E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

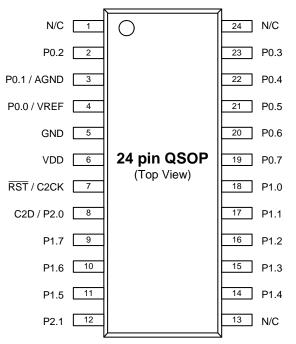
Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f853-c-iur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Definitions

3.1. C8051F850/1/2/3/4/5 QSOP24 Pin Definitions



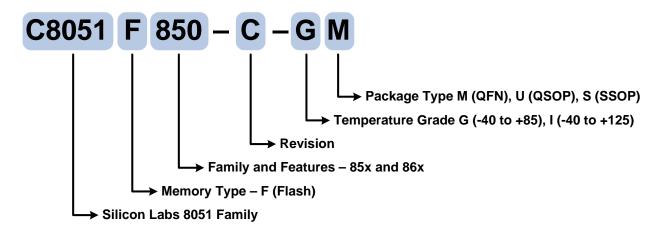

Figure 3.1. C8051F850/1/2/3/4/5-GU and C8051F850/1/2/3/4/5-IU Pinout

Table 3.1. Pin [Definitions for	C8051F850/1/2/3/4/5-GU	and C8051F850/1/2/3/4/5-IU

Pin Name	Туре	Pin Numbers	Crossbar Capability	Additional Digital Functions	Analog Functions
GND	Ground	5			
VDD	Power	6			
RST / C2CK	Active-low Reset / C2 Debug Clock	7			

4. Ordering Information

Figure 4.1. C8051F85x/86x Part Numbering

All C8051F85x/86x family members have the following features:

- CIP-51 Core running up to 25 MHz
- Two Internal Oscillators (24.5 MHz and 80 kHz)
- I2C/SMBus
- SPI
- UART
- 3-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 4 16-bit Timers
- 2 Analog Comparators
- 16-bit CRC Unit

In addition to these features, each part number in the C8051F85x/86x family has a set of features that vary across the product line. The product selection guide in Table 4.1 shows the features available on each family member.

All devices in Table 4.1 are also available in an industrial version. For the industrial version, the -G in the ordering part number is replaced with -I. For example, the industrial version of the C8051F850-C-GM is the C8051F850-C-IM.

C8051F85x/86x

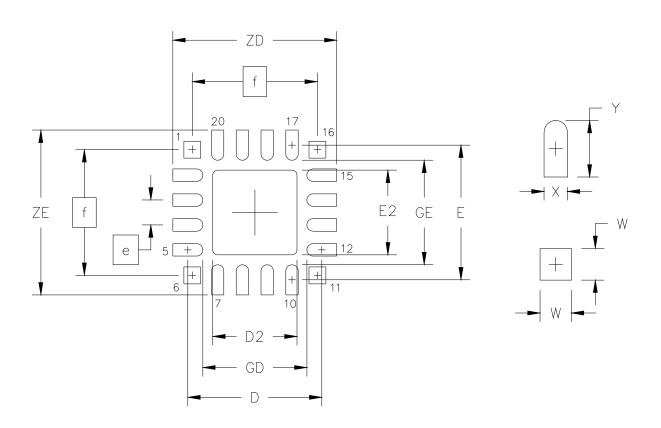


Figure 6.2. QFN-20 Landing Diagram

Symbol	Millimeters		Symbol	Millim	neters
	Min	Max		Min	Max
D	2.71	REF	GE	2.10	_
D2	1.60	1.80	W	_	0.34
е	0.50 BSC		Х	—	0.28
E	2.71 REF		Y	0.61	REF
E2	1.60	1.80	ZE	—	3.31
f	2.53	BSC	ZD	—	3.31
GD	2.10	—			

Table 6.2. QFN-20 Landing Diagram Dimensions

Notes: General

- **1.** All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on IPC-SM-782 guidelines.
- **4.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Notes: Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Notes: Stencil Design

- **1.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- **3.** The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
- **4.** A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides approximately 70% solder paste coverage on the pad, which is optimum to assure correct component stand-off.

Notes: Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Register	Address	Register Description	Page		
PCA0CPM0	0xDA	PCA Capture/Compare Mode 0	171		
PCA0CPM1	0xDB	PCA Capture/Compare Mode 1			
PCA0CPM2	0xDC	PCA Capture/Compare Mode 1	179		
PCA0H	0xFA	PCA Counter/Timer Low Byte	173		
PCA0L	0xF9	PCA Counter/Timer High Byte	172		
PCA0MD	0xD9	PCA Mode	168		
PCA0POL	0x96	PCA Output Polarity	176		
PCA0PWM	0xF7	PCA PWM Configuration	169		
PCON	0x87	Power Control	83		
PRTDRV	0xF6	Port Drive Strength	196		
PSCTL	0x8F	Program Store Control	66		
PSW	0xD0	Program Status Word	124		
REF0CN	0xD1	Voltage Reference Control	112		
REG0CN	0xC9	Voltage Regulator Control	84		
REVID	0xB6	Revision Identification	71		
RSTSRC	0xEF	Reset Source	215		
SBUF0	0x99	UART0 Serial Port Data Buffer	297		
SCON0	0x98	UART0 Serial Port Control	295		
SMB0ADM	0xD6	SMBus0 Slave Address Mask	257		
SMB0ADR	0xD7	SMBus0 Slave Address	256		
SMB0CF	0xC1	SMBus0 Configuration	251		
SMB0CN	0xC0	SMBus0 Control	254		
SMB0DAT	0xC2	SMBus0 Data	258		
SMB0TC	0xAC	SMBus0 Timing and Pin Control	253		
SP	0x81	Stack Pointer	121		
SPI0CFG	0xA1	SPI0 Configuration	227		
SPI0CKR	0xA2	SPI0 Clock Control	231		
SPIOCN	0xF8	SPI0 Control	229		

Table 9.2. Special Function Registers (Continued)

Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	N/A
Read contents of Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted
Erase page containing Lock Byte (if no pages are locked)	Permitted	Permitted	N/A
Erase page containing Lock Byte—Unlock all pages (if any page is locked)	C2 Device Erase Only	Flash Error Reset	Flash Error Reset
Lock additional pages (change 1s to 0s in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset
Unlock individual pages (change 0s to 1s in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset
Read, Write or Erase Reserved Area	Not Permitted	Flash Error Reset	Flash Error Reset

Table 10.1. Flash Security Summary (Continued)

C2 Device Erase—Erases all flash pages including the page containing the Lock Byte.

Flash Error Reset — Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is '1' after reset).

- All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).

- Locking any flash page also locks the page containing the Lock Byte.

- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.

- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.

10.5. Flash Control Registers

Register 10.1. PSCTL: Program Store Control

Bit	7	6	5	4	3	2	1	0	
Name			PSEE	PSWE					
Туре	R						RW	RW	
Reset	0	0	0	0	0	0	0	0	
SFR Add	SFR Address: 0x8F								

Table 10.2. PSCTL Register Bit Descriptions

Bit	Name	Function
7:2	Reserved	Must write reset value.
1	PSEE	Program Store Erase Enable.
		 Setting this bit (in combination with PSWE) allows an entire page of flash program memory to be erased. If this bit is logic 1 and flash writes are enabled (PSWE is logic 1), a write to flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0: Flash program memory erasure disabled. 1: Flash program memory erasure enabled.
0	PSWE	 Program Store Write Enable. Setting this bit allows writing a byte of data to the flash program memory using the MOVX write instruction. The flash location should be erased before writing data. 0: Writes to flash program memory disabled. 1: Writes to flash program memory enabled; the MOVX write instruction targets flash memory.

Register 10.2. FLKEY: Flash Lock and Key

		· · ·			•			
	FLKEY							Name
RW						Туре		
0	0	0	0	0	0	0	0	Reset
0 0 0 0 0 0 0						Reset SFR Addr		

Table 10.3. FLKEY Register Bit Descriptions

Bit	Name	Function
7:0	FLKEY	Flash Lock and Key Register.
		Write:
		This register provides a lock and key function for flash erasures and writes. Flash writes and erases are enabled by writing 0xA5 followed by 0xF1 to the FLKEY register. Flash writes and erases are automatically disabled after the next write or erase is complete. If any writes to FLKEY are performed incorrectly, or if a flash write or erase operation is attempted while these operations are disabled, the flash will be permanently locked from writes or erasures until the next device reset. If an application never writes to flash, it can intentionally lock the flash by writing a non-0xA5 value to FLKEY from software. Read: When read, bits 1-0 indicate the current flash lock state. 00: Flash is write/erase locked. 01: The first key code has been written (0xA5). 10: Flash is unlocked (writes/erases allowed). 11: Flash writes/erases are disabled until the next reset.

Register 11.3. REVID: Revision Identifcation

Bit	7	6	5	4	3	2	1	0
Name				RE	/ID			
Туре	R							
Reset	Х	Х	Х	Х	Х	Х	Х	Х

Table 11.4. REVID Register Bit Descriptions

Bit	Name	Function
7:0	REVID	Revision ID.
		This read-only register returns the 8-bit revision ID. 00000000: Revision A 00000001: Revision B 00000010: Revision C 00000011-11111111: Reserved.

Bit	Name	Function
0	PSMB0	SMBus (SMB0) Interrupt Priority Control.
		This bit sets the priority of the SMB0 interrupt. 0: SMB0 interrupt set to low priority level. 1: SMB0 interrupt set to high priority level.

Table 12.5. EIP1 Register Bit Descriptions

Table 15.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Notes on Registers, Operands and Addressing Modes:

Rn—Register R0–R7 of the currently selected register bank.

@Ri—Data RAM location addressed indirectly through R0 or R1.

rel—8-bit, signed (twos complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct—8-bit internal data location's address. This could be a direct-access Data RAM location (0x00–0x7F) or an SFR (0x80–0xFF).

#data—8-bit constant

#data16—16-bit constant

bit—Direct-accessed bit in Data RAM or SFR

addr11—11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.

addr16—16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 8 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

15.4. CPU Core Registers

Bit	7 6 5 4 3 2 1					0		
Name	DPL							
Туре	RW							
Reset	0	0	0	0	0	0	0	0
SFR Address: 0x82								

Table 15.2. DPL Register Bit Descriptions

Bit	Name	Function
7:0	DPL	Data Pointer Low.
		The DPL register is the low byte of the 16-bit DPTR. DPTR is used to access indirectly addressed flash memory or XRAM.

21.4.3. Port Drive Strength

Port drive strength can be controlled on a port-by-port basis using the PRTDRV register. Each port has a bit in PRTDRV to select the high or low drive strength setting for all pins on that port. By default, all ports are configured for high drive strength.

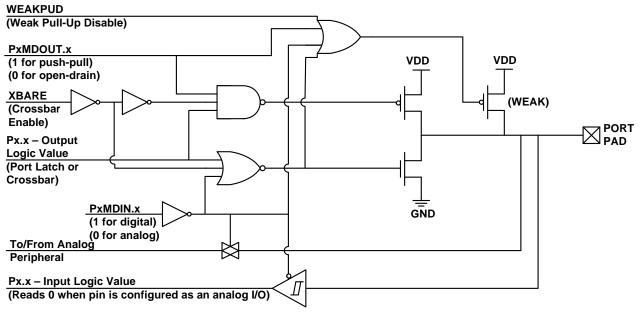


Figure 21.4. Port I/O Cell Block Diagram

21.5. Port Match

Port match functionality allows system events to be triggered by a logic value change on one or more port I/O pins. A software controlled value stored in the PnMATCH registers specifies the expected or normal logic values of the associated port pins (for example, P0MATCH.0 would correspond to P0.0). A port mismatch event occurs if the logic levels of the port's input pins no longer match the software controlled value. This allows software to be notified if a certain change or pattern occurs on the input pins regardless of the XBRn settings.

The PnMASK registers can be used to individually select which pins should be compared against the PnMATCH registers. A port mismatch event is generated if (Pn & PnMASK) does not equal (PnMATCH & PnMASK) for all ports with a PnMAT and PnMASK register.

A port mismatch event may be used to generate an interrupt or wake the device from idle mode. See the interrupts and power options chapters for more details on interrupt and wake-up sources.

21.6. Direct Read/Write Access to Port I/O Pins

All port I/O are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. When writing to a port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the crossbar, the port register can always read its corresponding port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.

Hardware Slave Address SLV	Slave Address Mask SLVM	GC bit	Slave Addresses Recognized by Hardware
0x34	0x7E	1	0x34, 0x35, 0x00 (General Call)
0x70	0x73	0	0x70, 0x74, 0x78, 0x7C

 Table 24.4. Hardware Address Recognition Examples (EHACK = 1)

24.4.6. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been received. Software may safely read or write to the data register when the SI flag is set. Software should not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0, as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously being shifted in. SMB0DAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data or address in SMB0DAT.

24.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will be a receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are transmitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared (an error condition may be generated if SMB0DAT is written following a received NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP. The interface will switch to slave receiver mode if SMB0DAT is not written following a Slave Transmitter interrupt. Figure 24.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

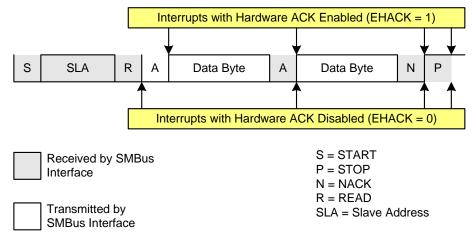


Figure 24.8. Typical Slave Read Sequence

24.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to take in response to an SMBus event depend on whether hardware slave address recognition and ACK generation is enabled or disabled. Table 24.5 describes the typical actions when hardware slave address recognition and ACK generation is disabled. Table 24.6 describes the typical actions when hardware slave address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

	Val	ue	es F	Rea	d			Values to Write			Next Status Vector Expected							
Mode	Status Vector		ACKRQ	ARBLOST	ACK	Current SMbus State	Current SMbus State Typical Response Options											
							Set ACK for next data byte; Read SMB0DAT.	0	0	1	1000							
			0 0 1	1	A master data byte was received; ACK sent.	Set NACK to indicate next data byte as the last data byte; Read SMB0DAT.	0	0	0	1000								
ř						Sent.	Initiate repeated START.	1	0	0	1110							
Master Receiver	1000)					Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	Х	1100							
aste							Read SMB0DAT; send STOP.	0	1	0	—							
Ξ					A master data byte was received;	Read SMB0DAT; Send STOP followed by START.	1	1	0	1110								
			0	0	0	0	0	0	0	0	0	0	NACK sent (last byte).	Initiate repeated START.	1	0	0	1110
																	Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0
er.			0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001							
smitte	0100)	0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	Х	0100							
Slave Transmitter			0	1	Х	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	Х	0001							
Slav	0101	1	0	x	х	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	Х	—							

Table 24.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1) (Continued)

Bit	Name	Function
1:0	SMBCS	SMBus0 Clock Source Selection.
		These two bits select the SMBus0 clock source, which is used to generate the SMBus0 bit rate. See the SMBus clock timing section for additional details. 00: Timer 0 Overflow 01: Timer 1 Overflow 10: Timer 2 High Byte Overflow 11: Timer 2 Low Byte Overflow

Table 24.7. SMB0CF Register Bit Descriptions

Register 24.2. SMB0TC: SMBus0 Timing and Pin Control

Bit	7	6	5	4	3	2	1	0
Name	SWAP			Reserved			SI	DD
Туре	RW		R RW					
Reset	0	0	0	0	0	0	0	0
SFR Address: 0xAC								

Table 24.8. SMB0TC Register Bit Descriptions

Bit	Name	Function
7	SWAP	SMBus0 Swap Pins.
		 This bit swaps the order of the SMBus0 pins on the crossbar. 0: SDA is mapped to the lower-numbered port pin, and SCL is mapped to the higher-numbered port pin. 1: SCL is mapped to the lower-numbered port pin, and SDA is mapped to the higher-numbered port pin.
6:2	Reserved	Must write reset value.
1:0	SDD	SMBus0 Start Detection Window.
		 These bits increase the hold time requirement between SDA falling and SCL falling for START detection. 00: No additional hold time window (0-1 SYSCLK). 01: Increase hold time window to 2-3 SYSCLKs. 10: Increase hold time window to 4-5 SYSCLKs. 11: Increase hold time window to 8-9 SYSCLKs.

Register 25.3. TMOD: Timer 0/1 Mode

Bit	7	6	5	4	3	2	1	0
Name	GATE1	CT1	T1	IM	GATE0	CT0	ТОМ	
Туре	RW	RW	R	W	RW	RW	R	W
Reset	0	0	0 0		0	0	0	0

Table 25.5. TMOD Register Bit Descriptions

Bit	Name	Function
7	GATE1	Timer 1 Gate Control.0: Timer 1 enabled when TR1 = 1 irrespective of INT1 logic level.1: Timer 1 enabled only when TR1 = 1 and INT1 is active as defined by bit IN1PL in register IT01CF.
6	CT1	Counter/Timer 1 Select.0: Timer Mode. Timer 1 increments on the clock defined by T1M in the CKCON register.1: Counter Mode. Timer 1 increments on high-to-low transitions of an external pin (T1).
5:4	T1M	Timer 1 Mode Select.These bits select the Timer 1 operation mode.00: Mode 0, 13-bit Counter/Timer01: Mode 1, 16-bit Counter/Timer10: Mode 2, 8-bit Counter/Timer with Auto-Reload11: Mode 3, Timer 1 Inactive
3	GATE0	Timer 0 Gate Control.0: Timer 0 enabled when TR0 = 1 irrespective of INT0 logic level.1: Timer 0 enabled only when TR0 = 1 and INT0 is active as defined by bit IN0PL in register IT01CF.
2	СТО	 Counter/Timer 0 Select. 0: Timer Mode. Timer 0 increments on the clock defined by T0M in the CKCON register. 1: Counter Mode. Timer 0 increments on high-to-low transitions of an external pin (T0).
1:0	ТОМ	Timer 0 Mode Select.These bits select the Timer 0 operation mode.00: Mode 0, 13-bit Counter/Timer01: Mode 1, 16-bit Counter/Timer10: Mode 2, 8-bit Counter/Timer with Auto-Reload11: Mode 3, Two 8-bit Counter/Timers

Register 29.5. C2FPDAT: C2 Flash Programming Data

•	<u> </u>		
C2FPDAT			
RW			
0	0		
	0		

Table 29.5. C2FPDAT Register Bit Descriptions

Bit	Name	Function
7:0	C2FPDAT	C2 Flash Programming Data Register.
		This register is used to pass flash commands, addresses, and data during C2 flash accesses. Valid commands are listed below. 0x03: Device Erase 0x06: Flash Block Read 0x07: Flash Block Write 0x08: Flash Page Erase

