
Silicon Labs - C8051F863-C-ISR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 13

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 2.2V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 16-SOIC (0.154", 3.90mm Width)

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f863-c-isr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f863-c-isr-4400840
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Rev. 1.0 61

10. Flash Memory

On-chip, re-programmable flash memory is included for program code and non-volatile data storage. The
flash memory is organized in 512-byte pages. It can be erased and written through the C2 interface or from
firmware by overloading the MOVX instruction. Any individual byte in flash memory must only be written
once between page erase operations.

10.1. Security Options
The CIP-51 provides security options to protect the flash memory from inadvertent modification by
software as well as to prevent the viewing of proprietary program code and constants. The Program Store
Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register
PSCTL) bits protect the flash memory from accidental modification by software. PSWE must be explicitly
set to ‘1’ before software can modify the flash memory; both PSWE and PSEE must be set to ‘1’ before
software can erase flash memory. Additional security features prevent proprietary program code and data
constants from being read or altered across the C2 interface.

A Security Lock Byte located in flash user space offers protection of the flash program memory from
access (reads, writes, or erases) by unprotected code or the C2 interface. See Section “8. Memory
Organization” on page 52 for the location of the security byte. The flash security mechanism allows the
user to lock n 512-byte flash pages, starting at page 0 (addresses 0x0000 to 0x01FF), where n is the 1’s
complement number represented by the Security Lock Byte. Note that the page containing the flash
Security Lock Byte is unlocked when no other flash pages are locked (all bits of the Lock Byte are
‘1’) and locked when any other flash pages are locked (any bit of the Lock Byte is ‘0’). An example is
shown in Figure 10.1.

Figure 10.1. Security Byte Decoding

The level of flash security depends on the flash access method. The three flash access methods that can
be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on
unlocked pages, and user firmware executing on locked pages. Table 10.1 summarizes the flash security
features of the C8051F85x/86x devices.

Table 10.1. Flash Security Summary

Action C2 Debug
Interface

User Firmware executing from:

an unlocked page a locked page

Read, Write or Erase unlocked pages
(except page with Lock Byte)

Permitted Permitted Permitted

Read, Write or Erase locked pages
(except page with Lock Byte)

Not Permitted Flash Error Reset Permitted

Read or Write page containing Lock Byte
(if no pages are locked)

Permitted Permitted N/A

Read or Write page containing Lock Byte
(if any page is locked)

Not Permitted Flash Error Reset Permitted

Security Lock Byte: 11111101b

1s Complement: 00000010b

Flash pages locked: 3 (First two flash pages + Lock Byte Page)

Rev. 1.0 75

12.2. Interrupt Control Registers

Register 12.1. IE: Interrupt Enable

Bit 7 6 5 4 3 2 1 0

Name EA ESPI0 ET2 ES0 ET1 EX1 ET0 EX0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xA8 (bit-addressable)

Table 12.2. IE Register Bit Descriptions

Bit Name Function

7 EA Enable All Interrupts.

Globally enables/disables all interrupts and overrides individual interrupt mask settings.
0: Disable all interrupt sources.
1: Enable each interrupt according to its individual mask setting.

6 ESPI0 Enable SPI0 Interrupt.

This bit sets the masking of the SPI0 interrupts.
0: Disable all SPI0 interrupts.
1: Enable interrupt requests generated by SPI0.

5 ET2 Enable Timer 2 Interrupt.

This bit sets the masking of the Timer 2 interrupt.
0: Disable Timer 2 interrupt.
1: Enable interrupt requests generated by the TF2L or TF2H flags.

4 ES0 Enable UART0 Interrupt.

This bit sets the masking of the UART0 interrupt.
0: Disable UART0 interrupt.
1: Enable UART0 interrupt.

3 ET1 Enable Timer 1 Interrupt.

This bit sets the masking of the Timer 1 interrupt.
0: Disable all Timer 1 interrupt.
1: Enable interrupt requests generated by the TF1 flag.

2 EX1 Enable External Interrupt 1.

This bit sets the masking of External Interrupt 1.
0: Disable external interrupt 1.
1: Enable interrupt requests generated by the INT1 input.

1 ET0 Enable Timer 0 Interrupt.

This bit sets the masking of the Timer 0 interrupt.
0: Disable all Timer 0 interrupt.
1: Enable interrupt requests generated by the TF0 flag.

102 Rev. 1.0

Register 14.4. ADC0AC: ADC0 Accumulator Configuration

Bit 7 6 5 4 3 2 1 0

Name AD12BE ADAE ADSJST ADRPT

Type RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xB3

Table 14.7. ADC0AC Register Bit Descriptions

Bit Name Function

7 AD12BE 12-Bit Mode Enable.

Enables 12-bit Mode. In 12-bit mode, the ADC throughput is reduced by a factor of 4.
0: 12-bit Mode Disabled.
1: 12-bit Mode Enabled.

6 ADAE Accumulate Enable.

Enables multiple conversions to be accumulated when burst mode is disabled.
0: ADC0H:ADC0L contain the result of the latest conversion when Burst Mode is dis-
abled.
1: ADC0H:ADC0L contain the accumulated conversion results when Burst Mode is dis-
abled. Software must write 0x0000 to ADC0H:ADC0L to clear the accumulated result.

5:3 ADSJST Accumulator Shift and Justify.

Specifies the format of data read from ADC0H:ADC0L. All remaining bit combinations
are reserved.
000: Right justified. No shifting applied.
001: Right justified. Shifted right by 1 bit.
010: Right justified. Shifted right by 2 bits.
011: Right justified. Shifted right by 3 bits.
100: Left justified. No shifting applied.
101-111: Reserved.

2:0 ADRPT Repeat Count.

Selects the number of conversions to perform and accumulate in Burst Mode. This bit
field must be set to 000 if Burst Mode is disabled.
000: Perform and Accumulate 1 conversion (not used in 12-bit mode).
001: Perform and Accumulate 4 conversions (1 conversion in 12-bit mode).
010: Perform and Accumulate 8 conversions (2 conversions in 12-bit mode).
011: Perform and Accumulate 16 conversions (4 conversions in 12-bit mode).
100: Perform and Accumulate 32 conversions (8 conversions in 12-bit mode).
101: Perform and Accumulate 64 conversions (16 conversions in 12-bit mode).
110-111: Reserved.

Rev. 1.0 115

Table 15.1. CIP-51 Instruction Set Summary

Mnemonic Description Bytes Clock
Cycles

Arithmetic Operations

ADD A, Rn Add register to A 1 1

ADD A, direct Add direct byte to A 2 2

ADD A, @Ri Add indirect RAM to A 1 2

ADD A, #data Add immediate to A 2 2

ADDC A, Rn Add register to A with carry 1 1

ADDC A, direct Add direct byte to A with carry 2 2

ADDC A, @Ri Add indirect RAM to A with carry 1 2

ADDC A, #data Add immediate to A with carry 2 2

SUBB A, Rn Subtract register from A with borrow 1 1

SUBB A, direct Subtract direct byte from A with borrow 2 2

SUBB A, @Ri Subtract indirect RAM from A with borrow 1 2

SUBB A, #data Subtract immediate from A with borrow 2 2

INC A Increment A 1 1

INC Rn Increment register 1 1

INC direct Increment direct byte 2 2

INC @Ri Increment indirect RAM 1 2

DEC A Decrement A 1 1

DEC Rn Decrement register 1 1

DEC direct Decrement direct byte 2 2

DEC @Ri Decrement indirect RAM 1 2

INC DPTR Increment Data Pointer 1 1

MUL AB Multiply A and B 1 4

DIV AB Divide A by B 1 8

DA A Decimal adjust A 1 1

Logical Operations

ANL A, Rn AND Register to A 1 1

ANL A, direct AND direct byte to A 2 2

ANL A, @Ri AND indirect RAM to A 1 2

ANL A, #data AND immediate to A 2 2

ANL direct, A AND A to direct byte 2 2

ANL direct, #data AND immediate to direct byte 3 3

ORL A, Rn OR Register to A 1 1

ORL A, direct OR direct byte to A 2 2

ORL A, @Ri OR indirect RAM to A 1 2

ORL A, #data OR immediate to A 2 2

ORL direct, A OR A to direct byte 2 2

ORL direct, #data OR immediate to direct byte 3 3

160 Rev. 1.0

disable the comparison, and prevent the match edge from occuring. Note that although the PCA0CPn
compare register determines the duty cycle, it is not always appropriate for firmware to update this register
directly. See the sections on 8 to 11-bit and 16-bit PWM mode for additional details on adjusting duty cycle
in the various modes.

Equation 20.2. N-bit Edge-Aligned PWM Duty Cycle With CEXnPOL = 0 (N = PWM resolution)

Equation 20.3. N-bit Edge-Aligned PWM Duty Cycle With CEXnPOL = 0 (N = PWM resolution)

Duty Cycle 2
N

PCA0CPn– 

2
N

--=

Duty Cycle PCA0CPn

2
N

-------------------------=

Rev. 1.0 183

Register 20.17. PCA0CPH2: PCA Capture Module High Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0CPH2

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xEC

Table 20.19. PCA0CPH2 Register Bit Descriptions

Bit Name Function

7:0 PCA0CPH2 PCA Capture Module High Byte.

The PCA0CPH2 register holds the high byte (MSB) of the 16-bit capture module.This
register address also allows access to the high byte of the corresponding PCA channels
auto-reload value for 9 to 11-bit PWM mode. The ARSEL bit in register PCA0PWM con-
trols which register is accessed.

Note: A write to this register will set the modules ECOM bit to a 1.

Rev. 1.0 203

Register 21.11. P1MASK: Port 1 Mask

Bit 7 6 5 4 3 2 1 0

Name P1MASK

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xEE

Table 21.14. P1MASK Register Bit Descriptions

Bit Name Function

7:0 P1MASK Port 1 Mask Value.

Selects P1 pins to be compared to the corresponding bits in P1MAT.
0: P1.x pin logic value is ignored and will cause a port mismatch event.
1: P1.x pin logic value is compared to P1MAT.x.

Note: Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits
(P1.0-P1.3) on SOIC16 packages.

204 Rev. 1.0

Register 21.12. P1MAT: Port 1 Match

Bit 7 6 5 4 3 2 1 0

Name P1MAT

Type RW

Reset 1 1 1 1 1 1 1 1

SFR Address: 0xED

Table 21.15. P1MAT Register Bit Descriptions

Bit Name Function

7:0 P1MAT Port 1 Match Value.

Match comparison value used on P1 pins for bits in P1MASK which are set to 1.
0: P1.x pin logic value is compared with logic LOW.
1: P1.x pin logic value is compared with logic HIGH.

Note: Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits
(P1.0-P1.3) on SOIC16 packages.

Rev. 1.0 205

Register 21.13. P1: Port 1 Pin Latch

Bit 7 6 5 4 3 2 1 0

Name P1

Type RW

Reset 1 1 1 1 1 1 1 1

SFR Address: 0x90 (bit-addressable)

Table 21.16. P1 Register Bit Descriptions

Bit Name Function

7:0 P1 Port 1 Data.

Writing this register sets the port latch logic value for the associated I/O pins configured
as digital I/O.
Reading this register returns the logic value at the pin, regardless if it is configured as
output or input.

Note: Port 1 consists of 8 bits (P1.0-P1.7) on QSOP24 packages and 7 bits (P1.0-P1.6) on QFN20 packages and 4 bits
(P1.0-P1.3) on SOIC16 packages.

218 Rev. 1.0

23.1. Signal Descriptions
The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

23.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is
operating as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant
bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire
mode.

23.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is
operating as a master and an output when SPI0 is operating as a slave. Data is transferred most-
significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and
when the SPI operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire
mode, MISO is always driven by the MSB of the shift register.

23.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0
generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the
slave is not selected (NSS = 1) in 4-wire slave mode.

23.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS
is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no
select signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for
point-to-point communication between a master and one slave.

2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is
enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as
a master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple
master devices can be used on the same SPI bus.

3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an
output. The setting of NSSMD0 determines what logic level the NSS pin will output. This
configuration should only be used when operating SPI0 as a master device.

See Figure 23.2, Figure 23.3, and Figure 23.4 for typical connection diagrams of the various operational
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will
be mapped to a pin on the device.

222 Rev. 1.0

should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The
clock and data line relationships for master mode are shown in Figure 23.5. For slave mode, the clock and
data relationships are shown in Figure 23.6 and Figure 23.7. Note that CKPHA should be set to 0 on both
the master and slave SPI when communicating between two Silicon Labs C8051 devices.

The SPI0 Clock Rate Register (SPI0CKR) controls the master mode serial clock frequency. This register is
ignored when operating in slave mode. When the SPI is configured as a master, the maximum data
transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the
SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the
system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial
input data synchronously with the slave’s system clock. If the master issues SCK, NSS, and the serial input
data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock
frequency. In the special case where the master only wants to transmit data to the slave and does not need
to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum
data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK,
NSS, and the serial input data synchronously with the slave’s system clock.

Figure 23.5. Master Mode Data/Clock Timing

SCK
(CKPOL=0, CKPHA=0)

SCK
(CKPOL=0, CKPHA=1)

SCK
(CKPOL=1, CKPHA=0)

SCK
(CKPOL=1, CKPHA=1)

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MISO/MOSI

NSS (Must Remain High
in Multi-Master Mode)

244 Rev. 1.0

24.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be
a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled
(INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and
direction bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering Slave
Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the
received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK
generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set
up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are
received.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each
received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK,
and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be
set up by the software prior to receiving the byte when hardware ACK generation is enabled.

The interface exits Slave Receiver Mode after receiving a STOP. The interface will switch to Slave
Transmitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 24.7 shows a typical slave
write sequence. Two received data bytes are shown, though any number of bytes may be received. Notice
that the ‘data byte transferred’ interrupts occur at different places in the sequence, depending on whether
hardware ACK generation is enabled. The interrupt occurs before the ACK with hardware ACK generation
disabled, and after the ACK when hardware ACK generation is enabled.

Figure 24.7. Typical Slave Write Sequence

PWSLAS Data ByteData Byte A AA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)

Rev. 1.0 245

24.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will
be a receiver during the address byte, and a transmitter during all data bytes. When slave events are
enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START
followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation
is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The
software must respond to the received slave address with an ACK, or ignore the received slave address
with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address
which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK
cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are
transmitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be
transmitted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After
each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK,
SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should
not be written to before SI is cleared (an error condition may be generated if SMB0DAT is written following
a received NACK while in slave transmitter mode). The interface exits slave transmitter mode after
receiving a STOP. The interface will switch to slave receiver mode if SMB0DAT is not written following a
Slave Transmitter interrupt. Figure 24.8 shows a typical slave read sequence. Two transmitted data bytes
are shown, though any number of bytes may be transmitted. Notice that all of the “data byte transferred”
interrupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is
enabled.

Figure 24.8. Typical Slave Read Sequence

24.6. SMBus Status Decoding
The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to
take in response to an SMBus event depend on whether hardware slave address recognition and ACK
generation is enabled or disabled. Table 24.5 describes the typical actions when hardware slave address
recognition and ACK generation is disabled. Table 24.6 describes the typical actions when hardware slave
address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four
upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the
typical responses; application-specific procedures are allowed as long as they conform to the SMBus
specification. Highlighted responses are allowed by hardware but do not conform to the SMBus
specification.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)

248 Rev. 1.0

B
u

s
E

rr
o

r
C

o
n

d
it

io
n

0010 0 1 X
Lost arbitration while attempting a
repeated START.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0001 0 1 X
Lost arbitration due to a detected
STOP.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0000 1 1 X
Lost arbitration while transmitting a
data byte as master.

Abort failed transfer. 0 0 0 —

Reschedule failed transfer. 1 0 0 1110

Table 24.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1)

M
o

d
e

Values Read

Current SMbus State Typical Response Options

Values to
Write

N
ex

t
S

ta
tu

s

V
ec

to
r

E
xp

e
ct

ed

S
ta

tu
s

V
ec

to
r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

M
a

st
er

 T
ra

n
s

m
it

te
r

1110 0 0 X A master START was generated.
Load slave address + R/W into
SMB0DAT.

0 0 X 1100

1100

0 0 0
A master data or address byte was
transmitted; NACK received.

Set STA to restart transfer. 1 0 X 1110

Abort transfer. 0 1 X —

0 0 1
A master data or address byte was
transmitted; ACK received.

Load next data byte into SMB0-
DAT.

0 0 X 1100

End transfer with STOP. 0 1 X —

End transfer with STOP and start
another transfer.

1 1 X —

Send repeated START. 1 0 X 1110

Switch to Master Receiver Mode
(clear SI without writing new data
to SMB0DAT). Set ACK for initial
data byte.

0 0 1 1000

Table 24.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0) (Continued)

M
o

d
e

Values Read

Current SMbus State Typical Response Options

Values to
Write

N
ex

t
S

ta
tu

s

V
e

ct
o

r
E

xp
e

ct
ed

S
ta

tu
s

V
e

c
to

r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

Rev. 1.0 249

M
as

te
r

R
e

c
ei

ve
r

1000

0 0 1
A master data byte was received; ACK
sent.

Set ACK for next data byte;
Read SMB0DAT.

0 0 1 1000

Set NACK to indicate next data
byte as the last data byte;
Read SMB0DAT.

0 0 0 1000

Initiate repeated START. 1 0 0 1110

Switch to Master Transmitter
Mode (write to SMB0DAT before
clearing SI).

0 0 X 1100

0 0 0
A master data byte was received;
NACK sent (last byte).

Read SMB0DAT; send STOP. 0 1 0 —

Read SMB0DAT; Send STOP
followed by START.

1 1 0 1110

Initiate repeated START. 1 0 0 1110

Switch to Master Transmitter
Mode (write to SMB0DAT before
clearing SI).

0 0 X 1100

S
la

ve
 T

ra
n

s
m

it
te

r

0100

0 0 0
A slave byte was transmitted; NACK
received.

No action required (expecting
STOP condition).

0 0 X 0001

0 0 1
A slave byte was transmitted; ACK
received.

Load SMB0DAT with next data
byte to transmit.

0 0 X 0100

0 1 X
A Slave byte was transmitted; error
detected.

No action required (expecting
Master to end transfer).

0 0 X 0001

0101 0 X X
An illegal STOP or bus error was
detected while a Slave Transmission
was in progress.

Clear STO.
0 0 X —

Table 24.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1) (Continued)

M
o

d
e

Values Read

Current SMbus State Typical Response Options

Values to
Write

N
e

x
t

S
ta

tu
s

V
e

c
to

r
E

x
p

e
c

te
d

S
ta

tu
s

V
e

ct
o

r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

Rev. 1.0 251

24.7. I2C / SMBus Control Registers

Register 24.1. SMB0CF: SMBus0 Configuration

Bit 7 6 5 4 3 2 1 0

Name ENSMB INH BUSY EXTHOLD SMBTOE SMBFTE SMBCS

Type RW RW R RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xC1

Table 24.7. SMB0CF Register Bit Descriptions

Bit Name Function

7 ENSMB SMBus0 Enable.

This bit enables the SMBus0 interface when set to 1. When enabled, the interface con-
stantly monitors the SDA and SCL pins.

6 INH SMBus0 Slave Inhibit.

When this bit is set to logic 1, the SMBus0 does not generate an interrupt when slave
events occur. This effectively removes the SMBus0 slave from the bus. Master Mode
interrupts are not affected.

5 BUSY SMBus0 Busy Indicator.

This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0
when a STOP or free-timeout is sensed.

4 EXTHOLD SMBus0 Setup and Hold Time Extension Enable.

This bit controls the SDA setup and hold times.
0: SDA Extended Setup and Hold Times disabled.
1: SDA Extended Setup and Hold Times enabled.

3 SMBTOE SMBus0 SCL Timeout Detection Enable.

This bit enables SCL low timeout detection. If set to logic 1, the SMBus0 forces Timer 3
to reload while SCL is high and allows Timer 3 to count when SCL goes low. If Timer 3 is
configured to Split Mode, only the High Byte of the timer is held in reload while SCL is
high. Timer 3 should be programmed to generate interrupts at 25 ms, and the Timer 3
interrupt service routine should reset SMBus0 communication.

2 SMBFTE SMBus0 Free Timeout Detection Enable.

When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain high
for more than 10 SMBus clock source periods.

Rev. 1.0 261

25.1. Timer 0 and Timer 1
Timer 0 and Timer 1 are each implemented as a16-bit register accessed as two separate bytes: a low byte
(TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable
Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in
the IE register. Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register. Both counter/
timers operate in one of four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the
Counter/Timer Mode register (TMOD). Each timer can be configured independently for the operating
modes described below.

266 Rev. 1.0

25.2. Timer 2 and Timer 3
Timer 2 and Timer 3 are functionally equivalent, with the only differences being the top-level connections to
other parts of the system, as detailed in Table 25.1 and Table 25.2.

The timers are 16 bits wide, formed by two 8-bit SFRs: TMRnL (low byte) and TMRnH (high byte). Each
timer may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The TnSPLIT bit in
TMRnCN defines the timer operation mode.

The timers may be clocked by the system clock, the system clock divided by 12, or the external oscillator
source divided by 8. Note that the external oscillator source divided by 8 is synchronized with the system
clock.

25.2.1. 16-bit Timer with Auto-Reload

When TnSPLIT is zero, the timer operates as a 16-bit timer with auto-reload. In this mode, the timer may
be configured to clock from SYSCLK, SYSCLK divided by 12, or the external oscillator clock source
divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit
value in the timer reload registers (TMRnRLH and TMRnRLL) is loaded into the main timer count register
as shown in Figure 25.4, and the High Byte Overflow Flag (TFnH) is set. If the timer interrupts are enabled,
an interrupt will be generated on each timer overflow. Additionally, if the timer interrupts are enabled and
the TFnLEN bit is set, an interrupt will be generated each time the lower 8 bits (TMRnL) overflow from
0xFF to 0x00.

Figure 25.4. 16-Bit Mode Block Diagram

TCLK / 8

YSCLK / 12

SYSCLK

TMRnL TMRnH

Reload

TCLK
0

1

TRn

0

1

TnXCLK

Inter

TFnL
Overflow

TFnH
Overflow

TnML

TMRnRLL TMRnRLH

TFnLEN

Rev. 1.0 271

Register 25.2. TCON: Timer 0/1 Control

Bit 7 6 5 4 3 2 1 0

Name TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0x88 (bit-addressable)

Table 25.4. TCON Register Bit Descriptions

Bit Name Function

7 TF1 Timer 1 Overflow Flag.

Set to 1 by hardware when Timer 1 overflows. This flag can be cleared by software but is
automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.

6 TR1 Timer 1 Run Control.

Timer 1 is enabled by setting this bit to 1.

5 TF0 Timer 0 Overflow Flag.

Set to 1 by hardware when Timer 0 overflows. This flag can be cleared by software but is
automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.

4 TR0 Timer 0 Run Control.

Timer 0 is enabled by setting this bit to 1.

3 IE1 External Interrupt 1.

This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can
be cleared by software but is automatically cleared when the CPU vectors to the External
Interrupt 1 service routine in edge-triggered mode.

2 IT1 Interrupt 1 Type Select.

This bit selects whether the configured INT1 interrupt will be edge or level sensitive. INT1
is configured active low or high by the IN1PL bit in register IT01CF.
0: INT1 is level triggered.
1: INT1 is edge triggered.

1 IE0 External Interrupt 0.

This flag is set by hardware when an edge/level of type defined by IT0 is detected. It can
be cleared by software but is automatically cleared when the CPU vectors to the External
Interrupt 0 service routine in edge-triggered mode.

0 IT0 Interrupt 0 Type Select.

This bit selects whether the configured INT0 interrupt will be edge or level sensitive. INT0
is configured active low or high by the IN0PL bit in register IT01CF.
0: INT0 is level triggered.
1: INT0 is edge triggered.

Rev. 1.0 277

Register 25.8. TMR2CN: Timer 2 Control

Bit 7 6 5 4 3 2 1 0

Name TF2H TF2L TF2LEN TF2CEN T2SPLIT TR2 Reserved T2XCLK

Type RW RW RW RW RW RW R RW

Reset 0 0 0 0 0 0 0 0

SFR Address: 0xC8 (bit-addressable)

Table 25.10. TMR2CN Register Bit Descriptions

Bit Name Function

7 TF2H Timer 2 High Byte Overflow Flag.

Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit
mode, this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2
interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt ser-
vice routine. This bit is not automatically cleared by hardware.

6 TF2L Timer 2 Low Byte Overflow Flag.

Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. TF2L will be
set when the low byte overflows regardless of the Timer 2 mode. This bit is not automat-
ically cleared by hardware.

5 TF2LEN Timer 2 Low Byte Interrupt Enable.

When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also
enabled, an interrupt will be generated when the low byte of Timer 2 overflows.

4 TF2CEN Timer 2 Capture Enable.

When set to 1, this bit enables Timer 2 Capture Mode. If TF2CEN is set and Timer 2
interrupts are enabled, an interrupt will be generated on a falling edge of the selected T2
input pin, and the current 16-bit timer value in TMR2H:TMR2L will be copied to
TMR2RLH:TMR2RLL.

3 T2SPLIT Timer 2 Split Mode Enable.

When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.
0: Timer 2 operates in 16-bit auto-reload mode.
1: Timer 2 operates as two 8-bit auto-reload timers.

2 TR2 Timer 2 Run Control.

Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR2H
only; TMR2L is always enabled in split mode.

1 Reserved Must write reset value.

