E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f853-c-gur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	Electrical Specifications	8
	1.1. Electrical Characteristics	8
	1.2. Typical Performance Curves	19
	1.2.1. Operating Supply Current	19
	1.2.2. ADC Supply Current	20
	1.2.3. Port I/O Output Drive	21
	1.3. Thermal Conditions	21
	1.4. Absolute Maximum Ratings	22
2.	System Overview	23
	2.1. Power	25
	2.1.1. LDO	25
	2.1.2. Voltage Supply Monitor (VMON0)	25
	2.1.3. Device Power Modes	25
	2.2. I/O	26
	2.2.1. General Features	26
	2.2.2. Crossbar	26
	2.3. Clocking	27
	2.4. Counters/Timers and PWM	27
	2.4.1. Programmable Counter Array (PCA0)	27
	2.4.2. Timers (Timer 0, Timer 1, Timer 2 and Timer 3)	27
	2.4.3. Watchdog Timer (WDT0)	27
	2.5. Communications and other Digital Peripherals	28
	2.5.1. Universal Asynchronous Receiver/Transmitter (UART0)	28
	2.5.2. Serial Peripheral Interface (SPI0)	28
	2.5.3. System Management Bus / I2C (SMBus0)	28
	2.5.4. 16/32-bit CRC (CRC0)	28
	2.6. Analog Peripherals	30
	2.6.1. 12-Bit Analog-to-Digital Converter (ADC0)	30
	2.6.2. Low Current Comparators (CMP0, CMP1)	30
	2.7. Reset Sources	31
	2.8. On-Chip Debugging	31
3.	Pin Definitions	32
	3.1. C8051F850/1/2/3/4/5 QSOP24 Pin Definitions	32
	3.2. C8051F850/1/2/3/4/5 QFN20 Pin Definitions	36
	3.3. C8051F860/1/2/3/4/5 SOIC16 Pin Definitions	39
4.	Ordering Information	42
5.	QSOP-24 Package Specifications	45
6.	QFN-20 Package Specifications	47
7.	SOIC-16 Package Specifications	50
8.	Memory Organization	52
	8.1. Program Memory	53
	8.1.1. MOVX Instruction and Program Memory	53
	8.2. Data Memory	53

Pin Name	Туре	Pin Numbers	Crossbar Capability	Additional Digital Functions	Analog Functions
P0.1	Standard I/O	2	Yes	POMAT.1 INT0.1 INT1.1	ADC0.1 CP0P.1 CP0N.1
P0.2	Standard I/O	1	Yes	POMAT.2 INT0.2 INT1.2	ADC0.2 CP0P.2 CP0N.2
P0.3 / EXTCLK	Standard I/O / External CMOS Clock Input	16	Yes	P0MAT.3 EXTCLK INT0.3 INT1.3	ADC0.3 CP0P.3 CP0N.3
P0.4	Standard I/O	15	Yes	POMAT.4 INT0.4 INT1.4	ADC0.4 CP0P.4 CP0N.4
P0.5	Standard I/O	14	Yes	P0MAT.5 INT0.5 INT1.5	ADC0.5 CP0P.5 CP0N.5
P0.6	Standard I/O	13	Yes	P0MAT.6 CNVSTR INT0.6 INT1.6	ADC0.6 CP1P.0 CP1N.0
P0.7	Standard I/O	12	Yes	POMAT.7 INT0.7 INT1.7	ADC0.7 CP1P.1 CP1N.1
P1.0	Standard I/O	11	Yes	P1MAT.0	ADC0.8 CP1P.2 CP1N.2

Table 3.3. Pin Definitions for C8051F860/1/2/3/4/5-GS and C8051F860/1/2/3/4/5-IS

Symbol	Millimeters		Symbol	Millim	neters
	Min	Max		Min	Max
D	2.71 REF		GE	2.10	
D2	1.60	1.80	W		0.34
е	0.50 BSC		Х		0.28
Е	2.71	REF	Y	0.61	REF
E2	1.60	1.80	ZE		3.31
f	2.53 BSC		ZD		3.31
GD	2.10	—			

Table 6.2. QFN-20 Landing Diagram Dimensions

Notes: General

- **1.** All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on IPC-SM-782 guidelines.
- **4.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Notes: Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Notes: Stencil Design

- **1.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- **3.** The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
- **4.** A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides approximately 70% solder paste coverage on the pad, which is optimum to assure correct component stand-off.

Notes: Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9. Special Function Register Memory Map

This section details the special function register memory map for the C8051F85x/86x devices.

F8	SPI0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0	POMAT	POMASK	VDM0CN
F0	В	POMDIN	P1MDIN	EIP1	-	-	PRTDRV	PCA0PWM
E8	ADC0CN0	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2	P1MAT	P1MASK	RSTSRC
E0	ACC	XBR0	XBR1	XBR2	IT01CF	-	EIE1	-
D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2	CRC0IN	CRC0DAT	ADC0PWR
D0	PSW	REF0CN	CRC0AUTO	CRC0CNT	P0SKIP	P1SKIP	SMB0ADM	SMB0ADR
C8	TMR2CN	REG0CN	TMR2RLL	TMR2RLH	TMR2L	TMR2H	CRC0CN	CRC0FLIP
C0	SMB0CN	SMB0CF	SMB0DAT	ADC0GTL	ADC0GTH	ADC0LTL	ADC0LTH	OSCICL
B8	IP	ADC0TK	-	ADC0MX	ADC0CF	ADC0L	ADC0H	CPT1CN
В0	-	OSCLCN	ADC0CN1	ADC0AC	-	DEVICEID	REVID	FLKEY
A8	IE	CLKSEL	CPT1MX	CPT1MD	SMB0TC	DERIVID	-	-
A0	P2	SPI0CFG	SPI0CKR	SPI0DAT	POMDOUT	P1MDOUT	P2MDOUT	-
98	SCON0	SBUF0	-	CPT0CN	PCA0CLR	CPT0MD	PCA0CENT	CPT0MX
90	P1	TMR3CN	TMR3RLL	TMR3RLH	TMR3L	TMR3H	PCA0POL	WDTCN
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH	-	-	-	PCON
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table 9.1. Special Function Register (SFR) Memory Map

(bit addressable)

Table 9.2. Spec	ial Function	Registers
-----------------	--------------	-----------

Register	Address	Register Description	Page
ACC	0xE0	Accumulator	122
ADC0AC	0xB3	ADC0 Accumulator Configuration	
ADC0CF	0xBC	ADC0 Configuration	
ADC0CN0	0xE8	ADC0 Control 0	99
ADC0CN1	0xB2	ADC0 Control 1	100
ADC0GTH	0xC4	ADC0 Greater-Than High Byte	107
ADC0GTL	0xC3	ADC0 Greater-Than Low Byte	108
ADC0H	0xBE	ADC0 Data Word High Byte	105

Detector or Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" can quickly verify this.

10.4.2. PSWE Maintenance

- 7. Reduce the number of places in code where the PSWE bit (in register PSCTL) is set to a 1. There should be exactly one routine in code that sets PSWE to a '1' to write flash bytes and one routine in code that sets PSWE and PSEE both to a '1' to erase flash pages.
- 8. Minimize the number of variable accesses while PSWE is set to a 1. Handle pointer address updates and loop variable maintenance outside the "PSWE = 1;... PSWE = 0;" area. Code examples showing this can be found in "AN201: Writing to Flash From Firmware", available from the Silicon Laboratories web site.
- 9. Disable interrupts prior to setting PSWE to a '1' and leave them disabled until after PSWE has been reset to 0. Any interrupts posted during the flash write or erase operation will be serviced in priority order after the flash operation has been completed and interrupts have been re-enabled by software.
- 10. Make certain that the flash write and erase pointer variables are not located in XRAM. See your compiler documentation for instructions regarding how to explicitly locate variables in different memory areas.
- 11. Add address bounds checking to the routines that write or erase flash memory to ensure that a routine called with an illegal address does not result in modification of the flash.

10.4.3. System Clock

- 12. If operating from an external crystal-based source, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
- 13. If operating from the external oscillator, switch to the internal oscillator during flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the flash operation has completed.

Additional flash recommendations and example code can be found in "AN201: Writing to Flash From Firmware", available from the Silicon Laboratories website.

Register 12.4. EIP1: Extended Interrupt Priority 1

	-		-	-				-
Bit	7	6	5	4	3	2	1	0
Name	PT3	PCP1	PCP0	PPCA0	PADC0	PWADC0	PMAT	PSMB0
Туре	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
SFR Address: 0xF3								

Table 12.5. EIP1 Register Bit Descriptions

Bit	Name	Function
7	PT3	Timer 3 Interrupt Priority Control.This bit sets the priority of the Timer 3 interrupt.0: Timer 3 interrupts set to low priority level.1: Timer 3 interrupts set to high priority level.
6	PCP1	Comparator1 (CP1) Interrupt Priority Control. This bit sets the priority of the CP1 interrupt. 0: CP1 interrupt set to low priority level. 1: CP1 interrupt set to high priority level.
5	PCP0	Comparator0 (CP0) Interrupt Priority Control. This bit sets the priority of the CP0 interrupt. 0: CP0 interrupt set to low priority level. 1: CP0 interrupt set to high priority level.
4	PPCA0	 Programmable Counter Array (PCA0) Interrupt Priority Control. This bit sets the priority of the PCA0 interrupt. 0: PCA0 interrupt set to low priority level. 1: PCA0 interrupt set to high priority level.
3	PADC0	 ADC0 Conversion Complete Interrupt Priority Control. This bit sets the priority of the ADC0 Conversion Complete interrupt. 0: ADC0 Conversion Complete interrupt set to low priority level. 1: ADC0 Conversion Complete interrupt set to high priority level.
2	PWADC0	 ADC0 Window Comparator Interrupt Priority Control. This bit sets the priority of the ADC0 Window interrupt. 0: ADC0 Window interrupt set to low priority level. 1: ADC0 Window interrupt set to high priority level.
1	PMAT	 Port Match Interrupt Priority Control. This bit sets the priority of the Port Match Event interrupt. 0: Port Match interrupt set to low priority level. 1: Port Match interrupt set to high priority level.

A. ADC0 Timing for External Trigger Source

Figure 14.2. 10-Bit ADC Track and Conversion Example Timing (ADBMEN = 0)

14.2.3. Burst Mode

Burst Mode is a power saving feature that allows ADC0 to remain in a low power state between conversions. When Burst Mode is enabled, ADC0 wakes from a low power state, accumulates 1, 4, 8, 16, 32, or 64 samples using the internal low-power high-frequency oscillator, then re-enters a low power state. Since the Burst Mode clock is independent of the system clock, ADC0 can perform multiple conversions then enter a low power state within a single system clock cycle, even if the system clock is slow (e.g. 80 kHz).

Burst Mode is enabled by setting ADBMEN to logic 1. When in Burst Mode, ADEN controls the ADC0 idle power state (i.e. the state ADC0 enters when not tracking or performing conversions). If ADEN is set to logic 0, ADC0 is powered down after each burst. If ADEN is set to logic 1, ADC0 remains enabled after each burst. On each convert start signal, ADC0 is awakened from its Idle Power State. If ADC0 is powered down, it will automatically power up and wait the programmable Power-Up Time controlled by the ADPWR bits. Otherwise, ADC0 will start tracking and converting immediately. Figure 14.3 shows an example of Burst Mode Operation with a slow system clock and a repeat count of 4.

When Burst Mode is enabled, a single convert start will initiate a number of conversions equal to the repeat count. When Burst Mode is disabled, a convert start is required to initiate each conversion. In both modes, the ADC0 End of Conversion Interrupt Flag (ADINT) will be set after "repeat count" conversions have been accumulated. Similarly, the Window Comparator will not compare the result to the greater-than and less-than registers until "repeat count" conversions have been accumulated.

20.3.2. Edge-Triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/ timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 20.2. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

Register 20.8. PCA0CPL0: PCA Capture Module Low Byte

Bit	7	6	5	4	3	2	1	0	
Name	PCA0CPL0								
Туре	RW								
Reset	0	0 0 0 0 0 0 0 0							
SFR Address: 0xFB									

Table 20.10. PCA0CPL0 Register Bit Descriptions

Bit	Name	Function							
7:0	PCA0CPL0	PCA Capture Module Low Byte.							
		The PCA0CPL0 register holds the low byte (LSB) of the 16-bit capture module. This reg- ister address also allows access to the low byte of the corresponding PCA channels auto-reload value for 9 to 11-bit PWM mode. The ARSEL bit in register PCA0PWM con- trols which register is accessed.							
Note: A v	lote: A write to this register will clear the module's ECOM bit to a 0.								

21.1. General Port I/O Initialization

Port I/O initialization consists of the following steps:

- 1. Select the input mode (analog or digital) for all port pins, using the Port Input Mode register (PnMDIN).
- 2. Select the output mode (open-drain or push-pull) for all port pins, using the Port Output Mode register (PnMDOUT).
- 3. Select any pins to be skipped by the I/O crossbar using the Port Skip registers (PnSKIP).
- 4. Assign port pins to desired peripherals.
- 5. Enable the crossbar (XBARE = '1').

All port pins must be configured as either analog or digital inputs. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a '1' indicates a digital input, and a '0' indicates an analog input. All pins default to digital inputs on reset.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMDOUT). Each port output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings. When the WEAKPUD bit in XBR1 is '0', a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a '0' to avoid unnecessary power dissipation.

Registers XBR0 and XBR1 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR2 to '1' enables the crossbar. Until the crossbar is enabled, the external pins remain as standard port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table; as an alternative, Silicon Labs provides configuration utility software to determine the port I/O pin-assignments based on the crossbar register settings.

The crossbar must be enabled to use port pins as standard port I/O in output mode. Port output drivers of all crossbar pins are disabled whenever the crossbar is disabled.

Register 21.4. PRTDRV: Port Drive Strength

Bit	7	6	5	4	3	2	1	0
Name			Reserved	P2DRV	P1DRV	P0DRV		
Туре			R	RW	RW	RW		
Reset	0	0	0	0	0	1	1	1
SFR Address: 0xF6								

Table 21.7. PRTDRV Register Bit Descriptions

Bit	Name	Function
7:3	Reserved	Must write reset value.
2	P2DRV	Port 2 Drive Strength.
		0: All pins on P2 use low drive strength.
		1: All pins on P2 use high drive strength.
1	P1DRV	Port 1 Drive Strength.
		0: All pins on P1 use low drive strength.
		1: All pins on P1 use high drive strength.
0	P0DRV	Port 0 Drive Strength.
		0: All pins on P0 use low drive strength.
		1: All pins on P0 use high drive strength.

Register 21.7. P0: Port 0 Pin Latch

Bit	7	6	5	4	3	2	1	0
Name	P0							
Туре	RW							
Reset	1	1	1	1	1	1	1	1
SFR Add	SFR Address: 0x80 (bit-addressable)							

Table 21.10. P0 Register Bit Descriptions

Bit	Name	Function
7:0	P0	Port 0 Data.
		Writing this register sets the port latch logic value for the associated I/O pins configured as digital I/O. Reading this register returns the logic value at the pin, regardless if it is configured as output or input.

22. Reset Sources and Supply Monitor

Reset circuitry allows the controller to be easily placed in a predefined default condition. Upon entering this reset state, the following events occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External port pins are placed in a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain, low-drive mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the RST pin is driven low until the device exits the reset state. Note that during a power-on event, there may be a short delay before the POR circuitry fires and the RST pin is driven low. During that time, the RST pin will be weakly pulled to the V_{DD} supply pin.

On exit from the reset state, the program counter (PC) is reset, the Watchdog Timer is enabled and the system clock defaults to the internal oscillator. Program execution begins at location 0x0000.

Figure 22.1. Reset Sources

Parameter	Description	Min	Max	Units				
Master Mod	Master Mode Timing (See Figure 23.8 and Figure 23.9)							
Т _{МСКН}	SCK High Time	1 x T _{SYSCLK}		ns				
T _{MCKL}	SCK Low Time	1 x T _{SYSCLK}	_	ns				
T _{MIS}	MISO Valid to SCK Shift Edge	1 x T _{SYSCLK} + 20		ns				
т _{мін}	SCK Shift Edge to MISO Change	0	_	ns				
Slave Mode	Timing (See Figure 23.10 and Figure 23.11)							
T _{SE}	NSS Falling to First SCK Edge	2 x T _{SYSCLK}	—	ns				
T _{SD}	Last SCK Edge to NSS Rising	2 x T _{SYSCLK}		ns				
T _{SEZ}	NSS Falling to MISO Valid		4 x T _{SYSCLK}	ns				
T _{SDZ}	NSS Rising to MISO High-Z		4 x T _{SYSCLK}	ns				
т _{скн}	SCK High Time	5 x T _{SYSCLK}	_	ns				
Т _{СКL}	SCK Low Time	5 x T _{SYSCLK}	_	ns				
T _{SIS}	MOSI Valid to SCK Sample Edge	2 x T _{SYSCLK}	_	ns				
T _{SIH}	SCK Sample Edge to MOSI Change	2 x T _{SYSCLK}		ns				
T _{SOH}	SCK Shift Edge to MISO Change		4 x T _{SYSCLK}	ns				
T _{SLH}	Last SCK Edge to MISO Change (CKPHA = 1 ONLY)	6 x T _{SYSCLK}	8 x T _{SYSCLK}	ns				
Note: T _{SYSCL}	$_{\rm K}^{\rm L}$ is equal to one period of the device system clock (SYSCLK)	 I.		1				

Table 23.1. SPI Slave Timing Parameters

Bit	Name	Function
0	SPIEN	SPI0 Enable. 0: SPI disabled. 1: SPI enabled.

Table 23.3. SPI0CN Register Bit Descriptions

Register 23.3. SPI0CKR: SPI0 Clock Rate

Bit	7	6	5	4	3	2	1	0
Name	SPIOCKR							
Туре	RW							
Reset	0	0	0	0	0	0	0	0
SFR Add	SFR Address: 0xA2							

Table 23.4. SPI0CKR Register Bit Descriptions

Bit	Name	Function
7:0	SPI0CKR	SPI0 Clock Rate.
		These bits determine the frequency of the SCK output when the SPI0 module is configured for master mode operation. The SCK clock frequency is a divided version of the system clock, and is given in the following equation, where SYSCLK is the system clock frequency and SPI0CKR is the 8-bit value held in the SPI0CKR register. $f_{SCK} = \frac{SYSCLK}{2 \times (SPI0CKR + 1)}$
		for 0 <= SPI0CKR <= 255

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a 1 to STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a 1 to STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be generated.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 24.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI.

24.4.4.1. Software ACK Generation

When the EHACK bit in register SMB0ADM is cleared to 0, the firmware on the device must detect incoming slave addresses and ACK or NACK the slave address and incoming data bytes. As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received during the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

24.4.4.2. Hardware ACK Generation

When the EHACK bit in register SMB0ADM is set to 1, automatic slave address recognition and ACK generation is enabled. More detail about automatic slave address recognition can be found in Section 24.4.5. As a receiver, the value currently specified by the ACK bit will be automatically sent on the bus during the ACK cycle of an incoming data byte. As a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. The ACKRQ bit is not used when hardware ACK generation is enabled. If a received slave address is NACKed by hardware, further slave events will be ignored until the next START is detected, and no interrupt will be generated.

Table 24.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 24.5 for SMBus status decoding using the SMB0CN register.

Bit	Set by Hardware When:	Cleared by Hardware When:
MASTED	A START is generated.	 A STOP is generated.
MASTER		 Arbitration is lost.
	 START is generated. 	 A START is detected.
TXMODE	 SMB0DAT is written before the start of an 	 Arbitration is lost.
	SMBus frame.	 SMB0DAT is not written before the start of an SMBus frame.
STA	 A START followed by an address byte is received. 	 Must be cleared by software.
STO	A STOP is detected while addressed as a	 A pending STOP is generated.
	slave.	
	Arbitration is lost due to a detected STOP.	

Table 24.3. Sources for Hardware Changes to SMB0CN

Register 24.4. SMB0ADR: SMBus0 Slave Address

Bit	7	6	5	4	3	2	1	0
Name				SLV				GC
Type	BW							D\\/
туре								
Reset	0 0 0 0 0 0 0						0	
SFR Add	SFR Address: 0xD7							

Table 24.10. SMB0ADR Register Bit Descriptions

Bit	Name	Function
7:1	SLV	SMBus Hardware Slave Address.
		Defines the SMBus0 Slave Address(es) for automatic hardware acknowledgement. Only address bits which have a 1 in the corresponding bit position in SLVM are checked against the incoming address. This allows multiple addresses to be recognized.
0	GC	General Call Address Enable.
		 When hardware address recognition is enabled (EHACK = 1), this bit will determine whether the General Call Address (0x00) is also recognized by hardware. 0: General Call Address is ignored. 1: General Call Address is recognized.

25.1. Timer 0 and Timer 1

Timer 0 and Timer 1 are each implemented as a16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register. Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register. Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently for the operating modes described below.

26.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB8, which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB8 and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI Transmit Interrupt Flag is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN Receive Enable bit is set to 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: (1) RI must be logic 0, and (2) if MCE is logic 1, the 9th bit must be logic 1 (when MCE is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF0, the ninth bit is stored in RB8, and the RI flag is set to 1. If the above conditions are not met, SBUF0 and RB8 will not be loaded and the RI flag will not be set to 1. A UART0 interrupt will occur if enabled when either TI or RI is set to 1.

