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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 2.1. C8051F85x/86x Family Block Diagram (QSOP-24 Shown)
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2.5.  Communications and other Digital Peripherals
2.5.1. Universal Asynchronous Receiver/Transmitter (UART0)

The UART uses two signals (TX and RX) and a predetermined fixed baud rate to provide asynchronous 
communications with other devices.

The UART module provides the following features:

Asynchronous transmissions and receptions.

Baud rates up to SYSCLK / 2 (transmit) or SYSCLK / 8 (receive).

8- or 9-bit data.

Automatic start and stop generation.

2.5.2. Serial Peripheral Interface (SPI0)

SPI is a 3- or 4-wire communication interface that includes a clock, input data, output data, and an optional 
select signal.

The SPI module includes the following features:

Supports 3- or 4-wire master or slave modes.

Supports external clock frequencies up to SYSCLK / 2 in master mode and SYSCLK / 10 in slave 
mode.

Support for all clock phase and polarity modes.

8-bit programmable clock rate.

Support for multiple masters on the same data lines.

2.5.3. System Management Bus / I2C (SMBus0)

The SMBus interface is a two-wire, bi-directional serial bus compatible with both I2C and SMBus protocols. 
The two clock and data signals operate in open-drain mode with external pull-ups to support automatic bus 
arbitration.

Reads and writes to the interface are byte-oriented with the SMBus interface autonomously controlling the 
serial transfer of the data. Data can be transferred at up to 1/8th of the system clock as a master or slave, 
which can be faster than allowed by the SMBus / I2C specification, depending on the clock source used. A 
method of extending the clock-low duration is available to accommodate devices with different speed 
capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple 
masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and 
synchronization, arbitration logic, and start/stop control and generation.

The SMBus module includes the following features:

Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.

Support for master, slave, and multi-master modes.

Hardware synchronization and arbitration for multi-master mode.

Clock low extending (clock stretching) to interface with faster masters.

Hardware support for 7-bit slave and general call address recognition.

Firmware support for 10-bit slave address decoding.

Ability to inhibit all slave states.

Programmable data setup/hold times.

2.5.4. 16/32-bit CRC (CRC0)

The CRC module is designed to provide hardware calculations for flash memory verification and 
communications protocols. The CRC module supports the standard CCITT-16 16-bit polynomial (0x1021), 
and includes the following features:

Support for four CCITT-16 polynomial.
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Byte-level bit reversal.

Automatic CRC of flash contents on one or more 256-byte blocks.

Initial seed selection of 0x0000 or 0xFFFF.
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Register 11.2. DERIVID: Derivative Identification

Bit 7 6 5 4 3 2 1 0

Name DERIVID

Type R

Reset X X X X X X X X

SFR Address: 0xAD

Table 11.3. DERIVID Register Bit Descriptions

Bit Name Function

7:0 DERIVID Derivative ID.

This read-only register returns the 8-bit derivative ID, which can be used by firmware to 
identify which device in the product family the code is executing on. The ‘{R}’ tag in the 
part numbers below indicates the device revision letter in the ordering code.
0xD0: C8051F850-{R}-GU
0xD1: C8051F851-{R}-GU
0xD2: C8051F852-{R}-GU
0xD3: C8051F853-{R}-GU
0xD4: C8051F854-{R}-GU
0xD5: C8051F855-{R}-GU
0xE0: C8051F860-{R}-GS
0xE1: C8051F861-{R}-GS
0xE2: C8051F862-{R}-GS
0xE3: C8051F863-{R}-GS
0xE4: C8051F864-{R}-GS
0xE5: C8051F865-{R}-GS
0xF0: C8051F850-{R}-GM
0xF1: C8051F851-{R}-GM
0xF2: C8051F852-{R}-GM
0xF3: C8051F853-{R}-GM
0xF4: C8051F854-{R}-GM
0xF5: C8051F855-{R}-GM
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0 EX0 Enable External Interrupt 0.

This bit sets the masking of External Interrupt 0.
0: Disable external interrupt 0.
1: Enable interrupt requests generated by the INT0 input.

Table 12.2. IE Register Bit Descriptions

Bit Name Function
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14.8.  Voltage and Ground Reference Options
The voltage reference multiplexer is configurable to use an externally connected voltage reference, the 
internal voltage reference, or one of two power supply voltages. The ground reference mux allows the 
ground reference for ADC0 to be selected between the ground pin (GND) or a port pin dedicated to analog 
ground (AGND).

The voltage and ground reference options are configured using the REF0CN register.

Important Note About the VREF and AGND Inputs: Port pins are used as the external VREF and AGND 
inputs. When using an external voltage reference, VREF should be configured as an analog input and 
skipped by the digital crossbar. When using AGND as the ground reference to ADC0, AGND should be 
configured as an analog input and skipped by the Digital Crossbar.

14.8.1. External Voltage Reference

To use an external voltage reference, REFSL should be set to 00. Bypass capacitors should be added as 
recommended by the manufacturer of the external voltage reference. If the manufacturer does not provide 
recommendations, a 4.7uF in parallel with a 0.1uF capacitor is recommended.

14.8.2. Internal Voltage Reference

For applications requiring the maximum number of port I/O pins, or very short VREF turn-on time, the high-
speed reference will be the best internal reference option to choose. The internal reference is selected by 
setting REFSL to 11. When selected, the internal reference will be automatically enabled/disabled on an 
as-needed basis by the ADC. The reference can be set to one of two voltage values: 1.65 V or 2.4 V, 
depending on the value of the IREFLVL bit.

For applications with a non-varying power supply voltage, using the power supply as the voltage reference 
can provide the ADC with added dynamic range at the cost of reduced power supply noise rejection. To 
use the external supply pin (VDD) or the 1.8 V regulated digital supply voltage as the reference source, 
REFSL should be set to 01 or 10, respectively.

Internal reference sources are not routed to the VREF pin, and do not require external capacitors. The 
electrical specifications tables detail SAR clock and throughput limitations for each reference source.

14.8.3. Analog Ground Reference

To prevent ground noise generated by switching digital logic from affecting sensitive analog 
measurements, a separate analog ground reference option is available. When enabled, the ground 
reference for the ADC during both the tracking/sampling and the conversion periods is taken from the 
AGND pin. Any external sensors sampled by the ADC should be referenced to the AGND pin. If an 
external voltage reference is used, the AGND pin should be connected to the ground of the external 
reference and its associated decoupling capacitor. The separate analog ground reference option is 
enabled by setting GNDSL to 1. Note that when sampling the internal temperature sensor, the internal chip 
ground is always used for the sampling operation, regardless of the setting of the GNDSL bit. Similarly, 
whenever the internal 1.65 V high-speed reference is selected, the internal chip ground is always used 
during the conversion period, regardless of the setting of the GNDSL bit.
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XRL A, Rn Exclusive-OR Register to A 1 1

XRL A, direct Exclusive-OR direct byte to A 2 2

XRL A, @Ri Exclusive-OR indirect RAM to A 1 2

XRL A, #data Exclusive-OR immediate to A 2 2

XRL direct, A Exclusive-OR A to direct byte 2 2

XRL direct, #data Exclusive-OR immediate to direct byte 3 3

CLR A Clear A 1 1

CPL A Complement A 1 1

RL A Rotate A left 1 1

RLC A Rotate A left through Carry 1 1

RR A Rotate A right 1 1

RRC A Rotate A right through Carry 1 1

SWAP A Swap nibbles of A 1 1

Data Transfer

MOV A, Rn Move Register to A 1 1

MOV A, direct Move direct byte to A 2 2

MOV A, @Ri Move indirect RAM to A 1 2

MOV A, #data Move immediate to A 2 2

MOV Rn, A Move A to Register 1 1

MOV Rn, direct Move direct byte to Register 2 2

MOV Rn, #data Move immediate to Register 2 2

MOV direct, A Move A to direct byte 2 2

MOV direct, Rn Move Register to direct byte 2 2

MOV direct, direct Move direct byte to direct byte 3 3

MOV direct, @Ri Move indirect RAM to direct byte 2 2

MOV direct, #data Move immediate to direct byte 3 3

MOV @Ri, A Move A to indirect RAM 1 2

MOV @Ri, direct Move direct byte to indirect RAM 2 2

MOV @Ri, #data Move immediate to indirect RAM 2 2

MOV DPTR, #data16 Load DPTR with 16-bit constant 3 3

MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3

MOVC A, @A+PC Move code byte relative PC to A 1 3

MOVX A, @Ri Move external data (8-bit address) to A 1 3

MOVX @Ri, A Move A to external data (8-bit address) 1 3

MOVX A, @DPTR Move external data (16-bit address) to A 1 3

MOVX @DPTR, A Move A to external data (16-bit address) 1 3

PUSH direct Push direct byte onto stack 2 2

POP direct Pop direct byte from stack 2 2

Table 15.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic Description Bytes Clock 
Cycles
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Register 17.4. CPT1CN: Comparator 1 Control

Bit 7 6 5 4 3 2 1 0

Name CPEN CPOUT CPRIF CPFIF CPHYP CPHYN

Type RW R RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xBF

Table 17.8. CPT1CN Register Bit Descriptions

Bit Name Function

7 CPEN Comparator 1 Enable Bit.

0: Comparator Disabled.
1: Comparator Enabled.

6 CPOUT Comparator 1 Output State Flag.

0: Voltage on CP1P < CP1N.
1: Voltage on CP1P > CP1N.

5 CPRIF Comparator 1 Rising-Edge Flag. Must be cleared by software.

0: No Comparator Rising Edge has occurred since this flag was last cleared.
1: Comparator Rising Edge has occurred.

4 CPFIF Comparator 1 Falling-Edge Flag. Must be cleared by software.

0: No Comparator Falling Edge has occurred since this flag was last cleared.
1: Comparator Falling Edge has occurred.

3:2 CPHYP Comparator 1 Positive Hysteresis Control Bits.

00: Positive Hysteresis Disabled.
01: Positive Hysteresis = 5 mV.
10: Positive Hysteresis = 10 mV.
11: Positive Hysteresis = 20 mV.

1:0 CPHYN Comparator 1 Negative Hysteresis Control Bits.

00: Negative Hysteresis Disabled.
01: Negative Hysteresis = 5 mV.
10: Negative Hysteresis = 10 mV.
11: Negative Hysteresis = 20 mV.
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22.10.  Reset Sources Control Registers

Register 22.1. RSTSRC: Reset Source

Bit 7 6 5 4 3 2 1 0

Name Reserved FERROR C0RSEF SWRSF WDTRSF MCDRSF PORSF PINRSF

Type R R RW RW R RW RW R

Reset 0 X X X X X X X

SFR Address: 0xEF

Table 22.1. RSTSRC Register Bit Descriptions

Bit Name Function

7 Reserved Must write reset value.

6 FERROR Flash Error Reset Flag.

This read-only bit is set to 1 if a flash read/write/erase error caused the last reset.

5 C0RSEF Comparator0 Reset Enable and Flag.

Read: This bit reads 1 if Comparator0 caused the last reset.
Write: Writing a 1 to this bit enables Comparator0 (active-low) as a reset source.

4 SWRSF Software Reset Force and Flag.

Read: This bit reads 1 if last reset was caused by a write to SWRSF.
Write: Writing a 1 to this bit forces a system reset.

3 WDTRSF Watchdog Timer Reset Flag.

This read-only bit is set to 1 if a watchdog timer overflow caused the last reset.

2 MCDRSF Missing Clock Detector Enable and Flag.

Read: This bit reads 1 if a missing clock detector timeout caused the last reset.
Write: Writing a 1 to this bit enables the missing clock detector. The MCD triggers a reset 
if a missing clock condition is detected.

1 PORSF Power-On / Supply Monitor Reset Flag, and Supply Monitor Reset Enable.

Read: This bit reads 1 anytime a power-on or supply monitor reset has occurred.
Write: Writing a 1 to this bit enables the supply monitor as a reset source.

0 PINRSF HW Pin Reset Flag.

This read-only bit is set to 1 if the RST pin caused the last reset.

Notes:
1. Reads and writes of the RSTSRC register access different logic in the device. Reading the register always returns 

status information to indicate the source of the most recent reset. Writing to the register activates certain options as 
reset sources. It is recommended to not use any kind of read-modify-write operation on this register.

2. When the PORSF bit reads back 1 all other RSTSRC flags are indeterminate.
3. Writing 1 to the PORSF bit when the supply monitor is not enabled and stabilized may cause a system reset. 
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22.11.  Supply Monitor Control Registers

Register 22.2. VDM0CN: Supply Monitor Control

Bit 7 6 5 4 3 2 1 0

Name VDMEN VDDSTAT Reserved

Type RW R R

Reset X X X X X X X X

SFR Address: 0xFF

Table 22.2. VDM0CN Register Bit Descriptions

Bit Name Function

7 VDMEN Supply Monitor Enable.

This bit turns the supply monitor circuit on/off. The supply monitor cannot generate sys-
tem resets until it is also selected as a reset source in register RSTSRC. Selecting the 
supply monitor as a reset source before it has stabilized may generate a system reset. In 
systems where this reset would be undesirable, a delay should be introduced between 
enabling the supply monitor and selecting it as a reset source.
0: Supply Monitor Disabled.
1: Supply Monitor Enabled.

6 VDDSTAT Supply Status.

This bit indicates the current power supply status (supply monitor output). 
0: VDD is at or below the supply monitor threshold.
1: VDD is above the supply monitor threshold.

5:0 Reserved Must write reset value.
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23.1.  Signal Descriptions
The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below. 

23.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It 
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is 
operating as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant 
bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire 
mode.

23.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. 
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is 
operating as a master and an output when SPI0 is operating as a slave. Data is transferred most-
significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and 
when the SPI operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire 
mode, MISO is always driven by the MSB of the shift register.

23.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used 
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 
generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the 
slave is not selected (NSS = 1) in 4-wire slave mode.

23.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0 
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

1.  NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS 
is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no 
select signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for 
point-to-point communication between a master and one slave.

2.  NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is 
enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as 
a master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple 
master devices can be used on the same SPI bus.

3.  NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an 
output. The setting of NSSMD0 determines what logic level the NSS pin will output. This 
configuration should only be used when operating SPI0 as a master device.

See Figure 23.2, Figure 23.3, and Figure 23.4 for typical connection diagrams of the various operational 
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or 
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will 
be mapped to a pin on the device.
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minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are 
typically necessary for SMBus compliance when SYSCLK is above 10 MHz.

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low 
timeouts (see Section “24.3.4. SCL Low Timeout” on page 235). The SMBus interface will force the 
associated timer to reload while SCL is high, and allow the timer to count when SCL is low. The timer 
interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the 
SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will 
be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see 
Figure 24.4).

24.4.2. SMBus Pin Swap

The SMBus peripheral is assigned to pins using the priority crossbar decoder. By default, the SMBus 
signals are assigned to port pins starting with SDA on the lower-numbered pin, and SCL on the next 
available pin. The SWAP bit in the SMBTC register can be set to 1 to reverse the order in which the SMBus 
signals are assigned.

24.4.3. SMBus Timing Control

The SDD field in the SMBTC register is used to restrict the detection of a START condition under certain 
circumstances. In some systems where there is significant mismatch between the impedance or the 
capacitance on the SDA and SCL lines, it may be possible for SCL to fall after SDA during an address or 
data transfer. Such an event can cause a false START detection on the bus. These kind of events are not 
expected in a standard SMBus or I2C-compliant system. In most systems this parameter should not be 
adjusted, and it is recommended that it be left at its default value.

By default, if the SCL falling edge is detected after the falling edge of SDA (i.e. one SYSCLK cycle or 
more), the device will detect this as a START condition. The SDD field is used to increase the amount of 
hold time that is required between SDA and SCL falling before a START is recognized. An additional 2, 4, 
or 8 SYSCLKs can be added to prevent false START detection in systems where the bus conditions 
warrant this.

24.4.4. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information. The higher four bits of SMB0CN 
(MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. 
MASTER indicates whether a device is the master or slave during the current transfer. TXMODE indicates 
whether the device is transmitting or receiving data for the current byte. 

Table 24.2. Minimum SDA Setup and Hold Times 

EXTHOLD Minimum SDA Setup Time Minimum SDA Hold Time

0
Tlow – 4 system clocks

or
1 system clock + s/w delay*

3 system clocks

1 11 system clocks 12 system clocks

Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. When using software acknowledgment, the s/
w delay occurs between the time SMB0DAT or ACK is written and when SI0 is cleared. Note that if SI is cleared in the 
same write that defines the outgoing ACK value, s/w delay is zero.
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24.4.6. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been 
received. Software may safely read or write to the data register when the SI flag is set. Software should not 
attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0, 
as the interface may be in the process of shifting a byte of data into or out of the register. 

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received 
data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously 
being shifted in. SMB0DAT always contains the last data byte present on the bus. In the event of lost 
arbitration, the transition from master transmitter to slave receiver is made with the correct data or address 
in SMB0DAT.

0x34 0x7E 1 0x34, 0x35, 0x00 (General Call)

0x70 0x73 0 0x70, 0x74, 0x78, 0x7C

Table 24.4. Hardware Address Recognition Examples (EHACK = 1)

Hardware Slave Address

SLV

Slave Address Mask

SLVM

GC bit Slave Addresses Recognized by 
Hardware
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24.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will 
be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface 
generates the START condition and transmits the first byte containing the address of the target slave and 
the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then 
received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more 
bytes of serial data. 

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each 
received byte. Software must write the ACK bit at that time to ACK or NACK the received byte. 

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, 
and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be 
set up by the software prior to receiving the byte when hardware ACK generation is enabled.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to 
the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after 
the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if 
SMB0DAT is written while an active Master Receiver. Figure 24.6 shows a typical master read sequence. 
Two received data bytes are shown, though any number of bytes may be received. Notice that the ‘data 
byte transferred’ interrupts occur at different places in the sequence, depending on whether hardware ACK 
generation is enabled. The interrupt occurs before the ACK with hardware ACK generation disabled, and 
after the ACK when hardware ACK generation is enabled.

Figure 24.6. Typical Master Read Sequence

Data ByteData Byte A NAS R PSLA

S = START
P = STOP
A = ACK
N = NACK
R = READ
SLA = Slave Address

Received by SMBus 
Interface

Transmitted by 
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
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0100

0 0 0
A slave byte was transmitted; NACK 
received.

No action required (expecting 
STOP condition).

0 0 X 0001

0 0 1
A slave byte was transmitted; ACK 
received.

Load SMB0DAT with next data 
byte to transmit.

0 0 X 0100

0 1 X
A Slave byte was transmitted; error 
detected.

No action required (expecting 
Master to end transfer).

0 0 X 0001

0101 0 X X
An illegal STOP or bus error was 
detected while a Slave Transmission 
was in progress.

Clear STO.
0 0 X —

S
la

v
e

 R
e

ce
iv

e
r

0010

1 0 X
A slave address + R/W was received; 
ACK requested.

If Write, Acknowledge received 
address

0 0 1 0000

If Read, Load SMB0DAT with 
data byte; ACK received address

0 0 1 0100

NACK received address. 0 0 0 —

1 1 X
Lost arbitration as master; slave 
address + R/W received; ACK 
requested.

If Write, Acknowledge received 
address

0 0 1 0000

If Read, Load SMB0DAT with 
data byte; ACK received address

0 0 1 0100

NACK received address. 0 0 0 —

Reschedule failed transfer; 
NACK received address.

1 0 0 1110

0001

0 0 X
A STOP was detected while addressed 
as a Slave Transmitter or Slave 
Receiver.

Clear STO.
0 0 X —

1 1 X
Lost arbitration while attempting a 
STOP.

No action required (transfer 
complete/aborted).

0 0 0 —

0000 1 0 X
A slave byte was received; ACK 
requested.

Acknowledge received byte; 
Read SMB0DAT.

0 0 1 0000

NACK received byte. 0 0 0 —

Table 24.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0)  (Continued)
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Values to 
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0 SI SMBus0 Interrupt Flag.

This bit is set by hardware to indicate that the current SMBus0 state machine operation 
(such as writing a data or address byte) is complete. While SI is set, SCL0 is held low 
and SMBus0 is stalled. SI0 must be cleared by software. Clearing SI0 initiates the next 
SMBus0 state machine operation.

Table 24.9. SMB0CN Register Bit Descriptions

Bit Name Function
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Register 25.14. TMR3RLL: Timer 3 Reload Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3RLL

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0x92

Table 25.16. TMR3RLL Register Bit Descriptions

Bit Name Function

7:0 TMR3RLL Timer 3 Reload Low Byte.

When operating in one of the auto-reload modes, TMR3RLL holds the reload value for 
the low byte of Timer 3 (TMR3L). When operating in capture mode, TMR3RLL is the cap-
tured value of TMR3L.
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Register 25.17. TMR3H: Timer 3 High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3H

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0x95

Table 25.19. TMR3H Register Bit Descriptions

Bit Name Function

7:0 TMR3H Timer 3 High Byte.

In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-bit 
mode, TMR3H contains the 8-bit high byte timer value.
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29.  C2 Interface

C8051F85x/86x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash 
programming and in-system debugging with the production part installed in the end application. The C2 
interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information 
between the device and a host system. Details on the C2 protocol can be found in the C2 Interface 
Specification.

29.1.  C2 Pin Sharing
The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and flash 
programming may be performed. C2CK is shared with the RST pin, while the C2D signal is shared with a 
port I/O pin. This is possible because C2 communication is typically performed when the device is in the 
halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface 
can safely ‘borrow’ the C2CK and C2D pins. In most applications, external resistors are required to isolate 
C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 29.1.

Figure 29.1. Typical C2 Pin Sharing

The configuration in Figure 29.1 assumes the following:

1.  The user input (b) cannot change state while the target device is halted.

2.  The RST pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

C2D

C2CK/Reset  (a)

Input (b)

Output (c)

C2 Interface Master

C8051Fxxx


