

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f853-c-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F85x-86x

8.2.1. Internal RAM	53
8.2.2. External RAM	54
8.2.3. Special Function Registers	55
9. Special Function Register Memory Map	56
10. Flash Memory	61
10.1. Security Options	61
10.2. Programming the Flash Memory	63
10.2.1. Flash Lock and Key Functions	63
10.2.2. Flash Erase Procedure	63
10.2.3. Flash Write Procedure	63
10.3. Non-Volatile Data Storage	64
10.4. Flash Write and Erase Guidelines	64
10.4.1. Voltage Supply Maintenance and the Supply Monitor	64
10.4.2. PSWE Maintenance	65
10.4.3. System Clock	65
10.5. Flash Control Registers	66
11. Device Identification and Unique Identifier	68
11.1. Device Identification Registers	69
12. Interrupts	72
12.1. MCU Interrupt Sources and Vectors	72
12.1.1. Interrupt Priorities	72
12.1.2. Interrupt Latency	72
12.2. Interrupt Control Registers	75
13. Power Management and Internal Regulator	82
13. Power Management and Internal Regulator	82
13. Power Management and Internal Regulator 13.1. Power Modes. 13.1.1. Idle Mode	82 82 82
13. Power Management and Internal Regulator 13.1. Power Modes. 13.1.1. Idle Mode 13.1.2. Stop Mode.	82 82 82 83
 13. Power Management and Internal Regulator	82 82 82 83 83
 13. Power Management and Internal Regulator	82 82 82 83 83 83
 13. Power Management and Internal Regulator	82 82 82 83 83 83 84
 13. Power Management and Internal Regulator	82 82 83 83 83 83 84 85
 13. Power Management and Internal Regulator	82 82 83 83 83 83 84 85 86
 13. Power Management and Internal Regulator	82 82 83 83 83 83 83 84 85 86 88
 13. Power Management and Internal Regulator	82 82 83 83 83 83 84 85 86 88
 13. Power Management and Internal Regulator	82 82 83 83 83 83 83 83 84 85 86 88 88
 13. Power Management and Internal Regulator	82 82 83 83 83 83 83 83 84 85 86 88 88 88 89
 13. Power Management and Internal Regulator	82 82 83 83 83 83 83 84 86 88 88 88 88 89 90
 13. Power Management and Internal Regulator	82 82 83 83 83 83 83 83 84 85 86 88 88 88 89 90 91
 13. Power Management and Internal Regulator	82 82 83 83 83 83 83 84 85 86 88 88 88 88 90 91 91
 13. Power Management and Internal Regulator	82 82 83 83 83 83 83 83 86 88 88 88 88 90 91 91 91
 13. Power Management and Internal Regulator	82 82 83 83 83 83 83 84 85 86 88 88 88 90 91 91 91 92
 13. Power Management and Internal Regulator 13.1. Power Modes. 13.1.1. Idle Mode 13.1.2. Stop Mode. 13.2. LDO Regulator. 13.3. Power Control Registers 13.4. LDO Control Registers 13.4. LDO Control Registers 14. Analog-to-Digital Converter (ADC0). 14.1. ADC0 Analog Multiplexer 14.2. ADC Operation 14.2.1. Starting a Conversion. 14.2.2. Tracking Modes. 14.2.3. Burst Mode 14.2.4. Settling Time Requirements 14.2.5. Gain Setting 14.3. 8-Bit Mode 14.4. 12-Bit Mode 14.5. Power Considerations 14.6. Output Code Formatting 	82 82 83 83 83 83 83 84 85 86 88 88 88 90 91 91 91 92 94
 13. Power Management and Internal Regulator 13.1. Power Modes	82 82 83 83 83 83 83 83 85 86 88 88 88 90 91 91 91 92 94 95
 13. Power Management and Internal Regulator 13.1. Power Modes 13.1.1. Idle Mode 13.1.2. Stop Mode 13.2. LDO Regulator 13.3. Power Control Registers 13.4. LDO Control Registers 13.4. LDO Control Registers 14. Analog-to-Digital Converter (ADC0) 14.1. ADC0 Analog Multiplexer 14.2. ADC Operation 14.2.1. Starting a Conversion 14.2.2. Tracking Modes 14.2.3. Burst Mode 14.2.4. Settling Time Requirements 14.2.5. Gain Setting 14.3. 8-Bit Mode 14.4. 12-Bit Mode 14.5. Power Considerations 14.6. Output Code Formatting 14.7. Nindow Detector 14.7.1. Window Detector 	82 82 83 83 83 83 83 84 85 86 88 88 88 90 91 91 91 91 92 94 95 95
 13. Power Management and Internal Regulator 13.1. Power Modes 13.1.1. Idle Mode 13.1.2. Stop Mode 13.2. LDO Regulator 13.3. Power Control Registers 13.4. LDO Control Registers 13.4. LDO Control Registers 14. Analog-to-Digital Converter (ADC0) 14.1. ADC0 Analog Multiplexer 14.2. ADC Operation 14.2.1. Starting a Conversion 14.2.2. Tracking Modes 14.2.3. Burst Mode 14.2.4. Settling Time Requirements 14.2.5. Gain Setting 14.3. 8-Bit Mode 14.4. 12-Bit Mode 14.5. Power Considerations 14.6. Output Code Formatting 14.7. Programmable Window Detector 14.7.1. Window Detector In Single-Ended Mode 14.8. Voltage and Ground Reference Options 	82 82 82 83 83 83 83 83 83 83 83 83 84 85 86 88 88 90 91 91 91 91 91 92 94 95 97

C8051F85x-86x

28. Revision-Specific Behavior	301
28.1. Revision Identification	301
28.2. Temperature Sensor Offset and Slope	303
28.3. Flash Endurance	303
28.4. Latch-Up Performance	303
28.5. Unique Identifier	303
29. C2 Interface	304
29.1. C2 Pin Sharing	304
29.2. C2 Interface Registers	305
Document Change List	310
Contact Information	311

Table	1.2	Power	Consum	ntion ((Continued)	۱
Ianc	1.2.	IOWEI	Consum	ριισπι	Commueu	,

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
Digital Core Supply Current (–Ix Devices, -40°C to +125°C)									
Normal Mode—Full speed	I _{DD}	$F_{SYSCLK} = 24.5 \text{ MHz}^2$	_	4.45	5.25	mA			
with code executing from flash	[$F_{SYSCLK} = 1.53 \text{ MHz}^2$	-	915	1600	μΑ			
	[F _{SYSCLK} = 80 kHz ³ , T _A = 25 °C	-	250	290	μΑ			
	[F _{SYSCLK} = 80 kHz ³	-	250	725	μΑ			
Idle Mode—Core halted with	I _{DD}	$F_{SYSCLK} = 24.5 \text{ MHz}^2$	_	2.05	2.6	mA			
peripherals running	[$F_{SYSCLK} = 1.53 \text{ MHz}^2$	-	550	1000	μΑ			
	[F _{SYSCLK} = 80 kHz ³ , T _A = 25 °C	-	125	130	μΑ			
	[F _{SYSCLK} = 80 kHz ³	-	125	550	μΑ			
Stop Mode—Core halted and	I _{DD}	Internal LDO ON, T _A = 25 °C	-	105	120	μΑ			
all clocks stopped, Supply monitor off.	[Internal LDO ON	_	105	270	μA			
	[Internal LDO OFF		0.2	_	μA			
Analog Peripheral Supply Cu	rrents (Bo	th –Gx and –Ix Devices)	-1						
High-Frequency Oscillator	I _{HFOSC}	Operating at 24.5 MHz, T _A = 25 °C	-	155		μA			
Low-Frequency Oscillator I_{LFOSC} Operating at 80 $T_A = 25 \degree C$		Operating at 80 kHz, T _A = 25 °C	-	3.5	_	μA			
ADC0 Always-on ⁴	I _{ADC}	800 ksps, 10-bit conversions or 200 ksps, 12-bit conversions Normal bias settings V _{DD} = 3.0 V	-	845	1200	μΑ			
		250 ksps, 10-bit conversions or 62.5 ksps 12-bit conversions Low power bias settings V _{DD} = 3.0 V	-	425	580	μA			
ADC0 Burst Mode, 10-bit sin-	I _{ADC}	200 ksps, V _{DD} = 3.0 V	<u> </u>	370	<u> </u>	μA			
gle conversions, external ret- erence		100 ksps, V _{DD} = 3.0 V	<u> </u>	185	<u> </u>	μA			
		10 ksps, V _{DD} = 3.0 V	_	19	_	μA			

Notes:

1. Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

2. Includes supply current from internal regulator, supply monitor, and High Frequency Oscillator.

3. Includes supply current from internal regulator, supply monitor, and Low Frequency Oscillator.

4. ADC0 always-on power excludes internal reference supply current.

5. The internal reference is enabled as-needed when operating the ADC in burst mode to save power.

Pin Name	Туре	Pin Numbers	Crossbar Capability	Additional Digital Functions	Analog Functions
P1.0	Standard I/O	14	Yes	P1MAT.0	ADC0.8 CP1P.0 CP1N.0
P1.1	Standard I/O	13	Yes	P1MAT.1	ADC0.9 CP1P.1 CP1N.1
P1.2	Standard I/O	11	Yes	P1MAT.2	ADC0.10 CP1P.2 CP1N.2
P1.3	Standard I/O	10	Yes	P1MAT.3	ADC0.11 CP1P.3 CP1N.3
P1.4	Standard I/O	9	Yes	P1MAT.4	ADC0.12 CP1P.4 CP1N.4
P1.5	Standard I/O	8	Yes	P1MAT.5	ADC0.13 CP1P.5 CP1N.5
P1.6	Standard I/O	7	Yes	P1MAT.6	ADC0.14 CP1P.6 CP1N.6
P2.0 / C2D	Standard I/O / C2 Debug Data	6			

Table 3.2. Pin Definitions for C8051F850/1/2/3/4/5-GM and C8051F850/1/2/3/4/5-IM

Pin Name	Туре	Pin Numbers	Crossbar Capability	Additional Digital Functions	Analog Functions
P0.1	Standard I/O	2	Yes	POMAT.1 INT0.1 INT1.1	ADC0.1 CP0P.1 CP0N.1
P0.2	Standard I/O	1	Yes	POMAT.2 INT0.2 INT1.2	ADC0.2 CP0P.2 CP0N.2
P0.3 / EXTCLK	Standard I/O / External CMOS Clock Input	16	Yes	P0MAT.3 EXTCLK INT0.3 INT1.3	ADC0.3 CP0P.3 CP0N.3
P0.4	Standard I/O	15	Yes	POMAT.4 INT0.4 INT1.4	ADC0.4 CP0P.4 CP0N.4
P0.5	Standard I/O	14	Yes	P0MAT.5 INT0.5 INT1.5	ADC0.5 CP0P.5 CP0N.5
P0.6	Standard I/O	13	Yes	P0MAT.6 CNVSTR INT0.6 INT1.6	ADC0.6 CP1P.0 CP1N.0
P0.7	Standard I/O	12	Yes	POMAT.7 INT0.7 INT1.7	ADC0.7 CP1P.1 CP1N.1
P1.0	Standard I/O	11	Yes	P1MAT.0	ADC0.8 CP1P.2 CP1N.2

Table 3.3. Pin Definitions for C8051F860/1/2/3/4/5-GS and C8051F860/1/2/3/4/5-IS

4. Ordering Information

Figure 4.1. C8051F85x/86x Part Numbering

All C8051F85x/86x family members have the following features:

- CIP-51 Core running up to 25 MHz
- Two Internal Oscillators (24.5 MHz and 80 kHz)
- I2C/SMBus
- SPI
- UART
- 3-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 4 16-bit Timers
- 2 Analog Comparators
- 16-bit CRC Unit

In addition to these features, each part number in the C8051F85x/86x family has a set of features that vary across the product line. The product selection guide in Table 4.1 shows the features available on each family member.

All devices in Table 4.1 are also available in an industrial version. For the industrial version, the -G in the ordering part number is replaced with -I. For example, the industrial version of the C8051F850-C-GM is the C8051F850-C-IM.

Dimension	Feature	(mm)		
C1	Pad Column Spacing	5.40		
E	Pad Row Pitch	1.27		
X1	Pad Width	0.60		
Y1	Pad Length	1.55		
Notes: General				

 $\label{eq:linear} \textbf{1.} \hspace{0.1 cm} \text{All dimensions shown are in millimeters (mm) unless otherwise noted.}$

2. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).

3. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.

cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction. If more than one interrupt is pending when the CPU exits an ISR, the CPU will service the next highest priority interrupt that is pending.

14.2. ADC Operation

The ADC is clocked by an adjustable conversion clock (SARCLK). SARCLK is a divided version of the selected system clock when burst mode is disabled (ADBMEN = 0), or a divided version of the high-frequency oscillator when burst mode is enabled (ADBMEN = 1). The clock divide value is determined by the ADSC bits in the ADC0CF register. In most applications, SARCLK should be adjusted to operate as fast as possible, without exceeding the maximum electrical specifications. The SARCLK does not directly determine sampling times or sampling rates.

14.2.1. Starting a Conversion

A conversion can be initiated in many ways, depending on the programmed states of the ADC0 Start of Conversion Mode field (ADCM) in register ADC0CN0. Conversions may be initiated by one of the following:

- 1. Writing a 1 to the ADBUSY bit of register ADC0CN0 (software-triggered)
- 2. A timer overflow (see the ADC0CN0 register and the timer section for timer options)
- 3. A rising edge on the CNVSTR input signal (external pin-triggered)

Writing a 1 to ADBUSY provides software control of ADC0 whereby conversions are performed "ondemand". All other trigger sources occur autonomous to code execution. When the conversion is complete, the ADC posts the result to its output register and sets the ADC interrupt flag (ADINT). ADINT may be used to trigger a system interrupts, if enabled, or polled by firmware.

During conversion, the ADBUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. However, when polling for ADC conversion completions, the ADC0 interrupt flag (ADINT) should be used instead of the ADBUSY bit. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when the conversion is complete.

Important Note About Using CNVSTR: When the CNVSTR input is used as the ADC0 conversion source, the associated port pin should be skipped in the crossbar settings.

14.2.2. Tracking Modes

Each ADC0 conversion must be preceded by a minimum tracking time in order for the converted result to be accurate. The minimum tracking time is given in the electrical specifications tables. The ADTM bit in register ADC0CN0 controls the ADC0 track-and-hold mode. In its default state when Burst Mode is disabled, the ADC0 input is continuously tracked, except when a conversion is in progress. A conversion will begin immediately when the start-of-conversion trigger occurs.

When the ADTM bit is logic 1, each conversion is preceded by a tracking period of 4 SAR clocks (after the start-of-conversion signal) for any internal (non-CNVSTR) conversion trigger source. When the CNVSTR signal is used to initiate conversions with ADTM set to 1, ADC0 tracks only when CNVSTR is low; conversion begins on the rising edge of CNVSTR (see Figure 14.2). Setting ADTM to 1 is primarily useful when AMUX settings are frequently changed and conversions are started using the ADBUSY bit.

14.6. Output Code Formatting

The registers ADC0H and ADC0L contain the high and low bytes of the output conversion code from the ADC at the completion of each conversion. Data can be right-justified or left-justified, depending on the setting of the ADSJST field. When the repeat count is set to 1 in 10-bit mode, conversion codes are represented as 10-bit unsigned integers. Inputs are measured from 0 to VREF x 1023/1024. Example codes are shown below for both right-justified and left-justified data. Unused bits in the ADC0H and ADC0L registers are set to 0.

Input Voltage	Right-Justified	Left-Justified		
	ADCOH:ADCOL (ADSJST = 000)	$ADC0H:ADC0L\;(ADSJS1=100)$		
VREF x 1023/1024	0x03FF	0xFFC0		
VREF x 512/1024	0x0200	0x8000		
VREF x 256/1024	0x0100	0x4000		
0	0x0000	0x0000		

When the repeat count is greater than 1, the output conversion code represents the accumulated result of the conversions performed and is updated after the last conversion in the series is finished. Sets of 4, 8, 16, 32, or 64 consecutive samples can be accumulated and represented in unsigned integer format. The repeat count can be selected using the ADRPT bits in the ADCOAC register. When a repeat count is higher than 1, the ADC output must be right-justified (ADSJST = 0xx); unused bits in the ADCOH and ADCOL registers are set to 0. The example below shows the right-justified result for various input voltages and repeat counts. Notice that accumulating 2^n samples is equivalent to left-shifting by *n* bit positions when all samples returned from the ADC have the same value.

Input Voltage	Repeat Count = 4	Repeat Count = 16	Repeat Count = 64
V _{REF} x 1023/1024	0x0FFC	0x3FF0	0xFFC0
V _{REF} x 512/1024	0x0800	0x2000	0x8000
V _{REF} x 511/1024	0x07FC	0x1FF0	0x7FC0
0	0x0000	0x0000	0x0000

Register 14.13. ADC0MX: ADC0 Multiplexer Selection

Bit	7	6	5	4	3	2	1	0
Name		Reserved		ADCOMX				
Туре		R		RW				
Reset	0	0	0	1 1 1 1 1				
SFR Add	SFR Address: 0xBB							

Table 14.16. ADC0MX Register Bit Descriptions

Bit	Name	Function
7:5	Reserved	Must write reset value.
4:0	ADC0MX	AMUX0 Positive Input Selection.
		Selects the positive input channel for ADC0. For reserved bit combinations, no input is
		selected.
		00000: ADC0.0
		00001: ADC0.1
		00010: ADC0.2
		00011: ADC0.3
		00100: ADC0.4
		00101: ADC0.5
		00110: ADC0.6
		00111: ADC0.7
		01000: ADC0.8
		01001: ADC0.9
		01010: ADC0.10
		01011: ADC0.11
		01100: ADC0.12
		01101: ADC0.13
		01110: ADC0.14
		01111: ADC0.15
		10000: Temperature sensor.
		10001: Internal LDO regulator output.
		10010: VDD
		10011: GND
		10100-11111: Reserved.

Register 15.5. B: B Register

Bit	7	6	5	4	3	2	1	0		
Name	B									
Туре	RW									
Reset	0 0 0 0 0 0 0 0							0		
SFR Address: 0xF0 (bit-addressable)										

Table 15.6. B Register Bit Descriptions

Bit	Name	Function
7:0	В	B Register.
		This register serves as a second accumulator for certain arithmetic operations.

16.3. External Clock

An external CMOS clock source is also supported by the C8051F85x/86x family. The EXTCLK pin on the device serves as the external clock input when running in this mode. The EXTCLK input may also be used to clock some of the digital peripherals (e.g., Timers, PCA, etc.) while SYSCLK runs from one of the internal oscillator sources. When not selected as the SYSCLK source, the EXTCLK input is always resynchronized to SYSCLK.

16.4. Clock Selection

The CLKSEL register is used to select the clock source for the system. The CLKSL field selects which oscillator source is used as the system clock, while CLKDIV controls the programmable divider. CLKSL must be set to 01b for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when the internal oscillator is selected as the system clock. In these cases, the external oscillator source is synchronized to the SYSCLK source. The system clock may be switched on-the-fly between any of the oscillator sources so long as the selected clock source is enabled and has settled, and CLKDIV may be changed at any time.

The internal high-frequency and low-frequency oscillators require little start-up time and may be selected as the system clock immediately following the register write which enables the oscillator. When selecting the EXTCLK pin as a clock input source, the pin should be skipped in the crossbar and configured as a digital input. Firmware should ensure that the external clock source is present or enable the missing clock detector before switching the CLKSL field.

Register 20.2. PCA0MD: PCA Mode

Bit	7	6	5	4	3	2	1	0	
Name	CIDL		Reserved	L	CPS			ECF	
Туре	RW		R		RW			RW	
Reset	0 0 0 0				0	0	0	0	
SFR Address: 0xD9									

Table 20.4. PCA0MD Register Bit Descriptions

Bit	Name	Function
7	CIDL	 PCA Counter/Timer Idle Control. Specifies PCA behavior when CPU is in Idle Mode. 0: PCA continues to function normally while the system controller is in Idle Mode. 1: PCA operation is suspended while the system controller is in Idle Mode.
6:4	Reserved	Must write reset value.
3:1	CPS	PCA Counter/Timer Pulse Select.These bits select the timebase source for the PCA counter.000: System clock divided by 12.001: System clock divided by 4.010: Timer 0 overflow.011: High-to-low transitions on ECI (max rate = system clock divided by 4).100: System clock.101: External clock divided by 8 (synchronized with the system clock).110: Low frequency oscillator divided by 8.111: Reserved.
0	ECF	 PCA Counter/Timer Overflow Interrupt Enable. This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt. 0: Disable the CF interrupt. 1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set.

Note: The SPI can be operated in either 3-wire or 4-wire modes, pending the state of the NSSMD1– NSSMD0 bits in register SPI0CN. According to the SPI mode, the NSS signal may or may not be routed to a port pin. The order in which SMBus pins are assigned is defined by the SWAP bit in the SMB0TC register.

Register 21.7. P0: Port 0 Pin Latch

Bit	7	6	5	4	3 2 1			0	
Name	P0								
Туре	RW								
Reset	Reset 1 1 1 1 1 1 1 1								
SFR Address: 0x80 (bit-addressable)									

Table 21.10. P0 Register Bit Descriptions

Bit	Name	Function
7:0	P0	Port 0 Data.
		Writing this register sets the port latch logic value for the associated I/O pins configured as digital I/O. Reading this register returns the logic value at the pin, regardless if it is configured as output or input.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 23.10. SPI Slave Timing (CKPHA = 0)

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 23.11. SPI Slave Timing (CKPHA = 1)

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a 1 to STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a 1 to STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be generated.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 24.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI.

24.4.4.1. Software ACK Generation

When the EHACK bit in register SMB0ADM is cleared to 0, the firmware on the device must detect incoming slave addresses and ACK or NACK the slave address and incoming data bytes. As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received during the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

24.4.4.2. Hardware ACK Generation

When the EHACK bit in register SMB0ADM is set to 1, automatic slave address recognition and ACK generation is enabled. More detail about automatic slave address recognition can be found in Section 24.4.5. As a receiver, the value currently specified by the ACK bit will be automatically sent on the bus during the ACK cycle of an incoming data byte. As a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. The ACKRQ bit is not used when hardware ACK generation is enabled. If a received slave address is NACKed by hardware, further slave events will be ignored until the next START is detected, and no interrupt will be generated.

Table 24.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 24.5 for SMBus status decoding using the SMB0CN register.

Bit	Set by Hardware When:	Cleared by Hardware When:
MASTER	A START is generated.	 A STOP is generated.
MAGTER		 Arbitration is lost.
	 START is generated. 	 A START is detected.
	 SMB0DAT is written before the start of an 	 Arbitration is lost.
TAMODE	SMBus frame.	 SMB0DAT is not written before the start of an SMBus frame.
STA	 A START followed by an address byte is received. 	 Must be cleared by software.
	A STOP is detected while addressed as a	 A pending STOP is generated.
STO	slave.	
	Arbitration is lost due to a detected STOP.	

Table 24.3. Sources for Hardware Changes to SMB0CN

e	Valu	es I	Rea	d				lues Vrit	tus ected		
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Sta Vector Exp	
	1110	0	0	х	A master START was generated.	Load slave address + R/W into SMB0DAT.	0	0	Х	1100	
		0	0	0	A master data or address byte was	Set STA to restart transfer.	1	0	Х	1110	
Master Transmitter		U	U	U	transmitted; NACK received.	Abort transfer.	0	1	Х	_	
						Load next data byte into SMB0- DAT.	- 0 0 X 11	1100			
						End transfer with STOP.	0	1	Х	—	
	1100	0	0	1	A master data or address byte was transmitted; ACK received.	End transfer with STOP and start another transfer.	1	Write Arrow of the second			
						Send repeated START.	1	0	Х	1110	
						Switch to Master Receiver Mode (clear SI without writing new data to SMB0DAT).	0	0	Х	1000	
						Acknowledge received byte; Read SMB0DAT.	0	0	1	1000	
							Send NACK to indicate last byte, and send STOP.	0	1	0	—
ver						and send STOP. Send NACK to indicate last byte, and send STOP followed by START.	1	1	0	1110	
r Recei	1000	1	0	х	A master data byte was received; ACK requested.	Send ACK followed by repeated START.	1	OL VI VI 0 0 X 1 1 0 X 1 0 1 X 1 0 1 X 1 0 1 X 1 0 1 X 1 0 1 X 1 1 0 X 1 0 0 X 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1	1110		
Mastei						Send NACK to indicate last byte, 1 and send repeated START.		0	0	1110	
						Send ACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	1	1100	
						Send NACK and switch to Mas- ter Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	0	1100	

Table 24.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0)

		Frequency: 49 MHz										
	Target Baud Rate (bps)	Baud Rate % Error	Oscillator Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)					
	230400	-0.32%	106	SYSCLK	XX ²	1	0xCB					
	115200	-0.32%	212	SYSCLK	XX	1	0x96					
om Sc.	57600	0.15%	426	SYSCLK	XX	1	0x2B					
т З	28800	-0.32%	848	SYSCLK/4	01	0	0x96					
SCL	14400	0.15%	1704	SYSCLK/12	00	0	0xB9					
SYS Inte	9600	9600 -0.32% 2544 2400 -0.32% 10176		SYSCLK/12 SYSCLK/48	00	0	0x96					
	2400				10	0	0x96					
	1200	0.15%	20448	SYSCLK/48	10	0	0x2B					
Notes												

Table 26.1. Timer Settings for Standard Baud Rates Using the Internal 24.5 MHz Oscillator

1. SCA1–SCA0 and T1M bit definitions can be found in Timer1 chapter.

2. X = Don't care.

