

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f855-c-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.5. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
High Frequency Oscillator (24.5 MHz)								
Oscillator Frequency	f _{HFOSC}	f _{HFOSC} Full Temperature and Supply Range		24.5	25	MHz		
Power Supply Sensitivity	PSS _{HFOSC}	T _A = 25 °C	T _A = 25 °C — 0.5		—	%/V		
Temperature Sensitivity	TS _{HFOSC}	V _{DD} = 3.0 V	—	40		ppm/°C		
Low Frequency Oscillator (80 kH	z)							
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	75	80	85	kHz		
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C	_	0.05	—	%/V		
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.0 V	—	65	—	ppm/°C		

Table 1.6. External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Input CMOS Clock Frequency (at EXTCLK pin)	f _{CMOS}		0	_	25	MHz
External Input CMOS Clock High Time	t _{CMOSH}		18	—		ns
External Input CMOS Clock Low Time	t _{CMOSL}		18	—	—	ns

2. System Overview

The C8051F85x/86x device family are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below. Refer to Table 4.1 for specific product feature selection and part ordering numbers.

- Core:
 - Pipelined CIP-51 Core
 - Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - 25 MHz maximum operating frequency
- Memory:
 - 2-8 kB flash; in-system programmable in 512-byte sectors
 - 512 bytes RAM (including 256 bytes standard 8051 RAM and 256 bytes on-chip XRAM)
- Power:
 - Internal low drop-out (LDO) regulator for CPU core voltage
 - Power-on reset circuit and brownout detectors
- I/O: Up to 18 total multifunction I/O pins:
 - All pins 5 V tolerant under bias
 - Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- Clock Sources:
 - Low-power internal oscillator: 24.5 MHz ±2%
 - Low-frequency internal oscillator: 80 kHz
 - External CMOS clock option
- Timers/Counters and PWM:
 - 3-channel Programmable Counter Array (PCA) supporting PWM, capture/compare and frequency output modes
 - 4x 16-bit general-purpose timers
 - Independent watchdog timer, clocked from low frequency oscillator
- Communications and Other Digital Peripherals:
 - UART
 - SPI™
 - I²C / SMBus™
 - 16-bit CRC Unit, supporting automatic CRC of flash at 256-byte boundaries
- Analog:
 - 12-Bit Analog-to-Digital Converter (ADC)
 - 2 x Low-Current Comparators

On-Chip Debugging

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the C8051F85x/ 86x devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable incircuit, providing non-volatile data storage and allowing field upgrades of the firmware.

The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, incircuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging.

Each device is specified for 2.2 to 3.6 V operation, and are available in 20-pin QFN, 16-pin SOIC or 24-pin QSOP packages. All package options are lead-free and RoHS compliant. The device is available in two temperature grades: -40 to +85 °C or -40 to +125 °C. See Table 4.1 for ordering information. A block diagram is included in Figure 2.1.

Pin Name	Туре	Pin Numbers	Crossbar Capability	Additional Digital Functions	Analog Functions
P1.1	Standard I/O	10	Yes	P1MAT.1	ADC0.9 CP1P.3 CP1N.3
P1.2	Standard I/O	9	Yes	P1MAT.2	ADC0.10 CP1P.4 CP1N.4
P1.3	Standard I/O	8	Yes	P1MAT.3	ADC0.11 CP1P.5 CP1N.5
P2.0 / C2D	Standard I/O / C2 Debug Data	7			

Table 3.3. Pin Definitions for C8051F860/1/2/3/4/5-GS and C8051F860/1/2/3/4/5-IS

6. QFN-20 Package Specifications

Figure 6.1. QFN-20 Package Drawing

Symbol	Millimeters				
ſ	Min	Nom	Max		
А	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
b	0.20	0.25	0.30		
С	0.25	0.30	0.35		
D	3.00 BSC				
D2	1.6	1.70	1.8		
е	0.50 BSC				
Е	3.00 BSC				
E2	1.6	1.70	1.8		

Table 6.1. QFN-20 Package Dimensions

Symbol	Millimeters				
	Min	Nom	Max		
f		2.53 BSC			
L	0.3	0.40	0.5		
L1	0.00	—	0.10		
aaa	_	—	0.05		
bbb	_	—	0.05		
CCC	_	—	0.08		
ddd	_	—	0.10		
eee	_	—	0.10		

Notes:

1. All dimensions are shown in millimeters unless otherwise noted.

2. Dimensioning and tolerancing per ANSI Y14.5M-1994.

Dimension	Feature	(mm)
C1	Pad Column Spacing	5.40
E	Pad Row Pitch	1.27
X1	Pad Width	0.60
Y1	Pad Length	1.55
Notes: General		

 $\label{eq:linear} \textbf{1.} \hspace{0.1 cm} \text{All dimensions shown are in millimeters (mm) unless otherwise noted.}$

2. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).

3. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.

Register	Address	Register Description	Page
SPI0DAT	0xA3	SPI0 Data	232
TCON	0x88	Timer 0/1 Control	271
TH0	0x8C	Timer 0 High Byte	275
TH1	0x8D	Timer 1 High Byte	276
TL0	0x8A	Timer 0 Low Byte	273
TL1	0x8B	Timer 1 Low Byte	274
TMOD	0x89	Timer 0/1 Mode	272
TMR2CN	0xC8	Timer 2 Control	277
TMR2H	0xCD	Timer 2 High Byte	282
TMR2L	0xCC	Timer 2 Low Byte	281
TMR2RLH	0xCB	Timer 2 Reload High Byte	280
TMR2RLL	0xCA	Timer 2 Reload Low Byte	279
TMR3CN	0x91	Timer 3 Control	283
TMR3H	0x95	Timer 3 High Byte	288
TMR3L	0x94	Timer 3 Low Byte	287
TMR3RLH	0x93	Timer 3 Reload High Byte	286
TMR3RLL	0x92	Timer 3 Reload Low Byte	285
VDM0CN	0xFF	Supply Monitor Control	216
WDTCN	0x97	Watchdog Timer Control	300
XBR0	0xE1	Port I/O Crossbar 0	193
XBR1	0xE2	Port I/O Crossbar 1	194
XBR2	0xE3	Port I/O Crossbar 2	195

Register 14.5. ADC0PWR: ADC0 Power Control

Bit	7	6	5	4	3	2	1	0		
Name	ADE	BIAS	ADMXLP	ADLPM	ADPWR					
Туре	R	W	RW	RW	RW					
Reset	0	0	0	0	1 1 1 1					
SFR Add	SFR Address: 0xDF									

Table 14.8. ADC0PWR Register Bit Descriptions

Bit	Name	Function
7:6	ADBIAS	Bias Power Select. This field can be used to adjust the ADC's power consumption based on the conversion
		 Speed. Higher bias currents allow for faster conversion times. 00: Select bias current mode 0. Recommended to use modes 1, 2, or 3. 01: Select bias current mode 1 (SARCLK <= 16 MHz). 10: Select bias current mode 2.
		11: Select bias current mode 3 (SARCLK <= 4 MHz).
5	ADMXLP	 Mux and Reference Low Power Mode Enable. Enables low power mode operation for the multiplexer and voltage reference buffers. 0: Low power mode disabled. 1: Low power mode enabled (SAR clock < 4 MHz).
4	ADLPM	Low Power Mode Enable.
		 This bit can be used to reduce power to the ADC's internal common mode buffer. It can be set to 1 to reduce power when tracking times in the application are longer (slower sample rates). 0: Disable low power mode. 1: Enable low power mode (requires extended tracking time).
3.0		Burst Mode Power Un Time
5.0		This field sets the time delay allowed for the ADC to power up from a low power state. When ADTM is set, an additional 4 SARCLKs are added to this time.
		$T_{PWRTIME} = \frac{8 \times ADPWR}{F_{HFOSC}}$

Register 17.3. CPT0MX: Comparator 0 Multiplexer Selection

Bit	7	6	5	4	3	2	1	0	
Name	CMXN				СМХР				
Туре	RW				R	W			
Reset	1	1	1	1	1 1 1 1				
SFR Add	SFR Address: 0x9F								

Table 17.7. CPT0MX Register Bit Descriptions

Bit	Name	Function
7:4	CMXN	Comparator 0 Negative Input MUX Selection.
		0000: External pin CP0N.0
		0001: External pin CP0N.1
		0010: External pin CP0N.2
		0011: External pin CP0N.3
		0100: External pin CP0N.4
		0101: External pin CP0N.5
		0110: External pin CP0N.6
		0111: External pin CP0N.7
		1000: GND
		1001-1111: Reserved.
3:0	CMXP	Comparator 0 Positive Input MUX Selection.
		0000: External pin CP0P.0
		0001: External pin CP0P.1
		0010: External pin CP0P.2
		0011: External pin CP0P.3
		0100: External pin CP0P.4
		0101: External pin CP0P.5
		0110: External pin CP0P.6
		0111: External pin CP0P.7
		1000: Internal LDO output
		1001-1111: Reserved.

Register 20.4. PCA0CLR: PCA Comparator Clear Control

			-	-				-
Bit	7	6	5	4	3	2	1	0
Name	CPCPOL		Reserved				CPCE1	CPCE0
Туре	RW		R				RW	RW
Reset	0	0	0 0 0 0				0	0
SFR Address: 0x9C								

Table 20.6. PCA0CLR Register Bit Descriptions

Bit	Name	Function
7	CPCPOL	Comparator Clear Polarity.
		Selects the polarity of the comparator result that will clear the PCA channel(s).
		0: PCA channel(s) will be cleared when comparator result goes logic low.
		1: PCA channel(s) will be cleared when comparator result goes logic high.
6:3	Reserved	Must write reset value.
2	CPCE2	Comparator Clear Enable for CEX2.
		Enables the comparator clear function on PCA channel 2.
1	CPCE1	Comparator Clear Enable for CEX1.
		Enables the comparator clear function on PCA channel 1.
0	CPCE0	Comparator Clear Enable for CEX0.
		Enables the comparator clear function on PCA channel 0.

21. Port I/O (Port 0, Port 1, Port 2, Crossbar, and Port Match)

Digital and analog resources on the C8051F85x/86x family are externally available on the device's multipurpose I/O pins. Port pins P0.0-P1.7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar, or assigned to an analog function. Port pins P2.0 and P2.1 can be used as GPIO. Port pin P2.0 is shared with the C2 Interface Data signal (C2D). The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a priority crossbar decoder. Note that the state of a port I/O pin can always be read in the corresponding port latch, regardless of the crossbar settings.

The crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 21.2 and Figure 21.3). The registers XBR0, XBR1 and XBR2 are used to select internal digital functions.

The port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0,1). Additionally, each bank of port pins (P0, P1, and P2) has two selectable drive strength settings.

Figure 21.1. Port I/O Functional Block Diagram

Register 21.15. P1MDOUT: Port 1 Output Mode

Bit	7	6	5	4	3	2	1	0
Name	P1MDOUT							
Туре	RW							
Reset	0 0 0 0 0 0 0 0							
SFR Address: 0xA5								

Table 21.18. P1MDOUT Register Bit Descriptions

Bit	Name	Function					
7:0	P1MDOUT	Port 1 Output Mode.					
		These bits are only applicable when the pin is configured for digital mode using the P1MDIN register. 0: Corresponding P1.n Output is open-drain. 1: Corresponding P1.n Output is push-pull.					
Note: Po (P	Note: Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits (P1.0-P1.3) on SOIC16 packages.						

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 23.9. SPI Master Timing (CKPHA = 1)

Bit	Name	Function					
0	RXBMT	Receive Buffer Empty (valid in slave mode only).					
		This bit will be set to logic 1 when the receive buffer has been read and contains no new information. If there is new information available in the receive buffer that has not been read, this bit will return to logic 0. RXBMT = 1 when in Master Mode.					
Note:	Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one SYSCLK before the end of each data bit, to provide maximum settling time for the slave device.						

Table 23.2. SPI0CFG Register Bit Descriptions

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 24.3 illustrates a typical SMBus transaction.

Figure 24.3. SMBus Transaction

24.3.1. Transmitter vs. Receiver

On the SMBus communications interface, a device is the "transmitter" when it is sending an address or data byte to another device on the bus. A device is a "receiver" when an address or data byte is being sent to it from another device on the bus. The transmitter controls the SDA line during the address or data byte. After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

24.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see Section "24.3.5. SCL High (SMBus Free) Timeout" on page 236). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

24.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

24.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

Hardware Slave Address SLV	Slave Address Mask SLVM	GC bit	Slave Addresses Recognized by Hardware
0x34	0x7E	1	0x34, 0x35, 0x00 (General Call)
0x70	0x73	0	0x70, 0x74, 0x78, 0x7C

 Table 24.4. Hardware Address Recognition Examples (EHACK = 1)

24.4.6. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been received. Software may safely read or write to the data register when the SI flag is set. Software should not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0, as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously being shifted in. SMB0DAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data or address in SMB0DAT.

24.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are received.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

The interface exits Slave Receiver Mode after receiving a STOP. The interface will switch to Slave Transmitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 24.7 shows a typical slave write sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled.

Figure 24.7. Typical Slave Write Sequence

25.2.2. 8-bit Timers with Auto-Reload

When TnSPLIT is set, the timer operates as two 8-bit timers (TMRnH and TMRnL). Both 8-bit timers operate in auto-reload mode as shown in Figure 25.5. TMRnRLL holds the reload value for TMRnL; TMRnRLH holds the reload value for TMRnH. The TRn bit in TMRnCN handles the run control for TMRnH. TMRnL is always running when configured for 8-bit auto-reload mode.

Each 8-bit timer may be configured to clock from SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Clock Select bits (TnMH and TnML in CKCON) select either SYSCLK or the clock defined by the External Clock Select bit (TnXCLK in TMRnCN), as follows:

TnMH	TnXCLK	TMRnH Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

TnML	TnXCLK	TMRnL Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

The TFnH bit is set when TMRnH overflows from 0xFF to 0x00; the TFnL bit is set when TMRnL overflows from 0xFF to 0x00. When timer interrupts are enabled, an interrupt is generated each time TMRnH overflows. If timer interrupts are enabled and TFnLEN is set, an interrupt is generated each time either TMRnL or TMRnH overflows. When TFnLEN is enabled, software must check the TFnH and TFnL flags to determine the source of the timer interrupt. The TFnH and TFnL interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 25.5. 8-Bit Mode Block Diagram

Register 25.3. TMOD: Timer 0/1 Mode

		1	1			1		
Bit	7	6	5	4	3	2	1	0
Name	GATE1	CT1	T1M		GATE0	CT0	ТОМ	
Туре	RW	RW	RW		RW	RW	R	W
Reset	0	0	0 0		0	0	0	0
SFR Address: 0x89								

Table 25.5. TMOD Register Bit Descriptions

Bit	Name	Function
7	GATE1	Timer 1 Gate Control.0: Timer 1 enabled when TR1 = 1 irrespective of INT1 logic level.1: Timer 1 enabled only when TR1 = 1 and INT1 is active as defined by bit IN1PL in register IT01CF.
6	CT1	 Counter/Timer 1 Select. 0: Timer Mode. Timer 1 increments on the clock defined by T1M in the CKCON register. 1: Counter Mode. Timer 1 increments on high-to-low transitions of an external pin (T1).
5:4	T1M	Timer 1 Mode Select.These bits select the Timer 1 operation mode.00: Mode 0, 13-bit Counter/Timer01: Mode 1, 16-bit Counter/Timer10: Mode 2, 8-bit Counter/Timer with Auto-Reload11: Mode 3, Timer 1 Inactive
3	GATE0	Timer 0 Gate Control.0: Timer 0 enabled when TR0 = 1 irrespective of INT0 logic level.1: Timer 0 enabled only when TR0 = 1 and INT0 is active as defined by bit IN0PL in register IT01CF.
2	CT0	 Counter/Timer 0 Select. 0: Timer Mode. Timer 0 increments on the clock defined by T0M in the CKCON register. 1: Counter Mode. Timer 0 increments on high-to-low transitions of an external pin (T0).
1:0	ТОМ	Timer 0 Mode Select.These bits select the Timer 0 operation mode.00: Mode 0, 13-bit Counter/Timer01: Mode 1, 16-bit Counter/Timer10: Mode 2, 8-bit Counter/Timer with Auto-Reload11: Mode 3, Two 8-bit Counter/Timers

Register 25.11. TMR2L: Timer 2 Low Byte

			-					
Bit	7	6	5	4	3	2	1	0
Name	TMR2L							
Туре	RW							
Reset	0	0	0	0	0	0	0	0
SFR Address: 0xCC								

Table 25.13. TMR2L Register Bit Descriptions

Bit	Name	Function
7:0	TMR2L	Timer 2 Low Byte. In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8-bit mode, TMR2L contains the 8-bit low byte timer value.

Register 25.14. TMR3RLL: Timer 3 Reload Low Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR3RLL							
Туре	RW							
Reset	0	0	0	0	0	0	0	0
SFR Address: 0x92								

Table 25.16. TMR3RLL Register Bit Descriptions

Bit	Name	Function
7:0	TMR3RLL	Timer 3 Reload Low Byte.
		When operating in one of the auto-reload modes, TMR3RLL holds the reload value for the low byte of Timer 3 (TMR3L). When operating in capture mode, TMR3RLL is the captured value of TMR3L.

