

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	1.6MB (1.6M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	138K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-13
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2289h200f100labkxuma1

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC2288H, XC2289H XC2000 Family / High Line

General Device Information

Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
8	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output			
	T3OUT	01	St/B	GPT12E Timer T3 Toggle Latch Output			
	T6OUT	02	St/B	GPT12E Timer T6 Toggle Latch Output			
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
	ESR2_1	I	St/B	ESR2 Trigger Input 1			
	RxDC4B	I	St/B	CAN Node 4 Receive Data Input			
	U4C1_DX0C	I	St/B	USIC4 Channel 0 Receive Data Input			
9	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output			
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output			
	CCU62_CCP OS1A	I	St/B	CCU62 Position Input 1			
	TMS_C	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.			
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input			
10	P8.2	O0 / I	St/B	Bit 2 of Port 8, General Purpose Input/Output			
	CCU60_CC6 2	01	St/B	CCU60 Channel 2 Output			
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output			
	U1C1_DOUT	O3	St/B	USIC1 Channel 1 Shift Data output			
	CCU60_CC6 2INB	Ι	St/B	CCU60 Channel 2 Input			

XC2288H, XC2289H XC2000 Family / High Line

General Device Information

Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
59	P11.3	O0 / I	St/B	Bit 3 of Port 11, General Purpose Input/Output		
	CCU61_COU T63	01	St/B	CCU61 Channel 3 Output		
	CCU61_COU T62	O2	St/B	CCU61 Channel 2 Output		
	TxDC5	O3	St/B	CAN Node 5 Transmit Data Input		
	CCU61_T13 HRF	1	St/B	External Run Control Input for T13 of CCU61		
	U4C0_DX1A	I	St/B	USIC4 Channel 0 Shift Clock Input		
60	P4.0	O0 / I	St/B	Bit 0 of Port 4, General Purpose Input/Output		
	CC2_CC24	O3 / I	St/B	CAPCOM2 CC24IO Capture Inp./ Compare Out.		
	CS0	ОН	St/B	External Bus Interface Chip Select 0 Output		
61	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output		
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output		
	CCU63_COU T63	O2	St/B	CCU63 Channel 3 Output		
	CC2_CC16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.		
	A16	ОН	St/B	External Bus Interface Address Line 16		
	ESR2_0	I	St/B	ESR2 Trigger Input 0		
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input		
	U0C1_DX0D	I	St/B	USIC0 Channel 1 Shift Data Input		
	RxDC0A	I	St/B	CAN Node 0 Receive Data Input		
62	P11.2	O0 / I	St/B	Bit 2 of Port 11, General Purpose Input/Output		
	CCU61_CC6 1	01	St/B	CCU61 Channel 1 Output		
	U3C1_DOUT	02	St/B	USIC3 Channel 1 Shift Data Output		
	U4C0_SELO 1	O3	St/B	USIC4 Channel 0 Select/Control 1 Output		
	CCU63_CCP OS2A	1	St/B	CCU63 Position Input 2		
	CCU61_CC6 1INB	I	St/B	CCU61 Channel 1 Input		

XC2288H, XC2289H XC2000 Family / High Line

General Device Information

Pin	Symbol	Ctrl.	Туре	Function
113	P10.8	O0 / I	St/B	Bit 8 of Port 10, General Purpose Input/Output
	U0C0_MCLK OUT	01	St/B	USIC0 Channel 0 Master Clock Output
	U0C1_SELO 0	O2	St/B	USIC0 Channel 1 Select/Control 0 Output
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output
	AD8	OH / IH	St/B	External Bus Interface Address/Data Line 8
	CCU60_CCP OS1A	I	St/B	CCU60 Position Input 1
	U0C0_DX1C	I	St/B	USIC0 Channel 0 Shift Clock Input
	BRKIN_B	I	St/B	OCDS Break Signal Input
	T3EUDB	1	St/B	GPT12E Timer T3 External Up/Down Control Input
	ERAY_RxDA	I	St/B	ERAY Receive Data Input Channel A
	ESR2_11	I	St/B	ESR2 Trigger Input 11
114	P9.1	O0 / I	DP/B	Bit 1 of Port 9, General Purpose Input/Output
	CCU63_CC6 1	01	DP/B	CCU63 Channel 1 Output
	CC1_CC5	O2	DP/B	CAPCOM1 CC5 Compare Output
	ERAY_TxDB	O3	DP/B	ERAY Transmit Data Output Channel B
	CCU63_CC6 1INA	I	DP/B	CCU63 Channel 1 Input

XC2288H, XC2289H XC2000 Family / High Line

General Device Information

Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
128	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output			
	U1C0_SELO 1	O1	St/B	USIC1 Channel 0 Select/Control 1 Output			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U3C0_SCLK OUT	O3	St/B	USIC3 Channel 0 Shift Clock Output			
	RD	OH	St/B	External Bus Interface Read Strobe Output			
	ESR2_2	I	St/B	ESR2 Trigger Input 2			
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input			
	RxDC3C	I	St/B	CAN Node 3 Receive Data Input			
	U3C0_DX1A	I	St/B	USIC3 Channel 0 Shift Clock Input			
129	P1.4	O0 / I	St/B	Bit 4 of Port 1, General Purpose Input/Output			
	CCU62_COU T61	01	St/B	CCU62 Channel 1 Output			
	U1C1_SELO 4	O2	St/B	USIC1 Channel 1 Select/Control 4 Output			
	U2C0_SELO 5	O3	St/B	USIC2 Channel 0 Select/Control 5 Output			
	A12	ОН	St/B	External Bus Interface Address Line 12			
	U2C0_DX2B	I	St/B	USIC2 Channel 0 Shift Control Input			
	RxDC5A	I	St/B	CAN Node 5 Receive Data Input			
130	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output			
	U1C0_SELO 2	01	St/B	USIC1 Channel 0 Select/Control 2 Output			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output			
	ALE	ОН	St/B	External Bus Interf. Addr. Latch Enable Output			
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input			

Functional Description

3.6 Interrupt System

The architecture of the XC228xH supports several mechanisms for fast and flexible response to service requests; these can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to be serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

Using a standard interrupt service the current program execution is suspended and a branch to the interrupt vector table is performed. With the PEC just one cycle is 'stolen' from the current CPU activity to perform the PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source pointer, the destination pointer, or both. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source-related vector location. PEC services are particularly well suited to supporting the transmission or reception of blocks of data. The XC228xH has eight PEC channels, each with fast interrupt-driven data transfer capabilities.

With a minimum interrupt response time of 7/11¹⁾ CPU clocks, the XC228xH can react quickly to the occurrence of non-deterministic events.

Interrupt Nodes and Source Selection

The interrupt system provides 112 physical nodes with separate control register containing an interrupt request flag, an interrupt enable flag and an interrupt priority bit field. Most interrupt sources are assigned to a dedicated node. A particular subset of interrupt sources shares a set of nodes. The source selection can be programmed using the interrupt source selection (ISSR) registers.

External Request Unit (ERU)

A dedicated External Request Unit (ERU) is provided to route and preprocess selected on-chip peripheral and external interrupt requests. The ERU features 4 programmable input channels with event trigger logic (ETL) a routing matrix and 4 output gating units (OGU). The ETL features rising edge, falling edge, or both edges event detection. The OGU combines the detected interrupt events and provides filtering capabilities depending on a programmable pattern match or miss.

Trap Processing

The XC228xH provides efficient mechanisms to identify and process exceptions or error conditions that arise during run-time, the so-called 'Hardware Traps'. A hardware trap causes an immediate system reaction similar to a standard interrupt service (branching

¹⁾ Depending if the jump cache is used or not.

Functional Description

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XC228xH to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

XC2288H, XC2289H XC2000 Family / High Line

Functional Description

4.1.1 Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XC228xH. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Note: Typical parameter values refer to room temperature and nominal supply voltage, minimum/maximum parameter values also include conditions of minimum/maximum temperature and minimum/maximum supply voltage. Additional details are described where applicable.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Voltage Regulator Buffer Capacitance for DMP_M	$C_{\rm EVRM}$ SR	1.0	_	4.7	μF	1)
Voltage Regulator Buffer Capacitance for DMP_1	$C_{\rm EVR1}$ SR	0.68	-	2.2	μF	2)1)
External Load Capacitance	$C_{L} \operatorname{SR}$	-	20 ³⁾	_	pF	pin out driver= default 4)
System frequency	$f_{\rm SYS}{\rm SR}$	-	-	100	MHz	5)
Overload current for analog inputs ⁶⁾	$I_{\rm OVA}{ m SR}$	-2	_	5	mA	not subject to production test
Overload current for digital inputs ⁶⁾	$I_{\rm OVD}{\rm SR}$	-5	-	5	mA	not subject to production test
Overload current coupling factor for analog inputs ⁷)	K _{OVA} CC	-	2.5 x 10 ⁻⁴	1.5 x 10 ⁻³	-	<i>I</i> _{OV} < 0 mA; not subject to production test
		_	1.0 x 10 ⁻⁶	1.0 x 10 ⁻⁴	-	<i>I</i> _{OV} > 0 mA; not subject to production test

Table 13 Operating Conditions

4.2 Voltage Range definitions

The XC228xH timing depends on the supply voltage. If such a dependency exists the timing values are given for 2 voltage areas commonly used. The voltage areas are defined in the following tables.

Table 14 Upper Voltage Range Definition

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage for IO pads and voltage regulators	$V_{DDP}SR$	4.5	5	5.5	V	

Table 15 Lower Voltage Range Definition

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage for IO pads and voltage regulators	$V_{DDP}SR$	3.0	3.3	4.5	V	

4.2.1 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC228xH and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC228xH provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC228xH.

Parameter	Symbol		Value	S	Unit	Note / Test Condition
		Min.	Тур.	Max.	_	
Output High voltage ⁷⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{OH} \ge I_{OHmax}$
		V _{DDP} - 0.4	_	-	V	$I_{OH} \ge I_{OHnom}^{8)}$
Output Low Voltage ⁷⁾	V _{OL} CC	-	-	0.4	V	$I_{OL} \le I_{OLnom}^{9)}$
		-	-	1.0	V	$I_{OL} \leq I_{OLmax}$

Table 16 DC Characteristics for Upper Voltage Range (cont'd)

1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2.

- Not subject to production test verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.
- 3) If the input voltage exceeds the respective supply voltage due to ground bouncing ($V_{\rm IN} < V_{\rm SS}$) or supply ripple ($V_{\rm IN} > V_{\rm DDP}$), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current ($I_{\rm INJ}$) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor $K_{\rm CV}$.
- 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (*T*_J = junction temperature [°C]): *I*_{OZ} = 0.05 x e^(1.5 + 0.028 x TJ-) [µA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 µA. Leakage derating depending on voltage level (DV = *V*_{DDP} *V*_{PIN} [V]): *I*_{OZ} = *I*_{OZtempmax} (1.6 x DV) (µA]. This voltage derating formula is an approximation which applies for maximum temperature.
- 5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device.
- 6) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level.
- 7) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified.
- 9) As a rule, with decreasing output current the output levels approach the respective supply level (V_{OL} -> V_{SS} , V_{OH} -> V_{DDP}). However, only the levels for nominal output currents are verified.

4.3.3 Power Consumption

The power consumed by the XC228xH depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Standby mode:

Voltage domain DMP_1 switched off completely, power supply control switched off. DMP_M domain is supplied by ultra low power electronic voltage regulator (ULPEVR). The alternate regulator EVR_M is switched off.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for V_{DDIM} and V_{DDI1} are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

4.5 System Parameters

The following parameters specify several aspects which are important when integrating the XC228xH into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Short-term deviation of internal clock source frequency ¹⁾	∆f _{INT} CC	-1	-	1	%	$\Delta T_{J} \leq 10^{\circ}C$
Internal clock source frequency	$f_{INT}CC$	4.8	5.0	5.2	MHz	
Wakeup clock source	$f_{\rm WU}{ m CC}$	400	-	700	kHz	FREQSEL= 00
frequency ²⁾		210	-	390	kHz	FREQSEL= 01
		140	-	260	kHz	FREQSEL= 10
		110	-	200	kHz	FREQSEL= 11
Startup time from power- on with code execution from Flash	t _{SPO} CC	1.9	2.6	3.2	ms	f _{w∪} = 500 kHz
Startup time from standby	t _{SSB} CC	3.2	4.2	4.9	ms	<i>f</i> _{WU} = 140 kHz
mode with code execution from Flash		2.0	2.7	3.3	ms	$f_{\rm WU}$ = 500 kHz
Startup time from stopover mode with code execution from PSRAM	t _{SSO} CC	11 / f _{wu} ³)	-	12 / f _{WU} ³⁾	μs	
Core voltage (PVC) supervision level	$V_{\rm PVC}{ m CC}$	V _{LV} - 0.03	$V_{\rm LV}$	V _{LV} + 0.07 ⁴⁾	V	5)
Supply watchdog (SWD) supervision level	V _{SWD} CC	V _{LV} - 0.10 ⁶⁾	$V_{\rm LV}$	V _{LV} + 0.15	V	voltage_range= lower ⁵⁾
		V _{LV} - 0.15	V_{LV}	V _{LV} + 0.15	V	voltage_range= upper ⁵⁾

Table 22 Various System Parameters

The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.

- This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization
- 3) f_{WU} in MHz
- 4) This value includes a hysteresis of approximately 50 mV for rising voltage.
- 5) V_{LV} = selected SWD voltage level
- 6) The limit V_{LV} 0.10 V is valid for the OK1 level. The limit for the OK2 level is V_{LV} 0.15 V.

Conditions for t_{SPO} Timing Measurement

The time required for the transition from **Power-on** to **Base** mode is called t_{SPO} . It is measured under the following conditions:

Precondition: The pad supply is valid, i.e. V_{DDPB} is above 3.0V and remains above 3.0V even though the XC228xH is starting up. No debugger is attached.

Start condition: Power-on reset is removed ($\overline{PORST} = 1$).

End condition: External pin toggle caused by first user instruction executed from FLASH after startup.

Conditions for *t*_{SSB} Timing Measurement

The time required for the transition from **Standby** to **Base** mode is called t_{SSB} . It is measured under the following conditions:

Precondition: The **Standby** mode has been entered using the procedure defined in the Programmer's Guide.

Start condition: Pin toggle on $\overline{\text{ESR}}$ pin triggering the startup sequence.

End condition: External pin toggle caused by first user instruction executed from FLASH after startup.

Conditions for t_{SSO} Timing Measurement

The time required for the transition from **Stopover** to **Stopover Waked-Up** mode is called t_{SSO} . It is measured under the following conditions:

Precondition: The **Stopover** mode has been entered using the procedure defined in the Programmer's Guide.

Start condition: Pin toggle on $\overline{\text{ESR}}$ pin triggering the startup sequence.

End condition: External pin toggle caused by first user instruction executed from PSRAM after startup.

Direct Drive

When direct drive operation is selected (SYSCON0.CLKSEL = 11_B), the system clock is derived directly from the input clock signal CLKIN1:

 $f_{SYS} = f_{IN}$.

The frequency of f_{SYS} is the same as the frequency of f_{IN} . In this case the high and low times of f_{SYS} are determined by the duty cycle of the input clock f_{IN} .

Selecting Bypass Operation from the XTAL1¹⁾ input and using a divider factor of 1 results in a similar configuration.

Prescaler Operation

When prescaler operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 1_B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):

 $f_{\text{SYS}} = f_{\text{OSC}} / \text{K1}.$

If a divider factor of 1 is selected, the frequency of $f_{\rm SYS}$ equals the frequency of $f_{\rm OSC}$. In this case the high and low times of $f_{\rm SYS}$ are determined by the duty cycle of the input clock $f_{\rm OSC}$ (external or internal).

The lowest system clock frequency results from selecting the maximum value for the divider factor K1:

 $f_{\rm SYS} = f_{\rm OSC} / 1024.$

4.7.2.1 Phase Locked Loop (PLL)

When PLL operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 0_B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor **F** ($f_{SYS} = f_{IN} \times F$).

F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1):

 $(F = N / (P \times K2)).$

The input clock can be derived either from an external source at XTAL1 or from the onchip clock source.

The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly.

Adjustment to the input clock continuously changes the frequency of f_{SYS} so that it is locked to f_{IN} . The slight variation causes a jitter of f_{SYS} which in turn affects the duration of individual TCSs.

¹⁾ Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .

4.7.3 External Clock Input Parameters

These parameters specify the external clock generation for the XC228xH. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2
- By supplying an external clock signal
 - This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 or CLKIN2 (IO voltage domain)

If connected to CLKIN1 or CLKIN2, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Oscillator frequency	$f_{\rm OSC}{\rm SR}$	4	-	40	MHz	Input= Clock Signal
		4	-	20	MHz	Input= Crystal or Ceramic Resonator
XTAL1 input current absolute value	$ I_{\rm IL} $ CC	-	-	20	μA	
Input clock high time	t ₁ SR	6	-	-	ns	
Input clock low time	t_2 SR	6	-	-	ns	
Input clock rise time	t ₃ SR	-	8	8	ns	
Input clock fall time	t_4 SR	-	8	8	ns	
Input voltage amplitude on XTAL1 ¹⁾	$V_{AX1}SR$	0.3 x V _{DDIM}	-	-	V	$f_{\rm OSC} \ge 4$ MHz; $f_{\rm OSC} < 16$ MHz
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	f _{OSC} ≥ 16 MHz; f _{OSC} < 25 MHz
		$0.5 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	$f_{\text{OSC}} \ge 25 \text{ MHz};$ $f_{\text{OSC}} \le 40 \text{ MHz}$
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}{ m SR}$	-1.7 + V _{DDIM}	_	1.7	V	2)

Table 28 External Clock Input Characteristics

Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Rise and Fall times (10% - 90%)	t _{RF} CC	-	_	23 + 0.6 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium	
		-	_	11.6 + 0.22 x <i>C</i> _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Medium	
			-	_	4.2 + 0.14 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Sharp
		-	_	20.6 + 0.22 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Slow	
		_	-	212 + 1.9 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Weak	

Table 29 Standard Pad Parameters for Upper Voltage Range (cont'd)

An output current above |I_{OXnom}| may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

Table 33 External Bus Timing for Upper Voltage Range (cor

Parameter	Symbol	Values			Unit	Note /
		Min.	Typ.	Max.	Sint	Test Condition
Address output valid delay for AD15 AD0 (MUX mode)	<i>t</i> ₁₃ CC	-	8	15	ns	
Output valid delay for CS	<i>t</i> ₁₄ CC	-	7	13	ns	
Data output valid delay for AD15 AD0 (write data, MUX mode)	<i>t</i> ₁₅ CC	-	8	15	ns	
Data output valid delay for D15 D0 (write data, DEMUX mode)	<i>t</i> ₁₆ CC	-	8	15	ns	
Output hold time for \overline{RD} , WR(L/H)	<i>t</i> ₂₀ CC	-2	6	8	ns	
Output hold time for BHE, ALE	<i>t</i> ₂₁ CC	-2	6	10	ns	
Address output hold time for AD15 AD0	<i>t</i> ₂₃ CC	-3	6	8	ns	
Output hold time for CS	t ₂₄ CC	-3	6	11	ns	
Data output hold time for D15 D0 and AD15 AD0	<i>t</i> ₂₅ CC	-3	6	8	ns	
Input setup time for READY, D15 D0, AD15 AD0	<i>t</i> ₃₀ SR	25	15	-	ns	
Input hold time READY, D15 D0, AD15 AD0 ¹⁾	<i>t</i> ₃₁ SR	0	-7	-	ns	

 Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD.

Table 34 is valid under the following conditions: C_L = 20 pF; voltage_range= lower; voltage_range= lower

4.7.6 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 35 is valid under the following conditions: $C_L = 20 \text{ pF}$; *SSC* = master ; voltage_range= upper

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{SYS} - 8 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 6 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-6	-	9	ns	
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	31	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-4	-	_	ns	

Table 35 USIC SSC Master Mode Timing for Upper Voltage Range

1) $t_{SYS} = 1 / f_{SYS}$

Table 36 is valid under the following conditions: $C_L = 20 \text{ pF}$; *SSC* = master ; voltage_range= lower

Package and Reliability

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

Package Outlines

Figure 34 PG-LQFP-144-13 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

www.infineon.com

Published by Infineon Technologies AG