of on-chip RAM mapped into the external data 
memory space. All of these address locations may be accessed using the external move instruction 
(MOVX) and the data pointer (DPTR), or using MOVX indirect addressing mode. Note: The 16-bit MOVX 
instruction is also used for writes to the flash memory. See Section “10. Flash Memory” on page 61 for 
details. The MOVX instruction accesses XRAM by default.

For a 16-bit MOVX operation (@DPTR), the upper 8 bits of the 16-bit external data memory address word 
are "don't cares". As a result, addresses 0x0000 through 0x00FF are mapped modulo style over the entire 
64 k external data memory address range. For example, the XRAM byte at address 0x0000 is shadowed 
at addresses 0x0100, 0x0200, 0x0300, 0x0400, etc.

Revision C C8051F850/1/3/4 and C8051F860/1/3/4 devices implement the upper four bytes of external 
RAM as a 32-bit Unique Identifier. More information can be found in “Device Identification and Unique 
Identifier” on page 68.
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cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is 
executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the 
current ISR completes, including the RETI and following instruction. If more than one interrupt is pending 
when the CPU exits an ISR, the CPU will service the next highest priority interrupt that is pending.
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13.  Power Management and Internal Regulator

All internal circuitry on the C8051F85x/86x devices draws power from the VDD supply pin. Circuits with 
external connections (I/O pins, analog muxes) are powered directly from the VDD supply voltage, while 
most of the internal circuitry is supplied by an on-chip LDO regulator. The regulator output is fully internal to 
the device, and is available also as an ADC input or reference source for the comparators and ADC.

The devices support the standard 8051 power modes: idle and stop. For further power savings in stop 
mode, the internal LDO regulator may be disabled, shutting down the majority of the power nets on the 
device.

Although the C8051F85x/86x has idle and stop modes available, more control over the device power can 
be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be 
disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial 
buses, have their clocks gated off and draw little power when they are not in use.

13.1.  Power Modes
Idle mode halts the CPU while leaving the peripherals and clocks active. In stop mode, the CPU is halted, 
all interrupts and timers are inactive, and the internal oscillator is stopped (analog peripherals remain in 
their selected states; the external oscillator is not affected). Since clocks are running in Idle mode, power 
consumption is dependent upon the system clock frequency and the number of peripherals left in active 
mode before entering Idle. Stop mode consumes the least power because the majority of the device is shut 
down with no clocks active. The Power Control Register (PCON) is used to control the C8051F85x/86x's 
Stop and Idle power management modes.

13.1.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the hardware to halt the CPU and enter idle mode as 
soon as the instruction that sets the bit completes execution. All internal registers and memory maintain 
their original data. All analog and digital peripherals can remain active during idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an 
enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume 
operation. The pending interrupt will be serviced and the next instruction to be executed after the return 
from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. 
If idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence 
and begins program execution at address 0x0000.

Note: If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during the 
execution phase of the instruction that sets the IDLE bit, the CPU may not wake from Idle mode when a future 
interrupt occurs. Therefore, instructions that set the IDLE bit should be followed by an instruction that has two 
or more opcode bytes, for example:

// in ‘C’:
PCON |= 0x01;                   // set IDLE bit
PCON = PCON;                    // ... followed by a 3-cycle dummy instruction

; in assembly:
ORL PCON, #01h                  ; set IDLE bit
MOV PCON, PCON                  ; ... followed by a 3-cycle dummy instruction

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby 
terminate the idle mode. This feature protects the system from an unintended permanent shutdown in the 
event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be 
disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this 
operation. This provides the opportunity for additional power savings, allowing the system to remain in the 
Idle mode indefinitely, waiting for an external stimulus to wake up the system.
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Figure 14.2. 10-Bit ADC Track and Conversion Example Timing (ADBMEN = 0)

14.2.3. Burst Mode
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conversions. When Burst Mode is enabled, ADC0 wakes from a low power state, accumulates 1, 4, 8, 16, 
32, or 64 samples using the internal low-power high-frequency oscillator, then re-enters a low power state. 
Since the Burst Mode clock is independent of the system clock, ADC0 can perform multiple conversions 
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80 kHz).
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power state (i.e. the state ADC0 enters when not tracking or performing conversions). If ADEN is set to 
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each burst. On each convert start signal, ADC0 is awakened from its Idle Power State. If ADC0 is powered 
down, it will automatically power up and wait the programmable Power-Up Time controlled by the ADPWR 
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When Burst Mode is enabled, a single convert start will initiate a number of conversions equal to the repeat 
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than registers until “repeat count” conversions have been accumulated.
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14.10.  ADC Control Registers

Register 14.1. ADC0CN0: ADC0 Control 0

Bit 7 6 5 4 3 2 1 0

Name ADEN ADBMEN ADINT ADBUSY ADWINT ADCM

Type RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xE8 (bit-addressable)

Table 14.4. ADC0CN0 Register Bit Descriptions

Bit Name Function

7 ADEN Enable.

0: ADC0 Disabled (low-power shutdown).
1: ADC0 Enabled (active and ready for data conversions).

6 ADBMEN Burst Mode Enable.

0: ADC0 Burst Mode Disabled.
1: ADC0 Burst Mode Enabled.

5 ADINT Conversion Complete Interrupt Flag.

Set by hardware upon completion of a data conversion (ADBMEN=0), or a burst of con-
versions (ADBMEN=1). Can trigger an interrupt. Must be cleared by software.

4 ADBUSY ADC Busy.

Writing 1 to this bit initiates an ADC conversion when ADC0CM = 000. This bit should not 
be polled to indicate when a conversion is complete. Instead, the ADINT bit should be 
used when polling for conversion completion.

3 ADWINT Window Compare Interrupt Flag.

Set by hardware when the contents of ADC0H:ADC0L fall within the window specified by 
ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL. Can trigger an interrupt. Must be 
cleared by software.

2:0 ADCM Start of Conversion Mode Select.

Specifies the ADC0 start of conversion source. All remaining bit combinations are 
reserved.
000: ADC0 conversion initiated on write of 1 to ADBUSY.
001: ADC0 conversion initiated on overflow of Timer 0.
010: ADC0 conversion initiated on overflow of Timer 2.
011: ADC0 conversion initiated on overflow of Timer 3.
100: ADC0 conversion initiated on rising edge of CNVSTR.
101-111: Reserved.
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Register 14.4. ADC0AC: ADC0 Accumulator Configuration

Bit 7 6 5 4 3 2 1 0

Name AD12BE ADAE ADSJST ADRPT

Type RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xB3

Table 14.7. ADC0AC Register Bit Descriptions

Bit Name Function

7 AD12BE 12-Bit Mode Enable.

Enables 12-bit Mode. In 12-bit mode, the ADC throughput is reduced by a factor of 4.
0: 12-bit Mode Disabled.
1: 12-bit Mode Enabled.

6 ADAE Accumulate Enable.

Enables multiple conversions to be accumulated when burst mode is disabled.
0: ADC0H:ADC0L contain the result of the latest conversion when Burst Mode is dis-
abled.
1: ADC0H:ADC0L contain the accumulated conversion results when Burst Mode is dis-
abled. Software must write 0x0000 to ADC0H:ADC0L to clear the accumulated result.

5:3 ADSJST Accumulator Shift and Justify.

Specifies the format of data read from ADC0H:ADC0L. All remaining bit combinations 
are reserved.
000: Right justified. No shifting applied.
001: Right justified. Shifted right by 1 bit.
010: Right justified. Shifted right by 2 bits.
011: Right justified. Shifted right by 3 bits.
100: Left justified. No shifting applied.
101-111: Reserved.

2:0 ADRPT Repeat Count.

Selects the number of conversions to perform and accumulate in Burst Mode. This bit 
field must be set to 000 if Burst Mode is disabled.
000: Perform and Accumulate 1 conversion (not used in 12-bit mode).
001: Perform and Accumulate 4 conversions (1 conversion in 12-bit mode).
010: Perform and Accumulate 8 conversions (2 conversions in 12-bit mode).
011: Perform and Accumulate 16 conversions (4 conversions in 12-bit mode).
100: Perform and Accumulate 32 conversions (8 conversions in 12-bit mode).
101: Perform and Accumulate 64 conversions (16 conversions in 12-bit mode).
110-111: Reserved.
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Register 14.12. ADC0LTL: ADC0 Less-Than Low Byte

Bit 7 6 5 4 3 2 1 0

Name ADC0LTL

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xC5

Table 14.15. ADC0LTL Register Bit Descriptions

Bit Name Function

7:0 ADC0LTL Less-Than Low Byte.

Least Significant Byte of the 16-bit Less-Than window compare register.

Note:  In 8-bit mode, this register should be set to 0x00. 
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17.2.  Functional Description
The comparator offers programmable response time and hysteresis, an analog input multiplexer, and two 
outputs that are optionally available at the port pins: a synchronous “latched” output (CPn), or an 
asynchronous “raw” output (CPnA). The asynchronous CPnA signal is available even when the system 
clock is not active. This allows the comparator to operate and generate an output with the device in STOP 
mode.

When disabled, the comparator output (if assigned to a port I/O pin via the crossbar) defaults to the logic 
low state, and the power supply to the comparator is turned off.

The comparator response time may be configured in software via the CPTnMD register. Selecting a longer 
response time reduces the comparator supply current.

Figure 17.2. Comparator Hysteresis Plot

The comparator hysteresis is software-programmable via its Comparator Control register CPTnCN. The 
user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and 
negative-going symmetry of this hysteresis around the threshold voltage.

The comparator hysteresis is programmable using the CPHYN and CPHYP fields in the Comparator 
Control Register CPTnCN. The amount of negative hysteresis voltage is determined by the settings of the 
CPHYN bits. As shown in Figure 17.2, settings of 20, 10, or 5 mV (nominal) of negative hysteresis can be 
programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is 
determined by the setting the CPHYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. The 
CPFIF flag is set to logic 1 upon a comparator falling-edge occurrence, and the CPRIF flag is set to logic 1 
upon the comparator rising-edge occurrence. Once set, these bits remain set until cleared by software. 
The comparator rising-edge interrupt mask is enabled by setting CPRIE to a logic 1. The comparator 
falling-edge interrupt mask is enabled by setting CPFIE to a logic 1.

The output state of the comparator can be obtained at any time by reading the CPOUT bit. The comparator 
is enabled by setting the CPEN bit to logic 1, and is disabled by clearing this bit to logic 0.

Note that false rising edges and falling edges can be detected when the comparator is first powered on or 
if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the 
rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is 
enabled or its mode bits have been changed, before enabling comparator interrupts.
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21.4.  Port I/O Modes of Operation
Port pins are configured by firmware as digital or analog I/O using the PnMDIN registers. On reset, all port 
I/O cells default to a high impedance state with weak pull-ups enabled. Until the crossbar is enabled, both 
the high and low port I/O drive circuits are explicitly disabled on all crossbar pins. Port pins configured as 
digital I/O may still be used by analog peripherals; however, this practice is not recommended and may 
result in measurement errors.

21.4.1. Configuring Port Pins For Analog Modes

Any pins to be used for analog functions should be configured for analog mode. When a pin is configured 
for analog I/O, its weak pullup, digital driver, and digital receiver are disabled. Port pins configured for 
analog functions will always read back a value of ‘0’ in the corresponding Pn Port Latch register. To 
configure a pin as analog, the following steps should be taken:

1.  Clear the bit associated with the pin in the PnMDIN register to ‘0’. This selects analog mode for the 
pin.

2.  Set the bit associated with the pin in the Pn register to ‘1’.

3.  Skip the bit associated with the pin in the PnSKIP register to ensure the crossbar does not attempt 
to assign a function to the pin.

21.4.2. Configuring Port Pins For Digital Modes

Any pins to be used by digital peripherals or as GPIO should be configured as digital I/O (PnMDIN.n = ‘1’). 
For digital I/O pins, one of two output modes (push-pull or open-drain) must be selected using the 
PnMDOUT registers. 

Push-pull outputs (PnMDOUT.n = ‘1’) drive the port pad to the supply rails based on the output logic value 
of the port pin. Open-drain outputs have the high side driver disabled; therefore, they only drive the port 
pad to the low-side rail when the output logic value is ‘0’ and become high impedance inputs (both high low 
drivers turned off) when the output logic value is ‘1’.

When a digital I/O cell is placed in the high impedance state, a weak pull-up transistor pulls the port pad to 
the high-side rail to ensure the digital input is at a defined logic state. Weak pull-ups are disabled when the 
I/O cell is driven low to minimize power consumption, and they may be globally disabled by setting 
WEAKPUD to ‘1’. The user should ensure that digital I/O are always internally or externally pulled or driven 
to a valid logic state to minimize power consumption. Port pins configured for digital I/O always read back 
the logic state of the port pad, regardless of the output logic value of the port pin.

To configure a pin as digital input:
1.  Set the bit associated with the pin in the PnMDIN register to ‘1’. This selects digital mode for the 

pin.

2.  Clear the bit associated with the pin in the PnMDOUT register to ‘0’. This configures the pin as 
open-drain.

3.  Set the bit associated with the pin in the Pn register to ‘1’. This tells the output driver to “drive” logic 
high. Because the pin is configured as open-drain, the high-side driver is not active, and the pin 
may be used as an input.

Open-drain outputs are configured exactly as digital inputs. However, the pin may be driven low by an 
assigned peripheral, or by writing ‘0’ to the associated bit in the Pn register if the signal is a GPIO.

To configure a pin as a digital, push-pull output:
1.  Set the bit associated with the pin in the PnMDIN register to ‘1’. This selects digital mode for the 

pin.

2.  Set the bit associated with the pin in the PnMDOUT register to ‘1’. This configures the pin as push-
pull.

If a digital pin is to be used as a general-purpose I/O, or with a digital function that is not part of the 
crossbar, the bit associated with the pin in the PnSKIP register can be set to ‘1’ to ensure the crossbar 
does not attempt to assign a function to the pin.
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Register 21.14. P1MDIN: Port 1 Input Mode

Bit 7 6 5 4 3 2 1 0

Name P1MDIN

Type RW

Reset 1 1 1 1 1 1 1 1

SFR Address: 0xF2

Table 21.17. P1MDIN Register Bit Descriptions

Bit Name Function

7:0 P1MDIN Port 1 Input Mode.

Port pins configured for analog mode have their weak pullup, digital driver, and digital 
receiver disabled.
0: Corresponding P1.x pin is configured for analog mode.
1: Corresponding P1.x pin is configured for digital mode.

Note: Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits 
(P1.0-P1.3) on SOIC16 packages.
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Register 21.15. P1MDOUT: Port 1 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P1MDOUT

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xA5

Table 21.18. P1MDOUT Register Bit Descriptions

Bit Name Function

7:0 P1MDOUT Port 1 Output Mode.

These bits are only applicable when the pin is configured for digital mode using the 
P1MDIN register.
0: Corresponding P1.n Output is open-drain.
1: Corresponding P1.n Output is push-pull.

Note: Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits 
(P1.0-P1.3) on SOIC16 packages.
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23.7.  SPI Control Registers

Register 23.1. SPI0CFG: SPI0 Configuration

Bit 7 6 5 4 3 2 1 0

Name SPIBSY MSTEN CKPHA CKPOL SLVSEL NSSIN SRMT RXBMT

Type R RW RW RW R R R R

Reset 0 0 0 0 0 1 1 1

SFR Address: 0xA1

Table 23.2. SPI0CFG Register Bit Descriptions

Bit Name Function

7 SPIBSY SPI Busy.

This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).

6 MSTEN Master Mode Enable.

0: Disable master mode. Operate in slave mode.
1: Enable master mode. Operate as a master.

5 CKPHA SPI0 Clock Phase.

0: Data centered on first edge of SCK period.
1: Data centered on second edge of SCK period.

4 CKPOL SPI0 Clock Polarity.

0: SCK line low in idle state.
1: SCK line high in idle state.

3 SLVSEL Slave Selected Flag.

This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected 
slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does not indi-
cate the instantaneous value at the NSS pin, but rather a de-glitched version of the pin 
input.

2 NSSIN NSS Instantaneous Pin Input.

This bit mimics the instantaneous value that is present on the NSS port pin at the time 
that the register is read. This input is not de-glitched.

1 SRMT Shift Register Empty (valid in slave mode only).

This bit will be set to logic 1 when all data has been transferred in/out of the shift register, 
and there is no new information available to read from the transmit buffer or write to the 
receive buffer. It returns to logic 0 when a data byte is transferred to the shift register 
from the transmit buffer or by a transition on SCK. SRMT = 1 when in Master Mode.

Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one 
SYSCLK before the end of each data bit, to provide maximum settling time for the slave device.
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Register 23.3. SPI0CKR: SPI0 Clock Rate

Bit 7 6 5 4 3 2 1 0

Name SPI0CKR

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xA2

Table 23.4. SPI0CKR Register Bit Descriptions

Bit Name Function

7:0 SPI0CKR SPI0 Clock Rate.

These bits determine the frequency of the SCK output when the SPI0 module is config-
ured for master mode operation. The SCK clock frequency is a divided version of the 
system clock, and is given in the following equation, where SYSCLK is the system clock 
frequency and SPI0CKR is the 8-bit value held in the SPI0CKR register.

for 0 <= SPI0CKR <= 255

fSCK
SYSCLK

2 SPI0CKR 1+ 
-----------------------------------------------=
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Table 24.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0)  

M
o

d
e

Values Read

Current SMbus State Typical Response Options
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1110 0 0 X A master START was generated.
Load slave address + R/W into 
SMB0DAT.

0 0 X 1100

1100

0 0 0
A master data or address byte was 
transmitted; NACK received.

Set STA to restart transfer. 1 0 X 1110

Abort transfer. 0 1 X —

0 0 1
A master data or address byte was 
transmitted; ACK received.

Load next data byte into SMB0-
DAT.

0 0 X 1100

End transfer with STOP. 0 1 X —

End transfer with STOP and start 
another transfer.

1 1 X —

Send repeated START. 1 0 X 1110

Switch to Master Receiver Mode 
(clear SI without writing new data 
to SMB0DAT).

0 0 X 1000

M
as

te
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e
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r

1000 1 0 X
A master data byte was received; ACK 
requested.

Acknowledge received byte; 
Read SMB0DAT.

0 0 1 1000

Send NACK to indicate last byte, 
and send STOP.

0 1 0 —

Send NACK to indicate last byte, 
and send STOP followed by 
START.

1 1 0 1110

Send ACK followed by repeated 
START.

1 0 1 1110

Send NACK to indicate last byte, 
and send repeated START.

1 0 0 1110

Send ACK and switch to Master 
Transmitter Mode (write to 
SMB0DAT before clearing SI).

0 0 1 1100

Send NACK and switch to Mas-
ter Transmitter Mode (write to 
SMB0DAT before clearing SI).

0 0 0 1100
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0010

0 0 X
A slave address + R/W was received; 
ACK sent.

If Write, Set ACK for first data 
byte.

0 0 1 0000

If Read, Load SMB0DAT with 
data byte

0 0 X 0100

0 1 X
Lost arbitration as master; slave 
address + R/W received; ACK sent.

If Write, Set ACK for first data 
byte.

0 0 1 0000

If Read, Load SMB0DAT with 
data byte

0 0 X 0100

Reschedule failed transfer 1 0 X 1110

0001

0 0 X
A STOP was detected while 
addressed as a Slave Transmitter or 
Slave Receiver.

Clear STO.
0 0 X —

0 1 X
Lost arbitration while attempting a 
STOP.

No action required (transfer 
complete/aborted).

0 0 0 —

0000 0 0 X A slave byte was received.

Set ACK for next data byte;
Read SMB0DAT.

0 0 1 0000

Set NACK for next data byte;
Read SMB0DAT.

0 0 0 0000

B
u

s 
E
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o

r 
C

o
n

d
it

io
n 0010 0 1 X

Lost arbitration while attempting a 
repeated START.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0001 0 1 X
Lost arbitration due to a detected 
STOP. 

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0000 0 1 X
Lost arbitration while transmitting a 
data byte as master.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

Table 24.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1)  (Continued)
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25.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/
timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, CT0, GATE0 and 
TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is 
restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the 
Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the 
Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 
1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, 
the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC 
conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode 
settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, 
configure it for Mode 3.

Figure 25.3. T0 Mode 3 Block Diagram
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Register 26.2. SBUF0: UART0 Serial Port Data Buffer

Bit 7 6 5 4 3 2 1 0

Name SBUF0

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0x99

Table 26.3. SBUF0 Register Bit Descriptions

Bit Name Function

7:0 SBUF0 Serial Data Buffer Bits.

This SFR accesses two registers: a transmit shift register and a receive latch register. 
When data is written to SBUF0, it goes to the transmit shift register and is held for serial 
transmission. Writing a byte to SBUF0 initiates the transmission. A read of SBUF0 
returns the contents of the receive latch.


