

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 15x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f852-c-imr

Email: info@E-XFL.COM

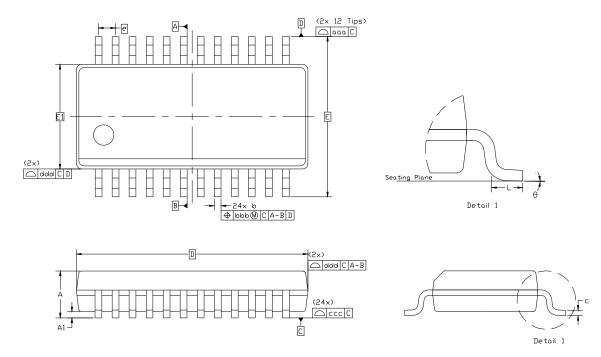
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

20.4.2. Center Aligned PWM	161
20.4.3. 8 to11-bit Pulse Width Modulator Modes	
20.4.4. 16-Bit Pulse Width Modulator Mode	
20.5. Comparator Clear Function	
20.6. PCA Control Registers	
21. Port I/O (Port 0, Port 1, Port 2, Crossbar, and Port Match)	
21.1. General Port I/O Initialization.	
21.2. Assigning Port I/O Pins to Analog and Digital Functions	
21.2.1. Assigning Port I/O Pins to Analog Functions	
21.2.2. Assigning Port I/O Pins to Digital Functions	
21.2.3. Assigning Port I/O Pins to Fixed Digital Functions	
21.3. Priority Crossbar Decoder	
21.4. Port I/O Modes of Operation	
21.4.1. Configuring Port Pins For Analog Modes	
21.4.2. Configuring Port Pins For Digital Modes	
21.4.3. Port Drive Strength	
21.5. Port Match	
21.6. Direct Read/Write Access to Port I/O Pins	
21.7. Port I/O and Pin Configuration Control Registers	
22. Reset Sources and Supply Monitor	211
22.1. Power-On Reset	
22.2. Power-Fail Reset / Supply Monitor	
22.3. Enabling the VDD Monitor	
22.4. External Reset	
22.5. Missing Clock Detector Reset	
22.6. Comparator0 Reset	
22.7. Watchdog Timer Reset	
22.8. Flash Error Reset	
22.9. Software Reset	
22.10. Reset Sources Control Registers	215
22.11. Supply Monitor Control Registers	
23. Serial Peripheral Interface (SPI0)	217
23.1. Signal Descriptions	
23.1.1. Master Out, Slave In (MOSI)	
23.1.2. Master In, Slave Out (MISO)	218
23.1.3. Serial Clock (SCK)	218
23.1.4. Slave Select (NSS)	218
23.2. SPI0 Master Mode Operation	219
23.3. SPI0 Slave Mode Operation	221
23.4. SPI0 Interrupt Sources	221
23.5. Serial Clock Phase and Polarity	221
23.6. SPI Special Function Registers	223
23.7. SPI Control Registers	
24. System Management Bus / I2C (SMBus0)	
24.1. Supporting Documents	234

Pin Name	Туре	Pin Numbers	Crossbar Capability	Additional Digital Functions	Analog Functions
N/C	No Connection	1 13 24			

Table 3.1. Pin Definitions for C8051F850/1/2/3/4/5-GU and C8051F850/1/2/3/4/5-IU

Pin Name	Туре	Pin Numbers	Crossbar Capability	Additional Digital Functions	Analog Functions
P1.1	Standard I/O	10	Yes	P1MAT.1	ADC0.9 CP1P.3 CP1N.3
P1.2	Standard I/O	9	Yes	P1MAT.2	ADC0.10 CP1P.4 CP1N.4
P1.3	Standard I/O	8	Yes	P1MAT.3	ADC0.11 CP1P.5 CP1N.5
P2.0 / C2D	Standard I/O / C2 Debug Data	7			


Table 3.3. Pin Definitions for C8051F860/1/2/3/4/5-GS and C8051F860/1/2/3/4/5-IS

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	Number of ADC0 Channels	I/O with Comparator 0/1 Inputs	Pb-free (RoHS Compliant)	AEC-Q100 Qualified	Temperature Range	Package
C8051F850-C-GM	8	512	16	15	15	\checkmark	\checkmark	-40 to 85 °C	QFN-20
C8051F850-C-GU	8	512	18	16	16	~	\checkmark	-40 to 85 °C	QSOP-24
C8051F851-C-GM	4	512	16	15	15	~	~	-40 to 85 °C	QFN-20
C8051F851-C-GU	4	512	18	16	16	\checkmark	\checkmark	-40 to 85 °C	QSOP-24
C8051F852-C-GM	2	256	16	15	15	\checkmark	\checkmark	-40 to 85 °C	QFN-20
C8051F852-C-GU	2	256	18	16	16	\checkmark	\checkmark	-40 to 85 °C	QSOP-24
C8051F853-C-GM	8	512	16		15	\checkmark	\checkmark	-40 to 85 °C	QFN-20
C8051F853-C-GU	8	512	18	—	16	~	~	-40 to 85 °C	QSOP-24
C8051F854-C-GM	4	512	16	—	15	~	~	-40 to 85 °C	QFN-20
C8051F854-C-GU	4	512	18		16	~	~	-40 to 85 °C	QSOP-24
C8051F855-C-GM	2	256	16		15	~	~	-40 to 85 °C	QFN-20
C8051F855-C-GU	2	256	18		16	~	~	-40 to 85 °C	QSOP-24
C8051F860-C-GS	8	512	13	12	12	~	\checkmark	-40 to 85 °C	SOIC-16
C8051F861-C-GS	4	512	13	12	12	\checkmark	~	-40 to 85 °C	SOIC-16
C8051F862-C-GS	2	256	13	12	12	\checkmark	~	-40 to 85 °C	SOIC-16
C8051F863-C-GS	8	512	13		12	\checkmark	~	-40 to 85 °C	SOIC-16
C8051F864-C-GS	4	512	13		12	\checkmark	\checkmark	-40 to 85 °C	SOIC-16
C8051F865-C-GS	2	256	13	_	12	\checkmark	\checkmark	-40 to 85 °C	SOIC-16

Table 4.1. Product Selection Guide

5. **QSOP-24** Package Specifications

Figure 5.1. QSOP-24 Package Drawing

Min	Mana					
	Nom	Max	Dimension	Min	Nom	Мах
_	_	1.75	е	0.635 BSC		
0.10	_	0.25	L	0.40		1.27
0.20	_	0.30	θ	0°		8º
0.10	_	0.25	aaa	0.20		
8.65 BSC			bbb		0.18	
6.00 BSC			CCC		0.10	
	3.90 BSC		ddd		0.10	

Table 5.1. QSOP-24 Package Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC outline MO-137, variation AE.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

C8051F85x/86x

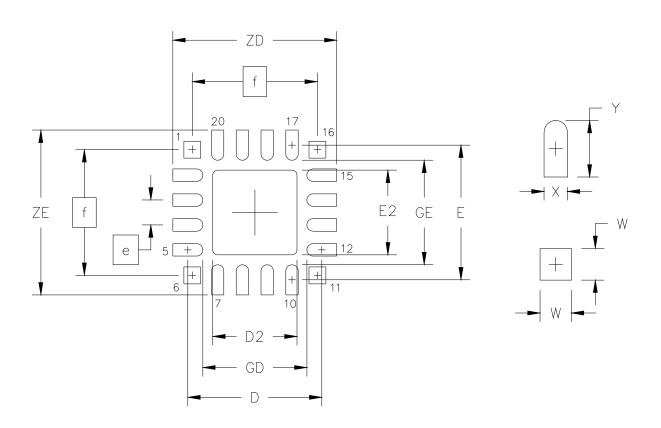


Figure 6.2. QFN-20 Landing Diagram

Register	Address	Register Description	Page
SPIODAT	0xA3	SPI0 Data	232
TCON	0x88	Timer 0/1 Control	271
TH0	0x8C	Timer 0 High Byte	275
TH1	0x8D	Timer 1 High Byte	276
TL0	0x8A	Timer 0 Low Byte	273
TL1	0x8B	Timer 1 Low Byte	274
TMOD	0x89	Timer 0/1 Mode	272
TMR2CN	0xC8	Timer 2 Control	277
TMR2H	0xCD	Timer 2 High Byte	282
TMR2L	0xCC	Timer 2 Low Byte	281
TMR2RLH	0xCB	Timer 2 Reload High Byte	280
TMR2RLL	0xCA	Timer 2 Reload Low Byte	279
TMR3CN	0x91	Timer 3 Control	283
TMR3H	0x95	Timer 3 High Byte	288
TMR3L	0x94	Timer 3 Low Byte	287
TMR3RLH	0x93	Timer 3 Reload High Byte	286
TMR3RLL	0x92	Timer 3 Reload Low Byte	285
VDM0CN	0xFF	Supply Monitor Control	216
WDTCN	0x97	Watchdog Timer Control	300
XBR0	0xE1	Port I/O Crossbar 0	193
XBR1	0xE2	Port I/O Crossbar 1	194
XBR2	0xE3	Port I/O Crossbar 2	195

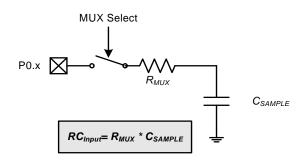
Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	N/A
Read contents of Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted
Erase page containing Lock Byte (if no pages are locked)	Permitted	Permitted	N/A
Erase page containing Lock Byte—Unlock all pages (if any page is locked)	C2 Device Erase Only	Flash Error Reset	Flash Error Reset
Lock additional pages (change 1s to 0s in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset
Unlock individual pages (change 0s to 1s in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset
Read, Write or Erase Reserved Area	Not Permitted	Flash Error Reset	Flash Error Reset

Table 10.1. Flash Security Summary (Continued)

C2 Device Erase—Erases all flash pages including the page containing the Lock Byte.

Flash Error Reset — Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is '1' after reset).

- All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).


- Locking any flash page also locks the page containing the Lock Byte.

- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.

- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.

n is the ADC resolution in bits (8/10/12).

Note: The value of CSAMPLE depends on the PGA Gain. See electrical specifications for details.

Figure 14.4. ADC0 Equivalent Input Circuits

14.2.5. Gain Setting

The ADC has gain settings of 1x and 0.5x. In 1x mode, the full scale reading of the ADC is determined directly by VREF. In 0.5x mode, the full-scale reading of the ADC occurs when the input voltage is VREF x 2. The 0.5x gain setting can be useful to obtain a higher input voltage range when using a small VREF voltage, or to measure input voltages that are between VREF and VDD. Gain settings for the ADC are controlled by the ADGN bit in register ADC0CF. Note that even with a gain setting of 0.5, voltages above the supply rail cannot be measured directly by the ADC.

14.3. 8-Bit Mode

Setting the ADC08BE bit in register ADC0CF to 1 will put the ADC in 8-bit mode. In 8-bit mode, only the 8 MSBs of data are converted, allowing the conversion to be completed in fewer SAR clock cycles than a 10-bit conversion. The two LSBs of a conversion are always 00 in this mode, and the ADC0L register will always read back 0x00.

14.4. 12-Bit Mode

When configured for 12-bit conversions, the ADC performs four 10-bit conversions using four different reference voltages and combines the results into a single 12-bit value. Unlike simple averaging techniques, this method provides true 12-bit resolution of AC or DC input signals without depending on noise to provide dithering. The converter also employs a hardware dynamic element matching algorithm that reconfigures the largest elements of the internal DAC for each of the four 10-bit conversions. This reconfiguration cancels any matching errors and enables the converter to achieve 12-bit linearity performance to go along with its 12-bit resolution.

The 12-bit mode is enabled by setting the AD12BE bit in register ADC0AC to logic 1 and configuring the ADC in burst mode (ADBMEN = 1) for four or more conversions. The conversion can be initiated using any of the conversion start sources, and the 12-bit result will appear in the ADC0H and ADC0L registers. Since the 12-bit result is formed from a combination of four 10-bit results, the maximum output value is 4 x (1023) = 4092, rather than the max value of $(2^{12} - 1) = 4095$ that is produced by a traditional 12-bit converter. To further increase resolution, the burst mode repeat value may be configured to any multiple of four conversions. For example, if a repeat value of 16 is selected, the ADC0 output will be a 14-bit number (sum of four 12-bit numbers) with 13 effective bits of resolution.

The AD12SM bit in register ADC0TK controls when the ADC will track and sample the input signal. When AD12SM is set to 1, the selected input signal will be tracked before the first conversion of a set and held internally during all four conversions. When AD12SM is cleared to 0, the ADC will track and sample the selected input before each of the four conversions in a set. When maximum throughput (180-200 ksps) is

Number of Instructions	26	50	5	14	7	3	1	2	1
------------------------	----	----	---	----	---	---	---	---	---

15.2. Programming and Debugging Support

In-system programming of the flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2).

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs provides an integrated development environment (IDE) including editor, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the C2 interface to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

15.3. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51[™] instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51[™] counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

15.3.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 15.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

Rev. 1.0

17.3. Comparator Control Registers

Bit	7	6	5	4	3	2	1	0
Name	CPEN	CPOUT	CPRIF	CPFIF	СРНҮР		CPHYN	
Туре	RW	R	RW	RW	RW		R	W
Reset	0	0	0	0	0	0	0	0

Register 17.1. CPT0CN: Comparator 0 Control

Table 17.5. CPT0CN Register Bit Descriptions

Bit	Name	Function
7	CPEN	Comparator 0 Enable Bit. 0: Comparator Disabled. 1: Comparator Enabled.
6	CPOUT	Comparator 0 Output State Flag.0: Voltage on CP0P < CP0N.
5	CPRIF	 Comparator 0 Rising-Edge Flag. Must be cleared by software. 0: No Comparator Rising Edge has occurred since this flag was last cleared. 1: Comparator Rising Edge has occurred.
4	CPFIF	 Comparator 0 Falling-Edge Flag. Must be cleared by software. 0: No Comparator Falling-Edge has occurred since this flag was last cleared. 1: Comparator Falling-Edge has occurred.
3:2	СРНҮР	Comparator 0 Positive Hysteresis Control Bits.00: Positive Hysteresis Disabled.01: Positive Hysteresis = 5 mV.10: Positive Hysteresis = 10 mV.11: Positive Hysteresis = 20 mV.
1:0	CPHYN	Comparator 0 Negative Hysteresis Control Bits.00: Negative Hysteresis Disabled.01: Negative Hysteresis = 5 mV.10: Negative Hysteresis = 10 mV.11: Negative Hysteresis = 20 mV.

20. Programmable Counter Array (PCA0)

The Programmable Counter Array (PCA0) provides three channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 16-bit capture/compare modules. The counter/timer is driven by a programmable timebase that can select between seven sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, low frequency oscillator divided by 8, Timer 0 overflows, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8 to 11-Bit PWM, or 16-Bit PWM. Additionally, all PWM modes support both center and edge-aligned operation. The external oscillator and LFO oscillator drives the system clock. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled. The I/O signals have programmable polarity and Comparator 0 can optionally be used to perform a cycle-by-cycle kill operation on the PCA outputs. A PCA block diagram is shown in Figure 20.1

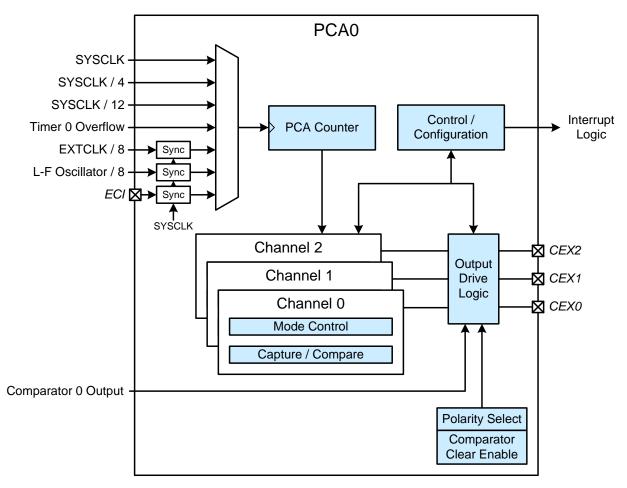


Figure 20.1. PCA0 Block Diagram

21.2.3. Assigning Port I/O Pins to Fixed Digital Functions

Fixed digital functions include external clock input as well as external event trigger functions, which can be used to trigger events such as an ADC conversion, fire an interrupt or wake the device from idle mode when a transition occurs on a digital I/O pin. The fixed digital functions do not require dedicated pins and will function on both GPIO pins and pins in use by the crossbar. Fixed digital functions cannot be used on pins configured for analog I/O. Table 21.3 shows all available fixed digital functions and the potential mapping of port I/O to each function.

Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
External Interrupt 0	P0.0 - P0.7	IT01CF
External Interrupt 1	P0.0 - P0.7	IT01CF
Conversion Start (CNVSTR)	P0.6	ADCOCN
External Clock Input (EXTCLK)	P0.3	OSCXCN
Port Match	P0.0 - P1.7	POMASK, POMAT P1MASK, P1MAT

Table 21.3. Port I/O Assignment for Fixed Digital Functions

22.10. Reset Sources Control Registers

Bit	7	6	5	4	3	2	1	0			
Name	Reserved	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF			
Туре	R	R	RW	RW	R	RW	RW	R			
Reset	0	Х	Х	Х	Х	Х	Х	Х			
SEB Add											

Register 22.1. RSTSRC: Reset Source

R Address: 0xEl

Table 22.1. RSTSRC Register Bit Descriptions

Bit	Name	Function
7	Reserved	Must write reset value.
6	FERROR	Flash Error Reset Flag.
		This read-only bit is set to 1 if a flash read/write/erase error caused the last reset.
5	CORSEF	Comparator0 Reset Enable and Flag.
		Read: This bit reads 1 if Comparator0 caused the last reset.
		Write: Writing a 1 to this bit enables Comparator0 (active-low) as a reset source.
4	SWRSF	Software Reset Force and Flag.
		Read: This bit reads 1 if last reset was caused by a write to SWRSF.
		Write: Writing a 1 to this bit forces a system reset.
3	WDTRSF	Watchdog Timer Reset Flag.
		This read-only bit is set to 1 if a watchdog timer overflow caused the last reset.
2	MCDRSF	Missing Clock Detector Enable and Flag.
		Read: This bit reads 1 if a missing clock detector timeout caused the last reset.
		Write: Writing a 1 to this bit enables the missing clock detector. The MCD triggers a reset if a missing clock condition is detected.
1	PORSF	Power-On / Supply Monitor Reset Flag, and Supply Monitor Reset Enable.
		Read: This bit reads 1 anytime a power-on or supply monitor reset has occurred.
		Write: Writing a 1 to this bit enables the supply monitor as a reset source.
0	PINRSF	HW Pin Reset Flag.
		This read-only bit is set to 1 if the RST pin caused the last reset.

1. Reads and writes of the RSTSRC register access different logic in the device. Reading the register always returns status information to indicate the source of the most recent reset. Writing to the register activates certain options as reset sources. It is recommended to not use any kind of read-modify-write operation on this register.

2. When the PORSF bit reads back 1 all other RSTSRC flags are indeterminate.

3. Writing 1 to the PORSF bit when the supply monitor is not enabled and stabilized may cause a system reset.

22.11. Supply Monitor Control Registers

Bit	7	6	5	4	3	2	1	0	
Name	VDMEN	VDDSTAT	Reserved						
Туре	RW	R		R					
Reset	Х	Х	X X X X X X						

Register 22.2. VDM0CN: Supply Monitor Control

SFR Address: 0xFF

Table 22.2. VDM0CN Register Bit Descriptions

Bit	Name	Function
7	VDMEN	Supply Monitor Enable.
		This bit turns the supply monitor circuit on/off. The supply monitor cannot generate sys- tem resets until it is also selected as a reset source in register RSTSRC. Selecting the supply monitor as a reset source before it has stabilized may generate a system reset. In systems where this reset would be undesirable, a delay should be introduced between enabling the supply monitor and selecting it as a reset source. 0: Supply Monitor Disabled. 1: Supply Monitor Enabled.
6	VDDSTAT	Supply Status.
		 This bit indicates the current power supply status (supply monitor output). 0: V_{DD} is at or below the supply monitor threshold. 1: V_{DD} is above the supply monitor threshold.
5:0	Reserved	Must write reset value.

25.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4–TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 in TCON is set and an interrupt will occur if Timer 0 interrupts are enabled.

The CT0 bit in the TMOD register selects the counter/timer's clock source. When CT0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register. Clearing CT selects the clock defined by the TOM bit in register CKCON. When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON.

Setting the TR0 bit enables the timer when either GATE0 in the TMOD register is logic 0 or the input signal INT0 is active as defined by bit IN0PL in register IT01CF. Setting GATE0 to 1 allows the timer to be controlled by the external input signal INT0, facilitating pulse width measurements.

TR0	GATE0	INT0	Counter/Timer				
0	Х	Х	Disabled				
1	0	Х	Enabled				
1	1	0	Disabled				
1	1	1	Enabled				
Note: X = Don't Care							

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT1 is used with Timer 1; the /INT1 polarity is defined by bit IN1PL in register IT01CF.

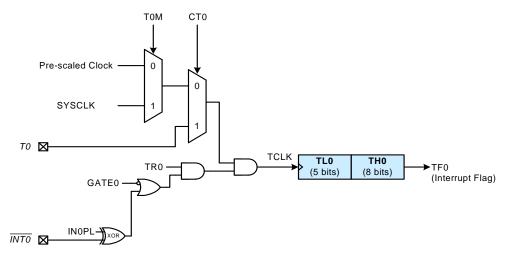


Figure 25.1. T0 Mode 0 Block Diagram

Register 25.2. TCON: Timer 0/1 Control

Bit	7	6	5	4	3	2	1	0	
Name	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
Туре	RW								
Reset	0	0	0	0	0	0	0	0	
SFR Address: 0x88 (bit-addressable)									

Table 25.4. TCON Register Bit Descriptions

Bit	Name	Function
7	TF1	Timer 1 Overflow Flag.
		Set to 1 by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.
6	TR1	Timer 1 Run Control.
		Timer 1 is enabled by setting this bit to 1.
5	TF0	Timer 0 Overflow Flag.
		Set to 1 by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.
4	TR0	Timer 0 Run Control.
		Timer 0 is enabled by setting this bit to 1.
3	IE1	External Interrupt 1.
		This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine in edge-triggered mode.
2	IT1	Interrupt 1 Type Select.
		 This bit selects whether the configured INT1 interrupt will be edge or level sensitive. INT1 is configured active low or high by the IN1PL bit in register IT01CF. 0: INT1 is level triggered. 1: INT1 is edge triggered.
1	IE0	External Interrupt 0.
		This flag is set by hardware when an edge/level of type defined by IT0 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 0 service routine in edge-triggered mode.
0	IT0	Interrupt 0 Type Select.
		This bit selects whether the configured INT0 interrupt will be edge or level sensitive. INT0 is configured active low or high by the IN0PL bit in register IT01CF.0: INT0 is level triggered.1: INT0 is edge triggered.

Table 25.10. TMR2CN Register Bit Descriptions

Bit	Name	Function
0	T2XCLK	Timer 2 External Clock Select.
		 This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0: Timer 2 clock is the system clock divided by 12. 1: Timer 2 clock is the external clock divided by 8 (synchronized with SYSCLK).

Register 25.15. TMR3RLH: Timer 3 Reload High Byte

Bit	7	6	5	4	3	2	1	0	
Name	TMR3RLH								
Туре	RW								
Reset	0	0 0 0 0 0 0 0 0							
SFR Address: 0x93									

Table 25.17. TMR3RLH Register Bit Descriptions

Bit	Name	Function
7:0	TMR3RLH	Timer 3 Reload High Byte.
		When operating in one of the auto-reload modes, TMR3RLH holds the reload value for the high byte of Timer 3 (TMR3H). When oeprating in capture mode, TMR3RLH is the captured value of TMR3H.

28.2. Temperature Sensor Offset and Slope

The temperature sensor slope and offset characteristics of Revision B devices are different than the slope and offset characteristics of Revision C devices. The differences are:

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Revision B						
Offset	V _{OFF}	T _A = 0 °C	_	713	_	mV
Slope	М			2.67	_	mV/°C
Revision C						
Offset	V _{OFF}	$T_A = 0 \ ^{\circ}C$	_	757	_	mV
Slope	М			2.85	_	mV/°C

Firmware that uses the slope and offset of the temperature sensor to calculate the temperature from the sensor ADC reading can detect the revision of the device by reading the REVID register and adjust the slope and offset calculations based on the result. A REVID value of 0x01 indicates a Revision B device, and a REVID value of 0x02 indicates a Revision C device.

28.3. Flash Endurance

The flash endurance, or number of times the flash may be written and erased, on some Revision B devices may be lower than expected. Table 1.4 specifies a minimum Endurance (Write/Erase Cycles) as 20000, but some Revision B devices may support a minimum of ~5000 cycles.

28.4. Latch-Up Performance

Pulling the device pins below ground and drawing significant current (~3.5 mA) can cause a Power-On Reset event with Revision B devices. Some pins, like P0.0 and P0.1, are more susceptible to this behavior than others. This behavior is outside normal operating parameters and would typically be seen during latch-up or ESD performance testing.

28.5. Unique Identifier

Revision B devices do not implement the unique identifier described in "Device Identification and Unique Identifier" on page 68.

