E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f851-c-iur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	14.8.1. External Voltage Reference	
	14.8.2. Internal Voltage Reference	
	14.8.3. Analog Ground Reference	
	14.9. Temperature Sensor	
	14.9.1. Calibration	
	14.10. ADC Control Registers	
15.	CIP-51 Microcontroller Core	113
	15.1. Performance	
	15.2. Programming and Debugging Support	114
	15.3. Instruction Set	114
	15.3.1. Instruction and CPU Timing	114
	15.4. CPU Core Registers	
16.	Clock Sources and Selection (HFOSC0, LFOSC0, and EXTCLK)	
	16.1. Programmable High-Frequency Oscillator	
	16.2. Programmable Low-Frequency Oscillator	
	16.2.1. Calibrating the Internal L-F Oscillator	
	16.3. External Clock	
	16.4. Clock Selection	
	16.5. High Frequency Oscillator Control Registers	127
	16.6. Low Frequency Oscillator Control Registers	
	16.7. Clock Selection Control Registers	
17.	Comparators (CMP0 and CMP1)	
	17.1. System Connectivity	
	17.2. Functional Description	
	17.3. Comparator Control Registers	
18.	Cyclic Redundancy Check Unit (CRC0)	
	18.1. CRC Algorithm	
	18.2. Preparing for a CRC Calculation	
	18.3. Performing a CRC Calculation	
	18.4. Accessing the CRC0 Result	
	18.5. CRC0 Bit Reverse Feature	
	18.6. CRC Control Registers	
19.	External Interrupts (INT0 and INT1)	-
	19.1. External Interrupt Control Registers	
20.	Programmable Counter Array (PCA0)	
	20.1. PCA Counter/Timer	
	20.2. PCA0 Interrupt Sources	
	20.3. Capture/Compare Modules	
	20.3.1. Output Polarity	
	20.3.2. Edge-Triggered Capture Mode	
	20.3.3. Software Timer (Compare) Mode	
	20.3.4. High-Speed Output Mode	
	20.3.5. Frequency Output Mode	
	20.4. PWM Waveform Generation	
	20.4.1. Edge Aligned PWM	

Table 1.7. ADC (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset Error	E _{OFF}	12 Bit Mode, VREF = 1.65 V	-3	0	3	LSB
	-	10 Bit Mode, VREF = 1.65 V	-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.004	_	LSB/°C
Slope Error	E _M	12 Bit Mode		±0.02	±0.1	%
	-	10 Bit Mode		±0.06	±0.24	%
Dynamic Performance 10 k	Hz Sine Wa	ve Input 1dB below full scale, Ma	x throug	ghput, us	sing AG	ND pin
Signal-to-Noise	SNR	12 Bit Mode	61	66		dB
		10 Bit Mode	53	60		dB
Signal-to-Noise Plus Distor-	SNDR	12 Bit Mode	61	66		dB
tion	-	10 Bit Mode	53	60		dB
Total Harmonic Distortion	THD	12 Bit Mode	—	71	_	dB
(Up to 5th Harmonic)	-	10 Bit Mode	_	70	_	dB
Spurious-Free Dynamic	SFDR	12 Bit Mode	_	-79	_	dB
Range	-	10 Bit Mode		-74		dB
*Note: Absolute input pin voltag	ge is limited by	r the V _{DD} supply.	1	1	1	1

1.2. Typical Performance Curves

1.2.1. Operating Supply Current

Figure 1.1. Typical Operating Current Running From 24.5 MHz Internal Oscillator

	I	able	4.1.1	roal	ICT 50	electi	on G	uide	
Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	Number of ADC0 Channels	I/O with Comparator 0/1 Inputs	Pb-free (RoHS Compliant)	AEC-Q100 Qualified	Temperature Range	Package
-IM, -IU and -IS extend	led te	mpera	ature r	ange	devic	es (-4	0 to 1	25 °C) are also a	available.

Table 4.1. Product Selection Guide

Symbol	Millimeters		Symbol	Millim	neters	
	Min	Max		Min	Max	
D	2.71	REF	GE	2.10	_	
D2	1.60	1.80	W	_	0.34	
е	0.50	BSC	Х	—	0.28	
E	2.71	REF	Y	0.61	REF	
E2	1.60	1.80	ZE	—	3.31	
f	2.53 BSC		ZD	—	3.31	
GD	2.10	—				

Table 6.2. QFN-20 Landing Diagram Dimensions

Notes: General

- **1.** All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on IPC-SM-782 guidelines.
- **4.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Notes: Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Notes: Stencil Design

- **1.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- **3.** The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
- **4.** A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides approximately 70% solder paste coverage on the pad, which is optimum to assure correct component stand-off.

Notes: Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Register	Address	Register Description	Page
IE	0xA8	Interrupt Enable	75
IP	0xB8	Interrupt Priority	77
IT01CF	0xE4	INT0 / INT1 Configuration	150
OSCICL	0xC7	High Frequency Oscillator Calibration	127
OSCLCN	0xB1	Low Frequency Oscillator Control	128
P0	0x80	Port 0 Pin Latch	199
POMASK	0xFE	Port 0 Mask	197
POMAT	0xFD	Port 0 Match	198
POMDIN	0xF1	Port 0 Input Mode	200
POMDOUT	0xA4	Port 0 Output Mode	201
P0SKIP	0xD4	Port 0 Skip	202
P1	0x90	Port 1 Pin Latch	205
P1MASK	0xEE	Port 1 Mask	203
P1MAT	0xED	Port 1 Match	204
P1MDIN	0xF2	Port 1 Input Mode	206
P1MDOUT	0xA5	Port 1 Output Mode	207
P1SKIP	0xD5	Port 1 Skip	208
P2	0xA0	Port 2 Pin Latch	209
P2MDOUT	0xA6	Port 2 Output Mode	210
PCA0CENT	0x9E	PCA Center Alignment Enable	177
PCA0CLR	0x9C	PCA Comparator Clear Control	170
PCA0CN	0xD8	PCA Control	167
PCA0CPH0	0xFC	PCA Capture Module High Byte 0	175
PCA0CPH1	0xEA	PCA Capture Module High Byte 1	181
PCA0CPH2	0xEC	PCA Capture Module High Byte 2	183
PCA0CPL0	0xFB	PCA Capture Module Low Byte 0	174
PCA0CPL1	0xE9	PCA Capture Module Low Byte 1	180
PCA0CPL2	0xEB	PCA Capture Module Low Byte 2	182

Table 9.2. Special Function Registers (Continued)

The ADSJST bits can be used to format the contents of the 16-bit accumulator. The accumulated result can be shifted right by 1, 2, or 3 bit positions. Based on the principles of oversampling and averaging, the effective ADC resolution increases by 1 bit each time the oversampling rate is increased by a factor of 4. The example below shows how to increase the effective ADC resolution by 1, 2, and 3 bits to obtain an effective ADC resolution of 11-bit, 12-bit, or 13-bit respectively without CPU intervention.

Input Voltage	Repeat Count = 4 Shift Right = 1 11-Bit Result	Repeat Count = 16 Shift Right = 2 12-Bit Result	Repeat Count = 64 Shift Right = 3 13-Bit Result
V _{REF} x 1023/1024	0x07F7	0x0FFC	0x1FF8
V _{REF} x 512/1024	0x0400	0x0800	0x1000
V _{REF} x 511/1024	0x03FE	0x04FC	0x0FF8
0	0x0000	0x0000	0x0000

14.7. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to userprogrammed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADWINT in register ADC0CN0) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

14.7.1. Window Detector In Single-Ended Mode

right-iustified Figure 14.6 shows two example window comparisons for data. with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). The input voltage can range from 0 to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an ADWINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and ADWINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 14.7 shows an example using leftjustified data with the same comparison values.

Register 14.6. ADC0TK: ADC0 Burst Mode Track Time

Bit	7	6	5	4	3	2	1	0							
Name	AD12SM	Reserved		ADTK											
Туре	RW	RW		RW											
Reset	0	0	0	0 1 1 1 1 0											
SFR Add	Iress: 0xB9					SFR Address: 0xB9									

Table 14.9. ADC0TK Register Bit Descriptions

Bit	Name	Function
7	AD12SM	12-Bit Sampling Mode.
		 This bit controls the way that the ADC samples the input when in 12-bit mode. When the ADC is configured for multiple 12-bit conversions in burst mode, the AD12SM bit should be cleared to 0. 0: The ADC will re-track and sample the input four times during a 12-bit conversion. 1: The ADC will sample the input once at the beginning of each 12-bit conversion. The ADTK field can be set to 63 to maximize throughput.
6	Reserved	Must write reset value.
5:0	ADTK	Burst Mode Tracking Time.
		This field sets the time delay between consecutive conversions performed in Burst Mode. When ADTM is set, an additional 4 SARCLKs are added to this time.
		$T_{BMTK} = \frac{64 - ADTK}{F_{HFOSC}}$
		The Burst Mode track delay is not inserted prior to the first conversion. The required tracking time for the first conversion should be defined with the ADPWR field.

17. Comparators (CMP0 and CMP1)

C8051F85x/86x devices include two on-chip programmable voltage comparators, CMP0 and CMP1. The two comparators are functionally identical, but have different connectivity within the device. A functional block diagram is shown in Figure 17.1.

17.1. System Connectivity

Comparator inputs are routed to port I/O pins or internal signals using the comparator mux registers. The comparator's synchronous and asynchronous outputs can optionally be routed to port I/O pins through the port I/O crossbar. The output of either comparator may also be configured to generate a system interrupt. CMP0 may also be used as a reset source, or as a trigger to kill a PCA output channel.

The CMP0 inputs are selected in the CPT0MX register, while CPT1MX selects the CMP1 inputs. The CMXP field selects the comparator's positive input (CPnP.x); the CMXN field selects the comparator's negative input (CPnN.x). Table 17.1 through Table 17.4 detail the comparator input multiplexer options on the C8051F85x/86x family. See the port I/O crossbar sections for details on configuring comparator outputs via the digital crossbar. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset.

Important Note About Comparator Inputs: The port pins selected as comparator inputs should be configured as analog inputs in their associated port configuration register, and configured to be skipped by the crossbar.

Register 17.2. CPT0MD: Comparator 0 Mode

Bit	7	6	5	4	3	2	1	0
Name	CPLOUT	Reserved	CPRIE	CPFIE	Reserved		CPMD	
Туре	RW	R	RW	RW	R		RW	
Reset	0	0	0	0	0 0		1	0
SFR Add	lress: 0x9D							

Table 17.6. CPT0MD Register Bit Descriptions

Bit	Name	Function
7	CPLOUT	Comparator 0 Latched Output Flag.
		This bit represents the comparator output value at the most recent PCA counter overflow.
		0: Comparator output was logic low at last PCA overflow.
		1: Comparator output was logic high at last PCA overflow.
6	Reserved	Must write reset value.
5	CPRIE	Comparator 0 Rising-Edge Interrupt Enable.
		0: Comparator Rising-Edge interrupt disabled.
		1: Comparator Rising-Edge interrupt enabled.
4	CPFIE	Comparator 0 Falling-Edge Interrupt Enable.
		0: Comparator Falling-Edge interrupt disabled.
		1: Comparator Falling-Edge interrupt enabled.
3:2	Reserved	Must write reset value.
1:0	CPMD	Comparator 0 Mode Select.
		These bits affect the response time and power consumption of the comparator.
		00: Mode 0 (Fastest Response Time, Highest Power Consumption)
		01: Mode 1
		10: Mode 2
		11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

Register 18.4. CRC0AUTO: CRC0 Automatic Control

Bit	7	6	5	4	3	2	1	0			
Name	AUTOEN	Reserved		CRCST							
Туре	RW	R		RW							
Reset	0	0	0	0 0 0 0 0 0							
	dress: 0xD2	U	U	U	U	U	U				

Table 18.5. CRC0AUTO Register Bit Descriptions

Bit	Name	Function				
7	AUTOEN	Automatic CRC Calculation Enable.				
		When AUTOEN is set to 1, any write to CRC0CN will initiate an automatic CRC starting at flash sector CRCST and continuing for CRCCNT sectors.				
6	Reserved	Must write reset value.				
5:0	CRCST	Automatic CRC Calculation Starting Block.				
		These bits specify the flash block to start the automatic CRC calculation. The starting address of the first flash block included in the automatic CRC calculation is CRCST x block_size, where block_size is 256 bytes.				

Register 18.6. CRC0FLIP: CRC0 Bit Flip

Bit	7	6	5	4	3	2	1	0
Name	CRC0FLIP							
Туре	RW							
Reset	0	0	0	0	0	0	0	0
SFR Address: 0xCF								

Table 18.7. CRC0FLIP Register Bit Descriptions

Bit	Name	Function
7:0	CRC0FLIP	CRC0 Bit Flip.
		Any byte written to CRC0FLIP is read back in a bit-reversed order, i.e., the written LSB becomes the MSB. For example: If 0xC0 is written to CRC0FLIP, the data read back will be 0x03. If 0x05 is written to CRC0FLIP, the data read back will be 0xA0.

20.3.3. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Figure 20.3. PCA Software Timer Mode Diagram

Register 20.5. PCA0CPM0: PCA Capture/Compare Mode

Bit	7	6	5	4	3	2	1	0
Name	PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF
Туре	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
SFR Address: 0xDA								

Table 20.7. PCA0CPM0 Register Bit Descriptions

Bit	Name	Function
7	PWM16	16-bit Pulse Width Modulation Enable.
		This bit enables 16-bit mode when Pulse Width Modulation mode is enabled.0: 8 to 11-bit PWM selected.1: 16-bit PWM selected.
6	ECOM	Comparator Function Enable.
		This bit enables the comparator function.
5	CAPP	Capture Positive Function Enable.
		This bit enables the positive edge capture capability.
4	CAPN	Capture Negative Function Enable.
		This bit enables the negative edge capture capability.
3	MAT	Match Function Enable.
		This bit enables the match function. When enabled, matches of the PCA counter with a module's capture/compare register cause the CCF0 bit in the PCA0MD register to be set to logic 1.
2	TOG	Toggle Function Enable.
		This bit enables the toggle function. When enabled, matches of the PCA counter with the capture/compare register cause the logic level on the CEX0 pin to toggle. If the PWM bit is also set to logic 1, the module operates in Frequency Output Mode.
1	PWM	Pulse Width Modulation Mode Enable.
		This bit enables the PWM function. When enabled, a pulse width modulated signal is output on the CEX0 pin. 8 to 11-bit PWM is used if PWM16 is cleared; 16-bit mode is used if PWM16 is set to logic 1. If the TOG bit is also set, the module operates in Frequency Output Mode.
0	ECCF	Capture/Compare Flag Interrupt Enable.
		This bit sets the masking of the Capture/Compare Flag (CCF0) interrupt. 0: Disable CCF0 interrupts.
		1: Enable a Capture/Compare Flag interrupt request when CCF0 is set.

21.4.3. Port Drive Strength

Port drive strength can be controlled on a port-by-port basis using the PRTDRV register. Each port has a bit in PRTDRV to select the high or low drive strength setting for all pins on that port. By default, all ports are configured for high drive strength.

Figure 21.4. Port I/O Cell Block Diagram

21.5. Port Match

Port match functionality allows system events to be triggered by a logic value change on one or more port I/O pins. A software controlled value stored in the PnMATCH registers specifies the expected or normal logic values of the associated port pins (for example, P0MATCH.0 would correspond to P0.0). A port mismatch event occurs if the logic levels of the port's input pins no longer match the software controlled value. This allows software to be notified if a certain change or pattern occurs on the input pins regardless of the XBRn settings.

The PnMASK registers can be used to individually select which pins should be compared against the PnMATCH registers. A port mismatch event is generated if (Pn & PnMASK) does not equal (PnMATCH & PnMASK) for all ports with a PnMAT and PnMASK register.

A port mismatch event may be used to generate an interrupt or wake the device from idle mode. See the interrupts and power options chapters for more details on interrupt and wake-up sources.

21.6. Direct Read/Write Access to Port I/O Pins

All port I/O are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. When writing to a port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the crossbar, the port register can always read its corresponding port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 23.9. SPI Master Timing (CKPHA = 1)

minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary for SMBus compliance when SYSCLK is above 10 MHz.

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time						
0	T _{low} – 4 system clocks or 1 system clock + s/w delay [*]	3 system clocks						
1	11 system clocks	12 system clocks						
Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. When using software acknowledgment, the s/ w delay occurs between the time SMB0DAT or ACK is written and when SI0 is cleared. Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.								

Table 24.2. Minimum SDA Setup and Hold Times

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "24.3.4. SCL Low Timeout" on page 235). The SMBus interface will force the associated timer to reload while SCL is high, and allow the timer to count when SCL is low. The timer interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 24.4).

24.4.2. SMBus Pin Swap

The SMBus peripheral is assigned to pins using the priority crossbar decoder. By default, the SMBus signals are assigned to port pins starting with SDA on the lower-numbered pin, and SCL on the next available pin. The SWAP bit in the SMBTC register can be set to 1 to reverse the order in which the SMBus signals are assigned.

24.4.3. SMBus Timing Control

The SDD field in the SMBTC register is used to restrict the detection of a START condition under certain circumstances. In some systems where there is significant mismatch between the impedance or the capacitance on the SDA and SCL lines, it may be possible for SCL to fall after SDA during an address or data transfer. Such an event can cause a false START detection on the bus. These kind of events are not expected in a standard SMBus or I2C-compliant system. In most systems this parameter should not be adjusted, and it is recommended that it be left at its default value.

By default, if the SCL falling edge is detected after the falling edge of SDA (i.e. one SYSCLK cycle or more), the device will detect this as a START condition. The SDD field is used to increase the amount of hold time that is required between SDA and SCL falling before a START is recognized. An additional 2, 4, or 8 SYSCLKs can be added to prevent false START detection in systems where the bus conditions warrant this.

24.4.4. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information. The higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER indicates whether a device is the master or slave during the current transfer. TXMODE indicates whether the device is transmitting or receiving data for the current byte.

24.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0DAT is written while an active Master Receiver. Figure 24.6 shows a typical master read sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled.

Figure 24.6. Typical Master Read Sequence

Register 24.2. SMB0TC: SMBus0 Timing and Pin Control

Bit	7	6	5	4	3	2	1	0
Name	SWAP	Reserved SDD						DD
Туре	RW	R RW						
Reset	0	0	0	0	0	0	0	0
SFR Add	SFR Address: 0xAC							

Table 24.8. SMB0TC Register Bit Descriptions

Bit	Name	Function
7	SWAP	SMBus0 Swap Pins.
		 This bit swaps the order of the SMBus0 pins on the crossbar. 0: SDA is mapped to the lower-numbered port pin, and SCL is mapped to the higher-numbered port pin. 1: SCL is mapped to the lower-numbered port pin, and SDA is mapped to the higher-numbered port pin.
6:2	Reserved	Must write reset value.
1:0	SDD	SMBus0 Start Detection Window.
		 These bits increase the hold time requirement between SDA falling and SCL falling for START detection. 00: No additional hold time window (0-1 SYSCLK). 01: Increase hold time window to 2-3 SYSCLKs. 10: Increase hold time window to 4-5 SYSCLKs. 11: Increase hold time window to 8-9 SYSCLKs.

Register 25.15. TMR3RLH: Timer 3 Reload High Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR3RLH							
Туре	RW							
Reset	0	0	0	0	0	0	0	0
SFR Address: 0x93								

Table 25.17. TMR3RLH Register Bit Descriptions

Bit	Name	Function
7:0	TMR3RLH	Timer 3 Reload High Byte.
		When operating in one of the auto-reload modes, TMR3RLH holds the reload value for the high byte of Timer 3 (TMR3H). When oeprating in capture mode, TMR3RLH is the captured value of TMR3H.

