

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f863-c-isr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

10. Flash Memory

On-chip, re-programmable flash memory is included for program code and non-volatile data storage. The flash memory is organized in 512-byte pages. It can be erased and written through the C2 interface or from firmware by overloading the MOVX instruction. Any individual byte in flash memory must only be written once between page erase operations.

10.1. Security Options

The CIP-51 provides security options to protect the flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the flash memory from accidental modification by software. PSWE must be explicitly set to '1' before software can modify the flash memory; both PSWE and PSEE must be set to '1' before software can erase flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located in flash user space offers protection of the flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. See Section "8. Memory Organization" on page 52 for the location of the security byte. The flash security mechanism allows the user to lock *n* 512-byte flash pages, starting at page 0 (addresses 0x0000 to 0x01FF), where *n* is the 1's complement number represented by the Security Lock Byte. Note that the page containing the flash Security Lock Byte is unlocked when no other flash pages are locked (all bits of the Lock Byte are '1') and locked when any other flash pages are locked (any bit of the Lock Byte is '0'). An example is shown in Figure 10.1.

Security Lock Byte:	11111101b
1s Complement:	00000010b
Flash pages locked:	3 (First two flash pages + Lock Byte Page)

Figure 10.1. Security Byte Decoding

The level of flash security depends on the flash access method. The three flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 10.1 summarizes the flash security features of the C8051F85x/86x devices.

Action	C2 Debug	User Firmware executing from:		
	Interface	an unlocked page	a locked page	
Read, Write or Erase unlocked pages (except page with Lock Byte)	Permitted	Permitted	Permitted	
Read, Write or Erase locked pages (except page with Lock Byte)	Not Permitted	Flash Error Reset	Permitted	
Read or Write page containing Lock Byte (if no pages are locked)	Permitted	Permitted	N/A	
Read or Write page containing Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted	

Table 10.1. Flash Security Summary

12.2. Interrupt Control Registers

Bit	7	6	5	4	3	2	1	0
Name	EA	ESPI0	ET2	ES0	ET1	EX1	ET0	EX0
Туре	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0

Register 12.1. IE: Interrupt Enable

SFR Address: 0xA8 (bit-addressable)

Table 12.2. IE Register Bit Descriptions

Bit	Name	Function
7	EA	 Enable All Interrupts. Globally enables/disables all interrupts and overrides individual interrupt mask settings. 0: Disable all interrupt sources. 1: Enable each interrupt according to its individual mask setting.
6	ESPI0	 Enable SPI0 Interrupt. This bit sets the masking of the SPI0 interrupts. 0: Disable all SPI0 interrupts. 1: Enable interrupt requests generated by SPI0.
5	ET2	 Enable Timer 2 Interrupt. This bit sets the masking of the Timer 2 interrupt. 0: Disable Timer 2 interrupt. 1: Enable interrupt requests generated by the TF2L or TF2H flags.
4	ES0	Enable UART0 Interrupt. This bit sets the masking of the UART0 interrupt. 0: Disable UART0 interrupt. 1: Enable UART0 interrupt.
3	ET1	 Enable Timer 1 Interrupt. This bit sets the masking of the Timer 1 interrupt. 0: Disable all Timer 1 interrupt. 1: Enable interrupt requests generated by the TF1 flag.
2	EX1	 Enable External Interrupt 1. This bit sets the masking of External Interrupt 1. 0: Disable external interrupt 1. 1: Enable interrupt requests generated by the INT1 input.
1	ETO	 Enable Timer 0 Interrupt. This bit sets the masking of the Timer 0 interrupt. 0: Disable all Timer 0 interrupt. 1: Enable interrupt requests generated by the TF0 flag.

Register 14.4. ADC0AC: ADC0 Accumulator Configuration

Bit	7	6	5	4	3	2	1	0
Name	AD12BE	ADAE	ADSJST				ADRPT	
Туре	RW	RW	RW				RW	
Reset	0	0	0 0 0 0 0 0			0		
SFR Address: 0xB3								

Table 14.7. ADC0AC Register Bit Descriptions

Bit	Name	Function
7	AD12BE	 12-Bit Mode Enable. Enables 12-bit Mode. In 12-bit mode, the ADC throughput is reduced by a factor of 4. 0: 12-bit Mode Disabled. 1: 12-bit Mode Enabled.
6	ADAE	 Accumulate Enable. Enables multiple conversions to be accumulated when burst mode is disabled. 0: ADC0H:ADC0L contain the result of the latest conversion when Burst Mode is disabled. 1: ADC0H:ADC0L contain the accumulated conversion results when Burst Mode is disabled. 1: ADC0H:ADC0L contain the accumulated conversion results when Burst Mode is disabled.
5:3	ADSJST	Accumulator Shift and Justify. Specifies the format of data read from ADC0H:ADC0L. All remaining bit combinations are reserved. 000: Right justified. No shifting applied. 001: Right justified. Shifted right by 1 bit. 010: Right justified. Shifted right by 2 bits. 011: Right justified. Shifted right by 3 bits. 100: Left justified. No shifting applied. 101-111: Reserved.
2:0	ADRPT	Repeat Count.Selects the number of conversions to perform and accumulate in Burst Mode. This bitfield must be set to 000 if Burst Mode is disabled.000: Perform and Accumulate 1 conversion (not used in 12-bit mode).001: Perform and Accumulate 4 conversions (1 conversion in 12-bit mode).010: Perform and Accumulate 8 conversions (2 conversions in 12-bit mode).011: Perform and Accumulate 16 conversions (4 conversions in 12-bit mode).100: Perform and Accumulate 32 conversions (8 conversions in 12-bit mode).101: Perform and Accumulate 64 conversions (16 conversions in 12-bit mode).101: Perform and Accumulate 64 conversions (16 conversions in 12-bit mode).101: Perform and Accumulate 64 conversions (16 conversions in 12-bit mode).

Mnemonic	Description	Bytes	Clock Cycles	
	Arithmetic Operations			
ADD A, Rn	Add register to A	1	1	
ADD A, direct	Add direct byte to A	2	2	
ADD A, @Ri	Add indirect RAM to A	1	2	
ADD A, #data	Add immediate to A	2	2	
ADDC A, Rn	Add register to A with carry	1	1	
ADDC A, direct	Add direct byte to A with carry	2	2	
ADDC A, @Ri	Add indirect RAM to A with carry	1	2	
ADDC A, #data	Add immediate to A with carry	2	2	
SUBB A, Rn	Subtract register from A with borrow	1	1	
SUBB A, direct	Subtract direct byte from A with borrow	2	2	
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2	
SUBB A, #data	Subtract immediate from A with borrow	2	2	
INC A	Increment A	1	1	
INC Rn	Increment register	1	1	
INC direct	Increment direct byte	2	2	
INC @Ri	Increment indirect RAM	1	2	
DEC A	Decrement A	1	1	
DEC Rn	Decrement register	1	1	
DEC direct	Decrement direct byte	2	2	
DEC @Ri	Decrement indirect RAM	1	2	
INC DPTR	Increment Data Pointer	1	1	
MUL AB	Multiply A and B	1	4	
DIV AB	Divide A by B	1	8	
DA A	Decimal adjust A	1	1	
	Logical Operations			
ANL A, Rn	AND Register to A	1	1	
ANL A, direct	AND direct byte to A	2	2	
ANL A, @Ri	AND indirect RAM to A	1	2	
ANL A, #data	AND immediate to A	2	2	
ANL direct, A	AND A to direct byte	2	2	
ANL direct, #data	AND immediate to direct byte	3	3	
ORL A, Rn	OR Register to A	1	1	
ORL A, direct	OR direct byte to A 2 2			
ORL A, @Ri	OR indirect RAM to A 1 2			
ORL A, #data	OR immediate to A	2	2	
ORL direct, A	OR A to direct byte	2	2	
ORL direct, #data	OR immediate to direct byte	3	3	

Table 15.1. CIP-51 Instruction Set Summary

disable the comparison, and prevent the match edge from occuring. Note that although the PCA0CPn compare register determines the duty cycle, it is not always appropriate for firmware to update this register directly. See the sections on 8 to 11-bit and 16-bit PWM mode for additional details on adjusting duty cycle in the various modes.

Duty Cycle =
$$\frac{(2^N - PCA0CPn)}{2^N}$$

Equation 20.2. N-bit Edge-Aligned PWM Duty Cycle With CEXnPOL = 0 (N = PWM resolution)

Duty Cycle =
$$\frac{\text{PCA0CPn}}{2^N}$$

Equation 20.3. N-bit Edge-Aligned PWM Duty Cycle With CEXnPOL = 0 (N = PWM resolution)

Register 20.17. PCA0CPH2: PCA Capture Module High Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0CPH2							
Туре	RW							
Reset	0	0 0 0 0 0 0 0 0 0						
SFR Address: 0xEC								

Table 20.19. PCA0CPH2 Register Bit Descriptions

Bit	Name	Function					
7:0	PCA0CPH2	PCA Capture Module High Byte.					
		The PCA0CPH2 register holds the high byte (MSB) of the 16-bit capture module. This register address also allows access to the high byte of the corresponding PCA channels auto-reload value for 9 to 11-bit PWM mode. The ARSEL bit in register PCA0PWM controls which register is accessed.					
Note: A v	ote: A write to this register will set the modules ECOM bit to a 1.						

Register 21.11. P1MASK: Port 1 Mask

			-					
Bit	7	6	5	4	3	2	1	0
Name	P1MASK							
Туре	RW							
Reset	0	0	0	0	0	0	0	0
SFR Address: 0xEE								

Table 21.14. P1MASK Register Bit Descriptions

Bit	Name	Function				
7:0	P1MASK	Port 1 Mask Value.				
		Selects P1 pins to be compared to the corresponding bits in P1MAT. 0: P1.x pin logic value is ignored and will cause a port mismatch event. 1: P1.x pin logic value is compared to P1MAT.x.				
Note: Po (P	Note: Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits (P1.0-P1.3) on SOIC16 packages.					

Register 21.12. P1MAT: Port 1 Match

			-		-								
Bit	7	6	5	4	3	2	1	0					
Name	P1MAT												
Туре	RW												
Reset	1	1	1	1	1	1	1	1					
SFR Address: 0xED													

Table 21.15. P1MAT Register Bit Descriptions

Bit	Name	Function									
7:0	P1MAT	Port 1 Match Value.									
		Match comparison value used on P1 pins for bits in P1MASK which are set to 1. 0: P1.x pin logic value is compared with logic LOW. 1: P1.x pin logic value is compared with logic HIGH.									
Note: Po (P	 Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits (P1.0-P1.3) on SOIC16 packages. 										

Register 21.13. P1: Port 1 Pin Latch

Bit	7	6	5	4	3	2	1	0				
Name	P1											
Туре	RW											
Reset	1	1	1	1	1	1	1	1				
SFR Address: 0x90 (bit-addressable)												

Table 21.16. P1 Register Bit Descriptions

Bit	Name	Function								
7:0	P1	Port 1 Data.								
		Writing this register sets the port latch logic value for the associated I/O pins configured as digital I/O.								
		Reading this register returns the logic value at the pin, regardless if it is configured as output or input.								
Note: Po (P	Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits (P1.0-P1.3) on SOIC16 packages.									

23.1. Signal Descriptions

The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

23.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operating as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire mode.

23.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operating as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is always driven by the MSB of the shift register.

23.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected (NSS = 1) in 4-wire slave mode.

23.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0 bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

- 1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-point communication between a master and one slave.
- NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple master devices can be used on the same SPI bus.
- NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an output. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration should only be used when operating SPI0 as a master device.

See Figure 23.2, Figure 23.3, and Figure 23.4 for typical connection diagrams of the various operational modes. **Note that the setting of NSSMD bits affects the pinout of the device.** When in 3-wire master or 3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin on the device.

should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 23.5. For slave mode, the clock and data relationships are shown in Figure 23.6 and Figure 23.7. Note that CKPHA should be set to 0 on both the master and slave SPI when communicating between two Silicon Labs C8051 devices.

The SPI0 Clock Rate Register (SPI0CKR) controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency. This sprovided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

Figure 23.5. Master Mode Data/Clock Timing

24.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are received.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

The interface exits Slave Receiver Mode after receiving a STOP. The interface will switch to Slave Transmitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 24.7 shows a typical slave write sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled.

Figure 24.7. Typical Slave Write Sequence

24.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will be a receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are transmitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared (an error condition may be generated if SMB0DAT is written following a received NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP. The interface will switch to slave receiver mode if SMB0DAT is not written following a Slave Transmitter interrupt. Figure 24.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 24.8. Typical Slave Read Sequence

24.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to take in response to an SMBus event depend on whether hardware slave address recognition and ACK generation is enabled or disabled. Table 24.5 describes the typical actions when hardware slave address recognition and ACK generation is disabled. Table 24.6 describes the typical actions when hardware slave address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

Table 24.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0) (Continued)

	Val	les	Rea	d			Values to Write			tus ected
өром	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	УСК	Next Sta Vector Exp
uo	0010	0	1	x	Lost arbitration while attempting a	Abort failed transfer.	0	0	Х	_
diti	0010	0	1		repeated START.	Reschedule failed transfer.	1	0	Х	1110
Con	0001	0	1	x	Lost arbitration due to a detected	Abort failed transfer.	0	0	Х	
ror	0001	0	1	^	STOP.	Reschedule failed transfer.	1	0	Х	1110
sП	0000	1	1	x	Lost arbitration while transmitting a data byte as master.	Abort failed transfer.	0	0	0	
Bu	0000					Reschedule failed transfer.	1	0	0	1110

Table 24.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1)

4	Values Read							Values to Write			itus iected	
эроМ	Status	Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Si Vector Ex	
	111	10	0	0	Х	A master START was generated.	Load slave address + R/W into SMB0DAT.	0	0	Х	1100	
			0	0	0	A master data or address byte was	Set STA to restart transfer.	1	0	Х	1110	
L			0	0	0	transmitted; NACK received.	Abort transfer.	0	1	Х		
smitte							Load next data byte into SMB0- DAT.	0	0	Х	1100	
lran:					1	1		End transfer with STOP.	0	1	Х	_
aster 1	11(00	0	0			A master data or address byte was	End transfer with STOP and start another transfer.	1	1	Х	_
ŝ			-		-	transmitted; ACK received.	Send repeated START.	1	0	Х	1110	
							Switch to Master Receiver Mode (clear SI without writing new data to SMB0DAT). Set ACK for initial data byte.	0	0	1	1000	

	Va	alue	es F	Rea	d			Va V	ues Vrite	e to	itus ected
Mode	Status	Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Sta Vector Exp
							Set ACK for next data byte; Read SMB0DAT.	0	0	1	1000
			0	0	1	A master data byte was received; ACK sent.	Set NACK to indicate next data byte as the last data byte; Read SMB0DAT.	0	0	0	1000
er.							Initiate repeated START.	1	0	0	1110
r Receive	1000	00					Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	Х	1100
aste							Read SMB0DAT; send STOP.	0	1	0	
Σ						A master data byte was received; NACK sent (last byte).	Read SMB0DAT; Send STOP followed by START.	1	1	0	1110
			0	0	0		Initiate repeated START.	1	0	0	1110
							Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	Х	1100
er.			0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001
smitte	010	00	0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	Х	0100
e Tran			0	1	Х	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	Х	0001
Slav	010	01	0	х	Х	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	Х	

Table 24.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1) (Continued)

24.7. I2C / SMBus Control Registers

Bit	7	6	5	4	3	2	1	0				
Name	Name ENSMB INH BUSY EXTHOLD SMBTOE SMBFTE SMBCS											
Туре	RW	RW	R	RW	RW	RW	R	RW				
Reset 0												
SFR Add	SFR Address: 0xC1											

Register 24.1. SMB0CF: SMBus0 Configuration

Table 24.7. SMB0CF Register Bit Descriptions

Bit	Name	Function
7	ENSMB	SMBus0 Enable. This bit enables the SMBus0 interface when set to 1. When enabled, the interface con-
		stantly monitors the SDA and SCL pins.
6	INH	SMBus0 Slave Inhibit.
		When this bit is set to logic 1, the SMBus0 does not generate an interrupt when slave events occur. This effectively removes the SMBus0 slave from the bus. Master Mode interrupts are not affected.
5	BUSY	SMBus0 Busy Indicator.
		This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free-timeout is sensed.
4	EXTHOLD	SMBus0 Setup and Hold Time Extension Enable.
		This bit controls the SDA setup and hold times.
		0: SDA Extended Setup and Hold Times disabled.
		1: SDA Extended Setup and Hold Times enabled.
3	SMBTOE	SMBus0 SCL Timeout Detection Enable.
		This bit enables SCL low timeout detection. If set to logic 1, the SMBus0 forces Timer 3 to reload while SCL is high and allows Timer 3 to count when SCL goes low. If Timer 3 is configured to Split Mode, only the High Byte of the timer is held in reload while SCL is high. Timer 3 should be programmed to generate interrupts at 25 ms, and the Timer 3 interrupt service routine should reset SMBus0 communication.
2	SMBFTE	SMBus0 Free Timeout Detection Enable.
		When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods.

25.1. Timer 0 and Timer 1

Timer 0 and Timer 1 are each implemented as a16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register. Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register. Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently for the operating modes described below.

25.2. Timer 2 and Timer 3

Timer 2 and Timer 3 are functionally equivalent, with the only differences being the top-level connections to other parts of the system, as detailed in Table 25.1 and Table 25.2.

The timers are 16 bits wide, formed by two 8-bit SFRs: TMRnL (low byte) and TMRnH (high byte). Each timer may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The TnSPLIT bit in TMRnCN defines the timer operation mode.

The timers may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. Note that the external oscillator source divided by 8 is synchronized with the system clock.

25.2.1. 16-bit Timer with Auto-Reload

When TnSPLIT is zero, the timer operates as a 16-bit timer with auto-reload. In this mode, the timer may be configured to clock from SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the timer reload registers (TMRnRLH and TMRnRLL) is loaded into the main timer count register as shown in Figure 25.4, and the High Byte Overflow Flag (TFnH) is set. If the timer interrupts are enabled, an interrupt will be generated on each timer overflow. Additionally, if the timer interrupts are enabled and the TFnLEN bit is set, an interrupt will be generated each time the lower 8 bits (TMRnL) overflow from 0xFF to 0x00.

Figure 25.4. 16-Bit Mode Block Diagram

Register 25.2. TCON: Timer 0/1 Control

Bit	7	6	5	4	3	2	1	0				
Name	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0				
Туре	RW	RW	RW	RW	RW	RW	RW	RW				
Reset	0	0	0	0	0	0	0	0				
SFR Add	SFR Address: 0x88 (bit-addressable)											

Table 25.4. TCON Register Bit Descriptions

Bit	Name	Function
7	TF1	Timer 1 Overflow Flag.Set to 1 by hardware when Timer 1 overflows. This flag can be cleared by software but is
		automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.
6	TR1	Timer 1 Run Control.
		Timer 1 is enabled by setting this bit to 1.
5	TF0	Timer 0 Overflow Flag.
		Set to 1 by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.
4	TR0	Timer 0 Run Control.
		Timer 0 is enabled by setting this bit to 1.
3	IE1	External Interrupt 1.
		This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine in edge-triggered mode.
2	IT1	Interrupt 1 Type Select.
		 This bit selects whether the configured INT1 interrupt will be edge or level sensitive. INT1 is configured active low or high by the IN1PL bit in register IT01CF. 0: INT1 is level triggered. 1: INT1 is edge triggered.
1	IE0	External Interrupt 0.
		This flag is set by hardware when an edge/level of type defined by IT0 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 0 service routine in edge-triggered mode.
0	IT0	Interrupt 0 Type Select.
		This bit selects whether the configured INT0 interrupt will be edge or level sensitive. INT0 is configured active low or high by the IN0PL bit in register IT01CF.0: INT0 is level triggered.1: INT0 is edge triggered.

Register 25.8. TMR2CN: Timer 2 Control

Bit	7	6	5	4	3	2	1	0					
Name	TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2	Reserved	T2XCLK					
Туре	RW	RW	RW	RW	RW	RW	R	RW					
Reset	0	0	0	0	0	0	0	0					
SFR Add	lress: 0xC8 (SFR Address: 0xC8 (bit-addressable)											

Table 25.10. TMR2CN Register Bit Descriptions

Bit	Name	Function
7	TF2H	Timer 2 High Byte Overflow Flag.
		Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF2L	Timer 2 Low Byte Overflow Flag.
		Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. TF2L will be set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.
5	TF2LEN	Timer 2 Low Byte Interrupt Enable.
		When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 2 overflows.
4	TF2CEN	Timer 2 Capture Enable.
		When set to 1, this bit enables Timer 2 Capture Mode. If TF2CEN is set and Timer 2 interrupts are enabled, an interrupt will be generated on a falling edge of the selected T2 input pin, and the current 16-bit timer value in TMR2H:TMR2L will be copied to TMR2RLH:TMR2RLL.
3	T2SPLIT	Timer 2 Split Mode Enable.
		 When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload. 0: Timer 2 operates in 16-bit auto-reload mode. 1: Timer 2 operates as two 8-bit auto-reload timers.
2	TR2	Timer 2 Run Control.
		Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR2H only; TMR2L is always enabled in split mode.
1	Reserved	Must write reset value.

