
Silicon Labs - C8051F851-C-IM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 15

Program Memory Size 4KB (4K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.2V ~ 3.6V

Data Converters A/D 15x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 20-WFQFN Exposed Pad

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f851-c-im

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f851-c-im-4400540
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

10 Rev. 1.0

ADC0 Burst Mode, 10-bit sin-
gle conversions, internal ref-
erence, Low power bias
settings

IADC 200 ksps, VDD = 3.0 V — 490 — µA

100 ksps, VDD = 3.0 V — 245 — µA

10 ksps, VDD = 3.0 V — 23 — µA

ADC0 Burst Mode, 12-bit sin-
gle conversions, external ref-
erence

IADC 100 ksps, VDD = 3.0 V — 530 — µA

50 ksps, VDD = 3.0 V — 265 — µA

10 ksps, VDD = 3.0 V — 53 — µA

ADC0 Burst Mode, 12-bit sin-
gle conversions, internal ref-
erence

IADC 100 ksps, VDD = 3.0 V,
Normal bias

— 950 — µA

50 ksps, VDD = 3.0 V,
Low power bias

— 420 — µA

10 ksps, VDD = 3.0 V,
Low power bias

— 85 — µA

Internal ADC0 Reference,
Always-on5

IIREF Normal Power Mode — 680 790 µA

Low Power Mode — 160 210 µA

Temperature Sensor ITSENSE — 75 120 µA

Comparator 0 (CMP0),
Comparator 1 (CMP1)

ICMP CPnMD = 11 — 0.5 — µA

CPnMD = 10 — 3 — µA

CPnMD = 01 — 10 — µA

CPnMD = 00 — 25 — µA

Voltage Supply Monitor
(VMON0)

IVMON — 15 20 µA

Table 1.2. Power Consumption (Continued)

Parameter Symbol Test Condition Min Typ Max Unit

Notes:
1. Currents are additive. For example, where IDD is specified and the mode is not mutually exclusive, enabling the

functions increases supply current by the specified amount.
2. Includes supply current from internal regulator, supply monitor, and High Frequency Oscillator.
3. Includes supply current from internal regulator, supply monitor, and Low Frequency Oscillator.
4. ADC0 always-on power excludes internal reference supply current.
5. The internal reference is enabled as-needed when operating the ADC in burst mode to save power.

28 Rev. 1.0

2.5. Communications and other Digital Peripherals
2.5.1. Universal Asynchronous Receiver/Transmitter (UART0)

The UART uses two signals (TX and RX) and a predetermined fixed baud rate to provide asynchronous
communications with other devices.

The UART module provides the following features:

Asynchronous transmissions and receptions.

Baud rates up to SYSCLK / 2 (transmit) or SYSCLK / 8 (receive).

8- or 9-bit data.

Automatic start and stop generation.

2.5.2. Serial Peripheral Interface (SPI0)

SPI is a 3- or 4-wire communication interface that includes a clock, input data, output data, and an optional
select signal.

The SPI module includes the following features:

Supports 3- or 4-wire master or slave modes.

Supports external clock frequencies up to SYSCLK / 2 in master mode and SYSCLK / 10 in slave
mode.

Support for all clock phase and polarity modes.

8-bit programmable clock rate.

Support for multiple masters on the same data lines.

2.5.3. System Management Bus / I2C (SMBus0)

The SMBus interface is a two-wire, bi-directional serial bus compatible with both I2C and SMBus protocols.
The two clock and data signals operate in open-drain mode with external pull-ups to support automatic bus
arbitration.

Reads and writes to the interface are byte-oriented with the SMBus interface autonomously controlling the
serial transfer of the data. Data can be transferred at up to 1/8th of the system clock as a master or slave,
which can be faster than allowed by the SMBus / I2C specification, depending on the clock source used. A
method of extending the clock-low duration is available to accommodate devices with different speed
capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple
masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and
synchronization, arbitration logic, and start/stop control and generation.

The SMBus module includes the following features:

Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.

Support for master, slave, and multi-master modes.

Hardware synchronization and arbitration for multi-master mode.

Clock low extending (clock stretching) to interface with faster masters.

Hardware support for 7-bit slave and general call address recognition.

Firmware support for 10-bit slave address decoding.

Ability to inhibit all slave states.

Programmable data setup/hold times.

2.5.4. 16/32-bit CRC (CRC0)

The CRC module is designed to provide hardware calculations for flash memory verification and
communications protocols. The CRC module supports the standard CCITT-16 16-bit polynomial (0x1021),
and includes the following features:

Support for four CCITT-16 polynomial.

Rev. 1.0 33

P0.0 Standard I/O 4 Yes P0MAT.0
INT0.0
INT1.0

ADC0.0
CP0P.0
CP0N.0
VREF

P0.1 Standard I/O 3 Yes P0MAT.1
INT0.1
INT1.1

ADC0.1
CP0P.1
CP0N.1
AGND

P0.2 Standard I/O 2 Yes P0MAT.2
INT0.2
INT1.2

ADC0.2
CP0P.2
CP0N.2

P0.3 /
EXTCLK

Standard I/O /
External CMOS Clock Input

23 Yes P0MAT.3
EXTCLK
INT0.3
INT1.3

ADC0.3
CP0P.3
CP0N.3

P0.4 Standard I/O 22 Yes P0MAT.4
INT0.4
INT1.4

ADC0.4
CP0P.4
CP0N.4

P0.5 Standard I/O 21 Yes P0MAT.5
INT0.5
INT1.5

ADC0.5
CP0P.5
CP0N.5

P0.6 Standard I/O 20 Yes P0MAT.6
CNVSTR

INT0.6
INT1.6

ADC0.6
CP0P.6
CP0N.6

P0.7 Standard I/O 19 Yes P0MAT.7
INT0.7
INT1.7

ADC0.7
CP0P.7
CP0N.7

Table 3.1. Pin Definitions for C8051F850/1/2/3/4/5-GU and C8051F850/1/2/3/4/5-IU

Pin Name Type P
in

 N
u

m
b

er
s

C
ro

s
s

b
a

r
C

a
p

ab
il

it
y

A
d

d
it

io
n

al
 D

ig
it

a
l

F
u

n
c

ti
o

n
s

A
n

a
lo

g
 F

u
n

c
ti

o
n

s

C8051F85x/86x

48 Rev. 1.0

Figure 6.2. QFN-20 Landing Diagram

58 Rev. 1.0

IE 0xA8 Interrupt Enable 75

IP 0xB8 Interrupt Priority 77

IT01CF 0xE4 INT0 / INT1 Configuration 150

OSCICL 0xC7 High Frequency Oscillator Calibration 127

OSCLCN 0xB1 Low Frequency Oscillator Control 128

P0 0x80 Port 0 Pin Latch 199

P0MASK 0xFE Port 0 Mask 197

P0MAT 0xFD Port 0 Match 198

P0MDIN 0xF1 Port 0 Input Mode 200

P0MDOUT 0xA4 Port 0 Output Mode 201

P0SKIP 0xD4 Port 0 Skip 202

P1 0x90 Port 1 Pin Latch 205

P1MASK 0xEE Port 1 Mask 203

P1MAT 0xED Port 1 Match 204

P1MDIN 0xF2 Port 1 Input Mode 206

P1MDOUT 0xA5 Port 1 Output Mode 207

P1SKIP 0xD5 Port 1 Skip 208

P2 0xA0 Port 2 Pin Latch 209

P2MDOUT 0xA6 Port 2 Output Mode 210

PCA0CENT 0x9E PCA Center Alignment Enable 177

PCA0CLR 0x9C PCA Comparator Clear Control 170

PCA0CN 0xD8 PCA Control 167

PCA0CPH0 0xFC PCA Capture Module High Byte 0 175

PCA0CPH1 0xEA PCA Capture Module High Byte 1 181

PCA0CPH2 0xEC PCA Capture Module High Byte 2 183

PCA0CPL0 0xFB PCA Capture Module Low Byte 0 174

PCA0CPL1 0xE9 PCA Capture Module Low Byte 1 180

PCA0CPL2 0xEB PCA Capture Module Low Byte 2 182

Table 9.2. Special Function Registers (Continued)

Register Address Register Description Page

Rev. 1.0 61

10. Flash Memory

On-chip, re-programmable flash memory is included for program code and non-volatile data storage. The
flash memory is organized in 512-byte pages. It can be erased and written through the C2 interface or from
firmware by overloading the MOVX instruction. Any individual byte in flash memory must only be written
once between page erase operations.

10.1. Security Options
The CIP-51 provides security options to protect the flash memory from inadvertent modification by
software as well as to prevent the viewing of proprietary program code and constants. The Program Store
Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register
PSCTL) bits protect the flash memory from accidental modification by software. PSWE must be explicitly
set to ‘1’ before software can modify the flash memory; both PSWE and PSEE must be set to ‘1’ before
software can erase flash memory. Additional security features prevent proprietary program code and data
constants from being read or altered across the C2 interface.

A Security Lock Byte located in flash user space offers protection of the flash program memory from
access (reads, writes, or erases) by unprotected code or the C2 interface. See Section “8. Memory
Organization” on page 52 for the location of the security byte. The flash security mechanism allows the
user to lock n 512-byte flash pages, starting at page 0 (addresses 0x0000 to 0x01FF), where n is the 1’s
complement number represented by the Security Lock Byte. Note that the page containing the flash
Security Lock Byte is unlocked when no other flash pages are locked (all bits of the Lock Byte are
‘1’) and locked when any other flash pages are locked (any bit of the Lock Byte is ‘0’). An example is
shown in Figure 10.1.

Figure 10.1. Security Byte Decoding

The level of flash security depends on the flash access method. The three flash access methods that can
be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on
unlocked pages, and user firmware executing on locked pages. Table 10.1 summarizes the flash security
features of the C8051F85x/86x devices.

Table 10.1. Flash Security Summary

Action C2 Debug
Interface

User Firmware executing from:

an unlocked page a locked page

Read, Write or Erase unlocked pages
(except page with Lock Byte)

Permitted Permitted Permitted

Read, Write or Erase locked pages
(except page with Lock Byte)

Not Permitted Flash Error Reset Permitted

Read or Write page containing Lock Byte
(if no pages are locked)

Permitted Permitted N/A

Read or Write page containing Lock Byte
(if any page is locked)

Not Permitted Flash Error Reset Permitted

Security Lock Byte: 11111101b

1s Complement: 00000010b

Flash pages locked: 3 (First two flash pages + Lock Byte Page)

Rev. 1.0 67

Register 10.2. FLKEY: Flash Lock and Key

Bit 7 6 5 4 3 2 1 0

Name FLKEY

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xB7

Table 10.3. FLKEY Register Bit Descriptions

Bit Name Function

7:0 FLKEY Flash Lock and Key Register.

Write:
This register provides a lock and key function for flash erasures and writes. Flash writes
and erases are enabled by writing 0xA5 followed by 0xF1 to the FLKEY register. Flash
writes and erases are automatically disabled after the next write or erase is complete. If
any writes to FLKEY are performed incorrectly, or if a flash write or erase operation is
attempted while these operations are disabled, the flash will be permanently locked from
writes or erasures until the next device reset. If an application never writes to flash, it can
intentionally lock the flash by writing a non-0xA5 value to FLKEY from software.
Read:
When read, bits 1-0 indicate the current flash lock state.
00: Flash is write/erase locked.
01: The first key code has been written (0xA5).
10: Flash is unlocked (writes/erases allowed).
11: Flash writes/erases are disabled until the next reset.

Rev. 1.0 69

11.1. Device Identification Registers

Register 11.1. DEVICEID: Device Identification

Bit 7 6 5 4 3 2 1 0

Name DEVICEID

Type R

Reset 0 0 1 1 0 0 0 0

SFR Address: 0xB5

Table 11.2. DEVICEID Register Bit Descriptions

Bit Name Function

7:0 DEVICEID Device ID.

This read-only register returns the 8-bit device ID: 0x30 (C8051F85x/86x).

72 Rev. 1.0

12. Interrupts

The C8051F85x/86x includes an extended interrupt system supporting multiple interrupt sources with two
priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins
varies according to the specific version of the device. Each interrupt source has one or more associated
interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt
condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a
predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an
RETI instruction, which returns program execution to the next instruction that would have been executed if
the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by
the hardware and program execution continues as normal. The interrupt-pending flag is set to logic 1
regardless of the interrupt's enable/disable state.

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE and EIE1). However, interrupts must first be globally enabled by setting the EA bit
in the IE register to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic
0 disables all interrupt sources regardless of the individual interrupt-enable settings.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after
the completion of the next instruction.

12.1. MCU Interrupt Sources and Vectors
The C8051F85x/86x MCUs support interrupt sources for each peripheral on the device. Software can
simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an
interrupt request will be generated and the CPU will vector to the ISR address associated with the
interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order and control bits
are summarized in Table 12.1. Refer to the datasheet section associated with a particular on-chip
peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its
interrupt-pending flag(s).

12.1.1. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low
priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt
cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to
configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the
interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed
priority order is used to arbitrate, given in Table 12.1.

12.1.2. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are
sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5
system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the
ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL
is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no
other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is
performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is
18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock

Rev. 1.0 101

Register 14.3. ADC0CF: ADC0 Configuration

Bit 7 6 5 4 3 2 1 0

Name ADSC AD8BE ADTM ADGN

Type RW RW RW RW

Reset 1 1 1 1 1 0 0 0

SFR Address: 0xBC

Table 14.6. ADC0CF Register Bit Descriptions

Bit Name Function

7:3 ADSC SAR Clock Divider.

This field sets the ADC clock divider value. It should be configured to be as close to the
maximum SAR clock speed as the datasheet will allow. The SAR clock frequency is
given by the following equation:

FADCCLK is equal to the selected SYSCLK when ADBMEN is 0 and the high-frequency
oscillator when ADBMEN is 1.

2 AD8BE 8-Bit Mode Enable.

0: ADC0 operates in 10-bit or 12-bit mode (normal operation).
1: ADC0 operates in 8-bit mode.

1 ADTM Track Mode.

Selects between Normal or Delayed Tracking Modes.
0: Normal Track Mode. When ADC0 is enabled, conversion begins immediately following
the start-of-conversion signal.
1: Delayed Track Mode. When ADC0 is enabled, conversion begins 4 SAR clock cycles
following the start-of-conversion signal. The ADC is allowed to track during this time.

0 ADGN Gain Control.

0: The on-chip PGA gain is 0.5.
1: The on-chip PGA gain is 1.

FCLKSAR

FADCCLK

ADSC 1+
-------------------------=

Rev. 1.0 131

Table 17.1. CMP0 Positive Input Multiplexer Channels

CMXP Setting in
Register CPT0MX

Signal Name QSOP24 Pin Name QFN20 Pin Name SOIC16 Pin Name

0000 CP0P.0 P0.0 P0.0 P0.0

0001 CP0P.1 P0.1 P0.1 P0.1

0010 CP0P.2 P0.2 P0.2 P0.2

0011 CP0P.3 P0.3 P0.3 P0.3

0100 CP0P.4 P0.4 P0.4 P0.4

0101 CP0P.5 P0.5 P0.5 P0.5

0110 CP0P.6 P0.6 P0.6 Reserved

0111 CP0P.7 P0.7 P0.7 Reserved

1000 LDO Internal 1.8 V LDO Output

1001-1111 None No connection

Table 17.2. CMP0 Negative Input Multiplexer Channels

CMXN Setting in
Register CPT0MX

Signal Name QSOP24 Pin Name QFN20 Pin Name SOIC16 Pin Name

0000 CP0N.0 P0.0 P0.0 P0.0

0001 CP0N.1 P0.1 P0.1 P0.1

0010 CP0N.2 P0.2 P0.2 P0.2

0011 CP0N.3 P0.3 P0.3 P0.3

0100 CP0N.4 P0.4 P0.4 P0.4

0101 CP0N.5 P0.5 P0.5 P0.5

0110 CP0N.6 P0.6 P0.6 Reserved

0111 CP0N.7 P0.7 P0.7 Reserved

1000 GND GND

1001-1111 None No connection

140 Rev. 1.0

18. Cyclic Redundancy Check Unit (CRC0)

C8051F85x/86x devices include a cyclic redundancy check unit (CRC0) that can perform a CRC using a
16-bit polynomial. CRC0 accepts a stream of 8-bit data written to the CRC0IN register. CRC0 posts the 16-
bit result to an internal register. The internal result register may be accessed indirectly using the CRCPNT
bits and CRC0DAT register, as shown in Figure 18.1. CRC0 also has a bit reverse register for quick data
manipulation.

Figure 18.1. CRC0 Block Diagram

18.1. CRC Algorithm
The CRC unit generates a CRC result equivalent to the following algorithm:

1. XOR the input with the most-significant bits of the current CRC result. If this is the first iteration of
the CRC unit, the current CRC result will be the set initial value (0x0000 or 0xFFFF).

2a. If the MSB of the CRC result is set, shift the CRC result and XOR the result with the selected
polynomial.

2b. If the MSB of the CRC result is not set, shift the CRC result.

Repeat Steps 2a/2b for the number of input bits (8). The algorithm is also described in the following
example.

CRC0

CRC0DAT

CRC0IN

byte-level bit
reversal

Hardware CRC
Calculation

UnitSeed
(0x0000 or
0xFFFF)

Automatic
flash read

control

8 8

8

8

8Flash
Memory

CRC0FLIP
8

142 Rev. 1.0

18.2. Preparing for a CRC Calculation
To prepare CRC0 for a CRC calculation, software should set the initial value of the result. The polynomial
used for the CRC computation is 0x1021. The CRC0 result may be initialized to one of two values: 0x0000
or 0xFFFF. The following steps can be used to initialize CRC0.

1. Select the initial result value (Set CRCVAL to 0 for 0x0000 or 1 for 0xFFFF).

2. Set the result to its initial value (Write 1 to CRCINIT).

18.3. Performing a CRC Calculation
Once CRC0 is initialized, the input data stream is sequentially written to CRC0IN, one byte at a time. The
CRC0 result is automatically updated after each byte is written. The CRC engine may also be configured to
automatically perform a CRC on one or more 256 byte blocks read from flash. The following steps can be
used to automatically perform a CRC on flash memory.

1. Prepare CRC0 for a CRC calculation as shown above.

2. Write the index of the starting page to CRC0AUTO.

3. Set the AUTOEN bit to 1 in CRC0AUTO.

4. Write the number of 256 byte blocks to perform in the CRC calculation to CRCCNT.

5. Write any value to CRC0CN (or OR its contents with 0x00) to initiate the CRC calculation. The
CPU will not execute code any additional code until the CRC operation completes. See the note in
the CRC0CN register definition for more information on how to properly initiate a CRC calculation.

6. Clear the AUTOEN bit in CRC0AUTO.

7. Read the CRC result.

18.4. Accessing the CRC0 Result
The internal CRC0 result is 16 bits. The CRCPNT bits select the byte that is targeted by read and write
operations on CRC0DAT and increment after each read or write. The calculation result will remain in the
internal CR0 result register until it is set, overwritten, or additional data is written to CRC0IN.

18.5. CRC0 Bit Reverse Feature
CRC0 includes hardware to reverse the bit order of each bit in a byte as shown in Figure 18.2. Each byte
of data written to CRC0FLIP is read back bit reversed. For example, if 0xC0 is written to CRC0FLIP, the
data read back is 0x03. Bit reversal is a useful mathematical function used in algorithms such as the FFT.

Figure 18.2. Bit Reversal

CRC0FLIP
(write)

CRC0FLIP
(read)

Rev. 1.0 143

18.6. CRC Control Registers

Register 18.1. CRC0CN: CRC0 Control

Bit 7 6 5 4 3 2 1 0

Name Reserved CRCINIT CRCVAL Reserved CRCPNT

Type R RW RW R RW

Reset 0 0 0 1 0 0 0 0

SFR Address: 0xCE

Table 18.2. CRC0CN Register Bit Descriptions

Bit Name Function

7:4 Reserved Must write reset value.

3 CRCINIT CRC Result Initialization Bit.

Writing a 1 to this bit initializes the entire CRC result based on CRCVAL.

2 CRCVAL CRC Set Value Initialization Bit.

This bit selects the set value of the CRC result.
0: CRC result is set to 0x0000 on write of 1 to CRCINIT.
1: CRC result is set to 0xFFFF on write of 1 to CRCINIT.

1 Reserved Must write reset value.

0 CRCPNT CRC Result Pointer.

Specifies the byte of the CRC result to be read/written on the next access to CRC0DAT.
This bit will automatically toggle upon each read or write.
0: CRC0DAT accesses bits 7-0 of the 16-bit CRC result.
1: CRC0DAT accesses bits 15-8 of the 16-bit CRC result.

Note: Upon initiation of an automatic CRC calculation, the three cycles following a write to CRC0CN that initiate a CRC
operation must only contain instructions which execute in the same number of cycles as the number of bytes in the
instruction. An example of such an instruction is a 3-byte MOV that targets the CRC0FLIP register. When programming
in C, the dummy value written to CRC0FLIP should be a non-zero value to prevent the compiler from generating a 2-
byte MOV instruction.

160 Rev. 1.0

disable the comparison, and prevent the match edge from occuring. Note that although the PCA0CPn
compare register determines the duty cycle, it is not always appropriate for firmware to update this register
directly. See the sections on 8 to 11-bit and 16-bit PWM mode for additional details on adjusting duty cycle
in the various modes.

Equation 20.2. N-bit Edge-Aligned PWM Duty Cycle With CEXnPOL = 0 (N = PWM resolution)

Equation 20.3. N-bit Edge-Aligned PWM Duty Cycle With CEXnPOL = 0 (N = PWM resolution)

Duty Cycle 2
N

PCA0CPn–

2
N

--=

Duty Cycle PCA0CPn

2
N

-------------------------=

Rev. 1.0 207

Register 21.15. P1MDOUT: Port 1 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P1MDOUT

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xA5

Table 21.18. P1MDOUT Register Bit Descriptions

Bit Name Function

7:0 P1MDOUT Port 1 Output Mode.

These bits are only applicable when the pin is configured for digital mode using the
P1MDIN register.
0: Corresponding P1.n Output is open-drain.
1: Corresponding P1.n Output is push-pull.

Note: Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits
(P1.0-P1.3) on SOIC16 packages.

218 Rev. 1.0

23.1. Signal Descriptions
The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

23.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is
operating as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant
bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire
mode.

23.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is
operating as a master and an output when SPI0 is operating as a slave. Data is transferred most-
significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and
when the SPI operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire
mode, MISO is always driven by the MSB of the shift register.

23.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0
generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the
slave is not selected (NSS = 1) in 4-wire slave mode.

23.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS
is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no
select signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for
point-to-point communication between a master and one slave.

2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is
enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as
a master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple
master devices can be used on the same SPI bus.

3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an
output. The setting of NSSMD0 determines what logic level the NSS pin will output. This
configuration should only be used when operating SPI0 as a master device.

See Figure 23.2, Figure 23.3, and Figure 23.4 for typical connection diagrams of the various operational
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will
be mapped to a pin on the device.

Rev. 1.0 239

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus
interrupt. STA and STO are also used to generate START and STOP conditions when operating as a
master. Writing a 1 to STA will cause the SMBus interface to enter Master Mode and generate a START
when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a 1 to
STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after
the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will
be generated.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface
is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error
condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or
when an arbitration is lost; see Table 24.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and
the bus is stalled until software clears SI.

24.4.4.1. Software ACK Generation

When the EHACK bit in register SMB0ADM is cleared to 0, the firmware on the device must detect
incoming slave addresses and ACK or NACK the slave address and incoming data bytes. As a receiver,
writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the
value received during the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an
outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to
the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before
clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however
SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave
events will be ignored until the next START is detected.

24.4.4.2. Hardware ACK Generation

When the EHACK bit in register SMB0ADM is set to 1, automatic slave address recognition and ACK
generation is enabled. More detail about automatic slave address recognition can be found in Section
24.4.5. As a receiver, the value currently specified by the ACK bit will be automatically sent on the bus
during the ACK cycle of an incoming data byte. As a transmitter, reading the ACK bit indicates the value
received on the last ACK cycle. The ACKRQ bit is not used when hardware ACK generation is enabled. If
a received slave address is NACKed by hardware, further slave events will be ignored until the next
START is detected, and no interrupt will be generated.

Table 24.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 24.5 for SMBus
status decoding using the SMB0CN register.

Table 24.3. Sources for Hardware Changes to SMB0CN

Bit Set by Hardware When: Cleared by Hardware When:

MASTER
A START is generated. A STOP is generated.

Arbitration is lost.

TXMODE

START is generated.

SMB0DAT is written before the start of an
SMBus frame.

A START is detected.

Arbitration is lost.

SMB0DAT is not written before the
start of an SMBus frame.

STA
A START followed by an address byte is

received.
Must be cleared by software.

STO
A STOP is detected while addressed as a

slave.

Arbitration is lost due to a detected STOP.

A pending STOP is generated.

Rev. 1.0 289

26. Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART.
Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details
in Section “26.1. Enhanced Baud Rate Generation” on page 289). Received data buffering allows UART0
to start reception of a second incoming data byte before software has finished reading the previous data
byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0).
The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0
always access the transmit register. Reads of SBUF0 always access the buffered receive register;
it is not possible to read data from the transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI is set in
SCON0), or a data byte has been received (RI is set in SCON0). The UART0 interrupt flags are not cleared
by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by soft-
ware, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive com-
plete).

Figure 26.1. UART0 Block Diagram

26.1. Enhanced Baud Rate Generation
The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by
TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 26.2), which is not user-
accessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates.
The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an
RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to
begin any time a START is detected, independent of the TX Timer state.

UART0

SBUF (8 LSBs)

Input Shift
Register

RX
Baud Rate
Generator
(Timer 1)

START
Detection

Output Shift
Register

TX

TB8
(9th bit)

RB8
(9th bit)

Control /
Configuration

TI, RI
Interrupts

TX Clk

RX Clk

Rev. 1.0 305

29.2. C2 Interface Registers
The following describes the C2 registers necessary to perform flash programming through the C2
interface. All C2 registers are accessed through the C2 interface, and are not available in the SFR map for
firmware access.

Register 29.1. C2ADD: C2 Address

Bit 7 6 5 4 3 2 1 0

Name C2ADD

Type RW

Reset 0 0 0 0 0 0 0 0

This register is part of the C2 protocol.

Table 29.1. C2ADD Register Bit Descriptions

Bit Name Function

7:0 C2ADD C2 Address.

The C2ADD register is accessed via the C2 interface. The value written to C2ADD
selects the target data register for C2 Data Read and Data Write commands.
0x00: C2DEVID
0x01: C2REVID
0x02: C2FPCTL
0xB4: C2FPDAT

