

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f861-c-isr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Туре	Pin Numbers	Crossbar Capability	Additional Digital Functions	Analog Functions
P0.0	Standard I/O	2	Yes	POMAT.0 INT0.0 INT1.0	ADC0.0 CP0P.0 CP0N.0 VREF
P0.1	Standard I/O	1	Yes	POMAT.1 INT0.1 INT1.1	ADC0.1 CP0P.1 CP0N.1 AGND
P0.2	Standard I/O	20	Yes	P0MAT.2 INT0.2 INT1.2	ADC0.2 CP0P.2 CP0N.2
P0.3	Standard I/O	19	Yes	P0MAT.3 EXTCLK INT0.3 INT1.3	ADC0.3 CP0P.3 CP0N.3
P0.4	Standard I/O	18	Yes	POMAT.4 INT0.4 INT1.4	ADC0.4 CP0P.4 CP0N.4
P0.5	Standard I/O	17	Yes	P0MAT.5 INT0.5 INT1.5	ADC0.5 CP0P.5 CP0N.5
P0.6	Standard I/O	16	Yes	P0MAT.6 CNVSTR INT0.6 INT1.6	ADC0.6 CP0P.6 CP0N.6
P0.7	Standard I/O	15	Yes	POMAT.7 INT0.7 INT1.7	ADC0.7 CP0P.7 CP0N.7

Table 3.2. Pin Definitions for C8051F850/1/2/3/4/5-GM and C8051F850/1/2/3/4/5-IM

Register 12.3. EIE1: Extended Interrupt Enable 1

Bit	7	6	5	4	3	2	1	0
Name	ET3	ECP1	ECP0	EPCA0	EADC0	EWADC0	EMAT	ESMB0
Туре	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
SFR Address: 0xE6								

Table 12.4. EIE1 Register Bit Descriptions

Bit	Name	Function
7	ET3	 Enable Timer 3 Interrupt. This bit sets the masking of the Timer 3 interrupt. 0: Disable Timer 3 interrupts. 1: Enable interrupt requests generated by the TF3L or TF3H flags.
6	ECP1	 Enable Comparator1 (CP1) Interrupt. This bit sets the masking of the CP1 interrupt. 0: Disable CP1 interrupts. 1: Enable interrupt requests generated by the comparator 1 CPRIF or CPFIF flags.
5	ECP0	 Enable Comparator0 (CP0) Interrupt. This bit sets the masking of the CP0 interrupt. 0: Disable CP0 interrupts. 1: Enable interrupt requests generated by the comparator 0 CPRIF or CPFIF flags.
4	EPCA0	 Enable Programmable Counter Array (PCA0) Interrupt. This bit sets the masking of the PCA0 interrupts. 0: Disable all PCA0 interrupts. 1: Enable interrupt requests generated by PCA0.
3	EADC0	 Enable ADC0 Conversion Complete Interrupt. This bit sets the masking of the ADC0 Conversion Complete interrupt. 0: Disable ADC0 Conversion Complete interrupt. 1: Enable interrupt requests generated by the ADINT flag.
2	EWADC0	 Enable Window Comparison ADC0 Interrupt. This bit sets the masking of ADC0 Window Comparison interrupt. 0: Disable ADC0 Window Comparison interrupt. 1: Enable interrupt requests generated by ADC0 Window Compare flag (ADWINT).
1	EMAT	 Enable Port Match Interrupts. This bit sets the masking of the Port Match Event interrupt. 0: Disable all Port Match interrupts. 1: Enable interrupt requests generated by a Port Match.

needed, it is recommended that AD12SM be set to 1 and ADTK to 0x3F, and that the ADC be placed in always-on mode (ADEN = 1). For sample rates under 180 ksps, or when accumulating multiple samples, AD12SM should normally be cleared to 0, and ADTK should be configured to provide the appropriate settling time for the subsequent conversions.

14.5. Power Considerations

The ADC has several power-saving features which can help the user optimize power consumption according to the needs of the application. The most efficient way to use the ADC for slower sample rates is by using burst mode. Burst mode dynamically controls power to the ADC and (if used) the internal voltage reference. By completely powering off these circuits when the ADC is not tracking or converting, the average supply current required for lower sampling rates is reduced significantly.

The ADC also provides low power options that allow reduction in operating current when operating at low SAR clock frequencies or with longer tracking times. The internal common-mode buffer can be configured for low power mode by setting the ADLPM bit in ADC0PWR to 1. Two other fields in the ADC0PWR register (ADBIAS and ADMXLP) may be used together to adjust the power consumed by the ADC and its multiplexer and reference buffers, respectively. In general, these options are used together, when operating with a SAR conversion clock frequency of 4 MHz.

Required Throughput	Reference Source	Mode Configuration	SAR Clock Speed	Other Register Field Settings
325-800 ksps	Any	Always-On (ADEN = 1 ADBMEN = 0)	Always-On (ADEN = 1 ADBMEN = 0) 12.25 MHz (ADSC = 1)	
0-325 ksps	External	Burst Mode (ADEN = 0 ADBMEN = 1)	12.25 MHz (ADSC = 1)	ADC0PWR = 0x44 ADC0TK = 0x3A ADRPT = 0
250-325 ksps	Internal	Burst Mode (ADEN = 0 ADBMEN = 1)	12.25 MHz (ADSC = 1)	ADC0PWR = 0x44 ADC0TK = 0x3A ADRPT = 0
200-250 ksps	Internal	Always-On (ADEN = 1 ADBMEN = 0)	4.08 MHz (ADSC = 5)	ADC0PWR = 0xF0 ADC0TK = N/A ADRPT = 0
0-200 ksps	Internal	Burst Mode (ADEN = 0 ADBMEN = 1)	4.08 MHz (ADSC = 5)	ADC0PWR = 0xF4 ADC0TK = 0x34 ADRPT = 0

Table 14.2. ADC0 Optimal Power Configuration (8- and 10-bit Mode)

Notes:

1. For always-on configuration, ADSC settings assume SYSCLK is the internal 24.5 MHz high-frequency oscillator. Adjust ADSC as needed if using a different source for SYSCLK.

2. ADRPT reflects the minimum setting for this bit field. When using the ADC in Burst Mode, up to 64 samples may be auto-accumulated per conversion start by adjusting ADRPT.

The ADSJST bits can be used to format the contents of the 16-bit accumulator. The accumulated result can be shifted right by 1, 2, or 3 bit positions. Based on the principles of oversampling and averaging, the effective ADC resolution increases by 1 bit each time the oversampling rate is increased by a factor of 4. The example below shows how to increase the effective ADC resolution by 1, 2, and 3 bits to obtain an effective ADC resolution of 11-bit, 12-bit, or 13-bit respectively without CPU intervention.

Input Voltage	Repeat Count = 4 Shift Right = 1	Repeat Count = 16 Shift Right = 2	Repeat Count = 64 Shift Right = 3 13-Bit Result	
V _{RFF} x 1023/1024	0x07F7	0x0FFC	0x1FF8	
V _{REF} x 512/1024	0x0400	0x0800	0x1000	
V _{REF} x 511/1024	0x03FE	0x04FC	0x0FF8	
0	0x0000	0x0000	0x0000	

14.7. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to userprogrammed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADWINT in register ADC0CN0) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

14.7.1. Window Detector In Single-Ended Mode

right-iustified Figure 14.6 shows two example window comparisons for data. with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). The input voltage can range from 0 to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an ADWINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and ADWINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 14.7 shows an example using leftjustified data with the same comparison values.

Register 14.14. REF0CN: Voltage Reference Control

1		1			1	1		1
Bit	7	6	5	4	3	2	1	0
Name	IREFLVL	Reserved	GNDSL	RE	FSL	TEMPE	Rese	erved
Туре	RW	R	RW	RW		RW	R	
Reset	0	0	0	1	1	0	0	0
SFR Address: 0xD1								

Table 14.17. REF0CN Register Bit Descriptions

Bit	Name	Function
7	IREFLVL	Internal Voltage Reference Level. Sets the voltage level for the internal reference source. 0: The internal reference operates at 1.65 V nominal. 1: The internal reference operates at 2.4 V nominal.
6	Reserved	Must write reset value.
5	GNDSL	 Analog Ground Reference. Selects the ADC0 ground reference. 0: The ADC0 ground reference is the GND pin. 1: The ADC0 ground reference is the AGND pin.
4:3	REFSL	 Voltage Reference Select. Selects the ADC0 voltage reference. 00: The ADC0 voltage reference is the VREF pin. 01: The ADC0 voltage reference is the VDD pin. 10: The ADC0 voltage reference is the internal 1.8 V digital supply voltage. 11: The ADC0 voltage reference is the internal voltage reference.
2	TEMPE	Temperature Sensor Enable.Enables/Disables the internal temperature sensor.0: Temperature Sensor Disabled.1: Temperature Sensor Enabled.
1:0	Reserved	Must write reset value.

20.3.4. High-Speed Output Mode

In High-Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode. If ECOMn is cleared, the associated pin will retain its state, and not toggle on the next match event.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Figure 20.4. PCA High-Speed Output Mode Diagram

20.4. PWM Waveform Generation

The PCA can generate edge- or center-aligned PWM waveforms with resolutions of 8, 9, 10, 11 or 16 bits. PWM resolution depends on the module setup, as specified within the individual module PCA0CPMn registers as well as the PCA0PWM register. Modules can be configured for 8-11 bit mode, or for 16-bit mode individually using the PCA0CPMn registers. All modules configured for 8-11 bit mode will have the same resolution, specified by the PCA0PWM register. When operating in one of the PWM modes, each module may be individually configured for center or edge-aligned PWM waveforms. Each channel has a single bit in the PCA0CENT register to select between the two options.

20.4.1. Edge Aligned PWM

When configured for edge-aligned mode, a module will generate an edge transition at two points for every 2^N PCA clock cycles, where N is the selected PWM resolution in bits. In edge-aligned mode, these two edges are referred to as the "match" and "overflow" edges. The polarity at the output pin is selectable, and can be inverted by setting the appropriate channel bit to '1' in the PCA0POL register. Prior to inversion, a match edge sets the channel to logic high, and an overflow edge clears the channel to logic low.

The match edge occurs when the the lowest N bits of the module's PCA0CPn register match the corresponding bits of the main PCA0 counter register. For example, with 10-bit PWM, the match edge will occur any time bits 9-0 of the PCA0CPn register match bits 9-0 of the PCA0 counter value.

The overflow edge occurs when an overflow of the PCA0 counter happens at the desired resolution. For example, with 10-bit PWM, the overflow edge will occur when bits 0-9 of the PCA0 counter transition from all 1's to all 0's. All modules configured for edge-aligned mode at the same resolution will align on the overflow edge of the waveforms.

An example of the PWM timing in edge-aligned mode for two channels is shown in Figure 20.6. In this example, the CEX0POL and CEX1POL bits are cleared to 0.

Figure 20.6. Edge-Aligned PWM Timing

For a given PCA resolution, the unused high bits in the PCA0 counter and the PCA0CPn compare registers are ignored, and only the used bits of the PCA0CPn register determine the duty cycle. Equation 20.2 describes the duty cycle when CEXnPOL in the PCA0POL register is cleared to 0. Equation 20.3 describes the duty cycle when CEXnPOL in the PCA0POL register is set to 1. A 0% duty cycle for the channel (with CEXnPOL = 0) is achieved by clearing the module's ECOM bit to 0. This will

Register 21.4. PRTDRV: Port Drive Strength

Bit	7	6	5	4	3	2	1	0
Name			Reserved	P2DRV	P1DRV	P0DRV		
Туре			R	RW	RW	RW		
Reset	0 0 0 0 0					1	1	1
SFR Address: 0xF6								

Table 21.7. PRTDRV Register Bit Descriptions

Bit	Name	Function				
7:3	Reserved	Must write reset value.				
2	P2DRV	Port 2 Drive Strength.				
		0: All pins on P2 use low drive strength.				
		1: All pins on P2 use high drive strength.				
1	P1DRV	Port 1 Drive Strength.				
		0: All pins on P1 use low drive strength.				
		1: All pins on P1 use high drive strength.				
0	P0DRV	Port 0 Drive Strength.				
		0: All pins on P0 use low drive strength.				
		1: All pins on P0 use high drive strength.				

Register 21.13. P1: Port 1 Pin Latch

Bit	7	6	5	4	3	2	1	0
Name	P1							
Туре	RW							
Reset	1 1 1 1 1 1 1 1							
SFR Address: 0x90 (bit-addressable)								

Table 21.16. P1 Register Bit Descriptions

Bit	Name	Function					
7:0	P1	Port 1 Data.					
		Writing this register sets the port latch logic value for the associated I/O pins configured as digital I/O.					
		Reading this register returns the logic value at the pin, regardless if it is configured as output or input.					
Note: Po (P	Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits (P1.0-P1.3) on SOIC16 packages.						

22. Reset Sources and Supply Monitor

Reset circuitry allows the controller to be easily placed in a predefined default condition. Upon entering this reset state, the following events occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External port pins are placed in a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain, low-drive mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the RST pin is driven low until the device exits the reset state. Note that during a power-on event, there may be a short delay before the POR circuitry fires and the RST pin is driven low. During that time, the RST pin will be weakly pulled to the V_{DD} supply pin.

On exit from the reset state, the program counter (PC) is reset, the Watchdog Timer is enabled and the system clock defaults to the internal oscillator. Program execution begins at location 0x0000.

Figure 22.1. Reset Sources

22.10. Reset Sources Control Registers

-					-			
Bit	7	6	5	4	3	2	1	0
Name	Reserved	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF
Туре	R	R	RW	RW	R	RW	RW	R
Reset	0	Х	Х	Х	Х	Х	Х	Х
SED Ada		•	•	•		•	•	

Register 22.1. RSTSRC: Reset Source

R Address: 0xEl

Table 22.1. RSTSRC Register Bit Descriptions

Bit	Name	Function
7	Reserved	Must write reset value.
6	FERROR	Flash Error Reset Flag.
		This read-only bit is set to 1 if a flash read/write/erase error caused the last reset.
5	CORSEF	Comparator0 Reset Enable and Flag.
		Read: This bit reads 1 if Comparator0 caused the last reset.
		Write: Writing a 1 to this bit enables Comparator0 (active-low) as a reset source.
4	SWRSF	Software Reset Force and Flag.
		Read: This bit reads 1 if last reset was caused by a write to SWRSF.
		Write: Writing a 1 to this bit forces a system reset.
3	WDTRSF	Watchdog Timer Reset Flag.
		This read-only bit is set to 1 if a watchdog timer overflow caused the last reset.
2	MCDRSF	Missing Clock Detector Enable and Flag.
		Read: This bit reads 1 if a missing clock detector timeout caused the last reset.
		Write: Writing a 1 to this bit enables the missing clock detector. The MCD triggers a reset
	DODOF	
1	PORSF	Power-On / Supply Monitor Reset Flag, and Supply Monitor Reset Enable.
		Read: This bit reads 1 anytime a power-on or supply monitor reset has occurred.
		write: writing a 1 to this bit enables the supply monitor as a reset source.
0	PINRSF	HW Pin Reset Flag.
		This read-only bit is set to 1 if the RST pin caused the last reset.
Notes:	1 I I	

1. Reads and writes of the RSTSRC register access different logic in the device. Reading the register always returns status information to indicate the source of the most recent reset. Writing to the register activates certain options as reset sources. It is recommended to not use any kind of read-modify-write operation on this register.

2. When the PORSF bit reads back 1 all other RSTSRC flags are indeterminate.

3. Writing 1 to the PORSF bit when the supply monitor is not enabled and stabilized may cause a system reset.

Parameter	Description	Min	Max	Units					
Master Mod	Iaster Mode Timing (See Figure 23.8 and Figure 23.9)								
Т _{МСКН}	SCK High Time	1 x T _{SYSCLK}		ns					
T _{MCKL}	SCK Low Time	1 x T _{SYSCLK}	_	ns					
T _{MIS}	MISO Valid to SCK Shift Edge	1 x T _{SYSCLK} + 20	_	ns					
т _{мін}	SCK Shift Edge to MISO Change	0	_	ns					
Slave Mode	Timing (See Figure 23.10 and Figure 23.11)			L					
T _{SE}	NSS Falling to First SCK Edge	2 x T _{SYSCLK}	_	ns					
T _{SD}	Last SCK Edge to NSS Rising	2 x T _{SYSCLK}		ns					
T _{SEZ}	NSS Falling to MISO Valid		4 x T _{SYSCLK}	ns					
T _{SDZ}	NSS Rising to MISO High-Z	_	4 x T _{SYSCLK}	ns					
т _{скн}	SCK High Time	5 x T _{SYSCLK}	_	ns					
T _{CKL}	SCK Low Time	5 x T _{SYSCLK}	_	ns					
T _{SIS}	MOSI Valid to SCK Sample Edge	2 x T _{SYSCLK}	_	ns					
T _{SIH}	SCK Sample Edge to MOSI Change	2 x T _{SYSCLK}		ns					
T _{SOH}	SCK Shift Edge to MISO Change	_	4 x T _{SYSCLK}	ns					
T _{SLH}	Last SCK Edge to MISO Change (CKPHA = 1 ONLY)	6 x T _{SYSCLK}	8 x T _{SYSCLK}	ns					
Note: T _{SYSCL}	k is equal to one period of the device system clock (SYSCLK)).		I					

Table 23.1. SPI Slave Timing Parameters

25. Timers (Timer0, Timer1, Timer2 and Timer3)

Each MCU in the C8051F85x/86x family includes four counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and two are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 and Timer 3 are also identical and offer both 16-bit and split 8-bit timer functionality with auto-reload capabilities. Timer 2 and Timer 3 both offer a capture function, but are different in their system-level connections. Timer 2 is capable of performing a capture function on an external signal input routed through the crossbar, while the Timer 3 capture is dedicated to the low-frequency oscillator output. Table 25.1 summarizes the modes available to each timer.

Timer 0 and Timer 1 Modes	Timer 2 Modes	Timer 3 Modes
13-bit counter/timer	16-bit timer with auto-reload	16-bit timer with auto-reload
16-bit counter/timer	Two 8-bit timers with auto-reload	Two 8-bit timers with auto-reload
8-bit counter/timer with auto-reload	Input pin capture	Low-frequency oscillator capture
Two 8-bit counter/timers (Timer 0 only)		

Table 25.1. Timer Modes

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M–T0M) and the Clock Scale bits (SCA1–SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked.

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 and Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock frequency can be counted. The input signal need not be periodic, but it must be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

All four timers are capable of clocking other peripherals and triggering events in the system. The individual peripherals select which timer to use for their respective functions. Table 25.2 summarizes the peripheral connections for each timer. Note that the Timer 2 and Timer 3 high overflows apply to the full timer when operating in 16-bit mode or the high-byte timer when operating in 8-bit split mode.

Function	T0 Overflow	T1 Overflow	T2 High Overflow	T2 Low Overflow	T3 High Overflow	T3 Low Overflow
UART0 Baud Rate		Х				
SMBus0 Clock Rate	Х	Х	Х	Х		
SMBus0 SCL Low Timeout					Х	
PCA0 Clock	Х					

25.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

Register 25.4. TL0: Timer 0 Low Byte

Bit	7	6	5	4	3	2	1	0
Name	TLO							
Туре	RW							
Reset	0	0	0	0	0	0	0	0
SFR Address: 0x8A								

Table 25.6. TL0 Register Bit Descriptions

Bit	Name	Function
7:0	TL0	Timer 0 Low Byte.
		The TL0 register is the low byte of the 16-bit Timer 0.

Register 25.11. TMR2L: Timer 2 Low Byte

			-						
Bit	7	6	5	4	3	2	1	0	
Name	TMR2L								
Туре	RW								
Reset	0	0	0	0	0	0	0	0	
SFR Add	SFR Address: 0xCC								

Table 25.13. TMR2L Register Bit Descriptions

Bit	Name	Function
7:0	TMR2L	Timer 2 Low Byte. In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8-bit mode, TMR2L contains the 8-bit low byte timer value.

Table 25.15. TMR3CN Register Bit Descriptions

Bit	Name	Function
0	T3XCLK	Timer 3 External Clock Select.
		This bit selects the external clock source for Timer 3. If Timer 3 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 3 Clock Select bits (T3MH and T3ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0: Timer 3 clock is the system clock divided by 12. 1: Timer 3 clock is the external clock divided by 8 (synchronized with SYSCLK).

Register 25.17. TMR3H: Timer 3 High Byte

					1				
Bit	7	6	5	4	3	2	1	0	
Name	TMR3H								
Туре	RW								
Reset	0	0	0	0	0	0	0	0	
SFR Add	SFR Address: 0x95								

Table 25.19. TMR3H Register Bit Descriptions

Bit	Name	Function
7:0	TMR3H	Timer 3 High Byte. In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-bit
		mode, TMR3H contains the 8-bit high byte timer value.

26.2. Operational Modes

UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S0MODE bit in register SCON.

26.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX pin and received at the RX pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB8 in the SCON register.

Data transmission begins when software writes a data byte to the SBUF0 register. The TI Transmit Interrupt Flag is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN Receive Enable bit is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: RI must be logic 0, and if MCE is logic 1, the stop bit must be logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB8 and the RI flag is set. If these conditions are not met, SBUF0 and RB8 will not be loaded and the RI flag will not be set. An interrupt will occur if enabled when either TI or RI is set.

Figure 26.3. 8-Bit UART Timing Diagram

29. C2 Interface

C8051F85x/86x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. Details on the C2 protocol can be found in the C2 Interface Specification.

29.1. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and flash programming may be performed. C2CK is shared with the RST pin, while the C2D signal is shared with a port I/O pin. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 29.1.

Figure 29.1. Typical C2 Pin Sharing

The configuration in Figure 29.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The $\overline{\text{RST}}$ pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

