Intel - 5SEEBH40I3N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	359250
Number of Logic Elements/Cells	952000
Total RAM Bits	53248000
Number of I/O	696
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-HBGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5seebh40i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		le entening		(-,						
Transceiver Speed Grade		Core Speed Grade									
	C1	C2, C2L	C3	C4	12, 12L	13, 13L	I 3YY	14			
3		Yes	Yes	Yes		Yes	Yes (4)	Yes			
GX channel—8.5 Gbps		165	165	165		163	163.7	165			

Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering ^{(1), (2), (3)} (Part 2 of 2)

Notes to Table 1:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

(3) C2L, I2L, and I3L speed grades are for low-power devices.

(4) I3YY speed grades can achieve up to 10.3125 Gbps.

Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices. **Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering** ⁽¹⁾, ⁽²⁾

Transaction Oracle Oracle	Core Speed Grade							
Transceiver Speed Grade	C1	C2	12	13				
2 GX channel—12.5 Gbps GT channel—28.05 Gbps	Yes	Yes	_	_				
3 GX channel—12.5 Gbps GT channel—25.78 Gbps	Yes	Yes	Yes	Yes				

Notes to Table 2:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 3.	Absolute	Maximum	Ratings	for Stratix \	/ Devices	(Part 1 of 2)
----------	----------	---------	----------------	---------------	-----------	---------------

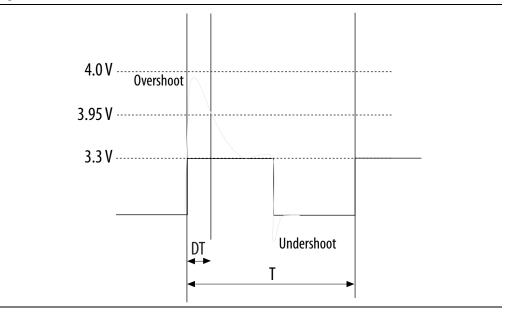

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

abic J. Maxi				
Symbol	Description	Condition (V)	Overshoot Duration as % @ T _J = 100°C	Unit
		3.8	100	%
		3.85	64	%
		3.9	36	%
		3.95	21	%
Vi (AC)	AC input voltage	4	12	%
		4.05	7	%
		4.1	4	%
		4.15	2	%
		4.2	1	%

Table 5. Maximum Allowed Overshoot During Transitions

Figure 1. Stratix V Device Overshoot Duration

I/O Pin Leakage Current

Table 9 lists the Stratix V I/O pin leakage current specifications.

Table 9. I/	0 Pin Leakage	Current for Stratix 	/ Devices ⁽¹⁾
-------------	---------------	-----------------------------	--------------------------

Symbol	Description	Conditions	Min	Тур	Max	Unit
I _I	Input pin	$V_I = 0 V \text{ to } V_{CCIOMAX}$	-30	—	30	μA
I _{0Z}	Tri-stated I/O pin	$V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$	-30		30	μA

Note to Table 9:

(1) If $V_0 = V_{CCIO}$ to $V_{CCIOMax}$, 100 μ A of leakage current per I/O is expected.

Bus Hold Specifications

Table 10 lists the Stratix V device family bus hold specifications.

Table 10. Bus Hold Parameters for Stratix V Devices

		ol Conditions		V _{CCIO}									
Parameter	Symbol		1.2 V		1.	1.5 V		1.8 V		2.5 V		3.0 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (maximum)	22.5	_	25.0	_	30.0	_	50.0	_	70.0	_	μA
High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (minimum)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μA
Low overdrive current	I _{odl}	$0V < V_{IN} < V_{CCIO}$	_	120	_	160	_	200	_	300	_	500	μA
High overdrive current	I _{odh}	$0V < V_{IN} < V_{CCIO}$		-120		-160	_	-200		-300	_	-500	μA
Bus-hold trip point	V _{trip}	_	0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

On-Chip Termination (OCT) Specifications

If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block. Table 11 lists the Stratix V OCT termination calibration accuracy specifications.

Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices ⁽¹⁾ (Part 1 of 2)

Symbol			Calibration Accuracy					
	Description	Conditions	C1	C2,12	C3,I3, I3YY	C4,14	Unit	
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%	

Internal Weak Pull-Up Resistor

Table 16 lists the weak pull-up resistor values for Stratix V devices.

Symbol	Description	V _{CCIO} Conditions (V) ⁽³⁾	Value ⁽⁴⁾	Unit
		3.0 ±5%	25	kΩ
		2.5 ±5%	25	kΩ
	Value of the I/O pin pull-up resistor before			kΩ
R _{PU}	and during configuration, as well as user mode if you enable the programmable	1.5 ±5%	25	kΩ
	pull-up resistor option.	1.35 ±5%	25	kΩ
		1.25 ±5%	25	kΩ
		1.2 ±5%	25	kΩ

Table 16. Internal Weak Pull-Up Resistor for Stratix V Devices (1), (2)

Notes to Table 16:

(1) All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins.

(2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .

- (3) The pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.
- (4) These specifications are valid with a $\pm 10\%$ tolerance to cover changes over PVT.

I/O Standard Specifications

Table 17 through Table 22 list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Stratix V devices. These tables also show the Stratix V device family I/O standard specifications. The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL}, respectively.

For an explanation of the terms used in Table 17 through Table 22, refer to "Glossary" on page 65. For tolerance calculations across all SSTL and HSTL I/O standards, refer to Altera knowledge base solution rd07262012_486.

I/O		V _{ccio} (V)		V	L (V)	VIH	(V)	V _{OL} (V)	V _{OH} (V)	IOL	I _{oh}
Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	(mÅ)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	$V_{CCI0} - 0.2$	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 * V _{CCI0}	0.65 * V _{CCI0}	V _{CCI0} + 0.3	0.45	V _{CCI0} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 * V _{CCI0}	0.65 * V _{CCI0}	V _{CCI0} + 0.3	0.25 * V _{CCI0}	0.75 * V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 * V _{CCI0}	0.65 * V _{CCIO}	V _{CCI0} + 0.3	0.25 * V _{CCI0}	0.75 * V _{CCI0}	2	-2

Table 17. Single-Ended I/O Standards for Stratix V Devices

1/0 Stondard		V _{ccio} (V)			V _{REF} (V)			V _{TT} (V)	
I/O Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
SSTL-15 Class I, II	1.425	1.5	1.575	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCI0}	0.5 * VCCIO	0.51 * V _{CCIO}
SSTL-135 Class I, II	1.283	1.35	1.418	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCI0}	0.5 * V _{CCIO}	0.51 * V _{CCIO}
SSTL-125 Class I, II	1.19	1.25	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCI0}	0.49 * V _{CCI0}	0.5 * VCCIO	0.51 * V _{CCIO}
SSTL-12 Class I, II	1.14	1.20	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCI0}	0.5 * VCCIO	0.51 * V _{CCIO}
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCI0} /2	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCI0} /2	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.47 * V _{CCI0}	0.5 * V _{CCIO}	0.53 * V _{CCIO}	—	V _{CCI0} /2	
HSUL-12	1.14	1.2	1.3	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	—	_	_

Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Device	es
---	----

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices	(Part 1 of 2)
---	---------------

I/O Standard	V _{IL(D(}	_{:)} (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{ol} (V)	V _{oh} (V)	L (mA)	I _{oh}
ijo Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	I _{ol} (mA)	(mÅ)
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCI0} – 0.28	13.4	-13.4
SSTL-15 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCI0}	0.8 * V _{CCI0}	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCI0}	0.8 * V _{CCI0}	16	-16
SSTL-135 Class I, II		V _{REF} – 0.09	V _{REF} + 0.09	_	V _{REF} – 0.16	V _{REF} + 0.16	0.2 * V _{CCI0}	0.8 * V _{CCI0}	_	_
SSTL-125 Class I, II		V _{REF} – 0.85	V _{REF} + 0.85	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCI0}	0.8 * V _{CCI0}	_	_
SSTL-12 Class I, II		V _{REF} – 0.1	V _{REF} + 0.1		V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}		_

Switching Characteristics

This section provides performance characteristics of the Stratix V core and periphery blocks.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary."
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Transceiver Performance Specifications

This section describes transceiver performance specifications.

Table 23 lists the Stratix V GX and GS transceiver specifications.

Table 23.	Transceiver S	necifications (for Stratix	V GX and GS	Devices (1)	(Part 1 of 7)
	114113001101 0	poontoutions	IOI OUIUUA			(1 41 (1 01 1)

Symbol/ Description	Conditions	Trai	isceive Grade	r Speed 1	Trar	isceive Grade	r Speed 2	Transceiver Speed Grade 3			Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reference Clock											
Supported I/O Standards Dedicated reference clock pin I.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVDS, and HCSL										/DS, and	
Standards	RX reference clock pin		1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS								
Input Reference Clock Frequency (CMU PLL) ⁽⁸⁾	_	40	_	710	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽⁸⁾	_	100		710	100		710	100	_	710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽²⁶⁾	_	_	400	_	_	400	_	_	400	ps
Fall time	Measure at ±60 mV of differential signal ⁽²⁶⁾	_	_	400	_		400	_		400	μο
Duty cycle	—	45		55	45		55	45	—	55	%
Spread-spectrum modulating clock frequency	PCI Express® (PCIe [®])	30		33	30		33	30		33	kHz

Symbol/ Description	Conditions	Tra	nsceive Grade	r Speed 1	Tra	nsceive Grade	r Speed 2	Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	85– Ω setting		85 ± 30%		—	85 ± 30%			85 ± 30%		Ω
Differential on-	100–Ω setting	_	100 ± 30%		_	100 ± 30%		_	100 ± 30%		Ω
chip termination resistors ⁽²¹⁾	120–Ω setting	_	120 ± 30%		_	120 ± 30%		_	120 ± 30%		Ω
	150-Ω setting	_	150 ± 30%	_	_	150 ± 30%		_	150 ± 30%		Ω
	V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth		600		_	600	_		600		mV
V _{ICM} (AC and DC	V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth	_	600	_	_	600	_	_	600	_	mV
coupled)	V _{CCR_GXB} = 1.0 V/1.05 V full bandwidth	_	700		_	700			700		mV
	V _{CCR_GXB} = 1.0 V half bandwidth	_	750	_	_	750	_	_	750	_	mV
t _{LTR} ⁽¹¹⁾	_	—	—	10	—	—	10	—	—	10	μs
t _{LTD} (12)	_	4			4			4			μs
t _{LTD_manual} ⁽¹³⁾		4			4			4	_		μs
t _{LTR_LTD_manual} ⁽¹⁴⁾		15			15	—		15	—		μs
Run Length	_	_		200		—	200		—	200	UI
Programmable equalization (AC Gain) ⁽¹⁰⁾	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)			16	_		16	_		16	dB

 Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 4 of 7)

Symbol/ Description	Conditions	Transceiver Speed Grade 1		Transceiver Speed Grade 2		Transceiver Speed Grade 3			Unit		
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{pll_lock} (16)	_			10		—	10	—		10	μs

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 7 of 7)

Notes to Table 23:

(2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.

(3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V.

- (4) This supply follows VCCR_GXB.
- (5) The device cannot tolerate prolonged operation at this absolute maximum.
- (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (8) The input reference clock frequency options depend on the data rate and the device speed grade.
- (9) The line data rate may be limited by PCS-FPGA interface speed grade.
- (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (12) t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (14) $t_{LTR_LTD_manual}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (15) $t_{pll_powerdown}$ is the PLL powerdown minimum pulse width.
- (16) t_{pll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (17) To calculate the REFCLK rms phase jitter requirement for PCIe at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (19) For ES devices, R_{BEF} is 2000 $\Omega \pm 1\%$.
- (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (22) Refer to Figure 2.
- (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (24) I3YY devices can achieve data rates up to 10.3125 Gbps.
- (25) When you use fPLL as a TXPLL of the transceiver.
- (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification.
- (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition.

⁽¹⁾ Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Stratix V Device Overview.

Mada (2)	Transceiver	PMA Width	20	20	16	16	10	10	8	8
Mode ⁽²⁾	Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8
	1	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.5	5.8	5.2	4.72
	2	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.5	5.8	5.2	4.72
	2	C3, I3, I3L core speed grade	9.8	9.0	7.84	7.2	5.3	4.7	4.24	3.76
FIFO		C1, C2, C2L, I2, I2L core speed grade	8.5	8.5	8.5	8.5	6.5	5.8	5.2	4.72
	3	I3YY core speed grade	10.3125	10.3125	7.84	7.2	5.3	4.7	4.24	3.76
	5	C3, I3, I3L core speed grade	8.5	8.5	7.84	7.2	5.3	4.7	4.24	3.76
		C4, I4 core speed grade	8.5	8.2	7.04	6.56	4.8	4.2	3.84	3.44
	1	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.1	5.7	4.88	4.56
	2	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.1	5.7	4.88	4.56
	2	C3, I3, I3L core speed grade	9.8	9.0	7.92	7.2	4.9	4.5	3.96	3.6
Register		C1, C2, C2L, I2, I2L core speed grade	10.3125	10.3125	10.3125	10.3125	6.1	5.7	4.88	4.56
	3	I3YY core speed grade	10.3125	10.3125	7.92	7.2	4.9	4.5	3.96	3.6
	0	C3, I3, I3L core speed grade	8.5	8.5	7.92	7.2	4.9	4.5	3.96	3.6
		C4, I4 core speed grade	8.5	8.2	7.04	6.56	4.4	4.1	3.52	3.28

Table 25 shows the approximate maximum data rate using the standard PCS.

Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3)

Notes to Table 25:

(1) The maximum data rate is in Gbps.

(2) The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

(3) The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade.

Symbol/	Conditions	:	Transceive Speed Grade			Transceive peed Grade		Unit			
Description		Min	Тур	Max	Min	Тур	Max				
Reference Clock											
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCN	1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LV and HCSL								
	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS									
Input Reference Clock Frequency (CMU PLL) ⁽⁶⁾	_	40	_	710	40	_	710	MHz			
Input Reference Clock Frequency (ATX PLL) ⁽⁶⁾	_	100	-	710	100	_	710	MHz			
Rise time	20% to 80%		_	400		—	400				
Fall time	80% to 20%			400	—		400	ps			
Duty cycle	—	45		55	45		55	%			
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30	_	33	30	_	33	kHz			
Spread-spectrum downspread	PCle	_	0 to -0.5		_	0 to -0.5	_	%			
On-chip termination resistors ⁽¹⁹⁾	_	_	100	_	_	100	_	Ω			
Absolute V _{MAX} ⁽³⁾	Dedicated reference clock pin		_	1.6	_	_	1.6	V			
	RX reference clock pin	_	_	1.2	_	_	1.2				
Absolute V _{MIN}	—	-0.4	—	—	-0.4	—	—	V			
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV			
V _{ICM} (AC coupled)	Dedicated reference clock pin		1050/1000 (2)		1050/1000 (2)	mV			
	RX reference clock pin	1	.0/0.9/0.85 (22)	1	.0/0.9/0.85 (22)	V			
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV			

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) ⁽¹⁾

Table 29 shows the V_{OD} settings for the GT channel.

Table 29.	Typical Von Setting	g for GT Channel, 1	EX Termination = 100 Ω
-----------	---------------------	---------------------	--------------------------------------

Symbol	V _{OD} Setting	V _{op} Value (mV)
	0	0
	1	200
\mathbf{V}_{0D} differential peak to peak typical (1)	2	400
VOD unicicilitat peak to peak typical (*)	3	600
	4	800
	5	1000

Note:

(1) Refer to Figure 4.

Symbol	Parameter	Min	Тур	Max	Unit
+ (3) (4)	Input clock cycle-to-cycle jitter ($f_{REF} \ge 100 \text{ MHz}$)		—	0.15	UI (p-p)
t _{INCCJ} ^{(3),} ⁽⁴⁾	Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz)	-750	_	+750	ps (p-p)
t _{outpj_dc} ⁽⁵⁾	Period Jitter for dedicated clock output ($f_{OUT} \ge$ 100 MHz)		_	175 ⁽¹⁾	ps (p-p)
LOUTPJ_DC	Period Jitter for dedicated clock output (f _{OUT} < 100 MHz)	_		17.5 ⁽¹⁾	mUI (p-p)
+ (5)	Period Jitter for dedicated clock output in fractional PLL ($f_{0UT} \geq 100 \mbox{ MHz})$	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{foutpj_dc} ⁽⁵⁾	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
+	Cycle-to-Cycle Jitter for a dedicated clock output ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{outccj_dc} ⁽⁵⁾	Cycle-to-Cycle Jitter for a dedicated clock output (f _{0UT} < 100 MHz)	_	_	17.5	mUI (p-p)
+ <i>(5)</i>	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f_{OUT} \geq 100 MHz)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)+	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
t _{outpj_io} (5), (8)	Period Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} \geq 100 MHz)	_	_	600	ps (p-p)
	Period Jitter for a clock output on a regular I/O (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{foutpj 10} (5),	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600 (10)	ps (p-p)
(8), (11)	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{outccj_io} (5),	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} \geq 100 MHz)	_	_	600	ps (p-p)
(8)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{foutccj_10} ^{(5),}	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{0UT} \geq 100 \mbox{ MHz})$	_	_	600 ⁽¹⁰⁾	ps (p-p)
(8), (11)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)	_	_	60	mUI (p-p)
t _{casc_outpj_dc}	Period Jitter for a dedicated clock output in cascaded PLLs (f_{0UT} \geq 100 MHz)		_	175	ps (p-p)
(5), (6)	Period Jitter for a dedicated clock output in cascaded PLLs (f _{OUT} < 100 MHz)		_	17.5	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits
k _{value}	Numerator of Fraction	128	8388608	2147483648	

Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3)

		Resour	ces Used	Performance							
Memory	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, 12L	13, 13L, 13YY	14	Unit
	Single-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	525	525	455	400	525	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512 × 32	0	1	450	450	400	350	450	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	600	600	500	450	600	500	450	MHz
	True dual port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	ROM, all supported widths	0	1	700	700	650	550	700	500	450	MHz

Table 33. Memory Block Performance Specifications for Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 33:

(1) To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50**% output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

(2) When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

(3) The F_{MAX} specification is only achievable with Fitter options, MLAB Implementation In 16-Bit Deep Mode enabled.

Temperature Sensing Diode Specifications

Table 34 lists the internal TSD specification.

Table 34. Internal Temperature Sensing Diode Specification

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
–40°C to 100°C	±8°C	No	1 MHz, 500 KHz	< 100 ms	8 bits	8 bits

Table 35 lists the specifications for the Stratix V external temperature sensing diode.

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	—	200	μA
V _{bias,} voltage across diode	0.3	—	0.9	V
Series resistance		—	< 1	Ω
Diode ideality factor	1.006	1.008	1.010	

Duty Cycle Distortion (DCD) Specifications

Table 44 lists the worst-case DCD for Stratix V devices.

Table 44. Worst-Case DCD on Stratix V I/O Pins (1)

Symbol	C	1	C2, C2	L, 12, 12L	C3, I3, I3L, I3YY		' C4,I4		Unit	
	Min	Max	Min	Max	Min	Max	Min	Max		
Output Duty Cycle	45	55	45	55	45	55	45	55	%	

Note to Table 44:

(1) The DCD numbers do not cover the core clock network.

Configuration Specification

POR Delay Specification

Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration.

For more information about the POR delay, refer to the *Hot Socketing and Power-On Reset in Stratix V Devices* chapter.

Table 45 lists the fast and standard POR delay specification.

Table 45. Fast and Standard POR Delay Specification (1)

POR Delay	Minimum	Maximum
Fast	4 ms	12 ms
Standard	100 ms	300 ms

Note to Table 45:

(1) You can select the POR delay based on the MSEL settings as described in the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

JTAG Configuration Specifications

Table 46 lists the JTAG timing parameters and values for Stratix V devices.

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period ⁽²⁾	30	—	ns
t _{JCP}	TCK clock period ⁽²⁾	167	—	ns
t _{JCH}	TCK clock high time ⁽²⁾	14	—	ns
t _{JCL}	TCK clock low time ⁽²⁾	14	—	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	—	ns

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) ^{(4), (5)}
Stratix V E ⁽¹⁾	5SEE9	—	342,742,976	700,888
	5SEEB	_	342,742,976	700,888

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Notes to Table 47:

(1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme.

(2) 36-transceiver devices.

(3) 24-transceiver devices.

(4) File size for the periphery image.

(5) The IOCSR .rbf size is specifically for the CvP feature.

Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design.

• For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help.*

Table 48 lists the minimum configuration time estimates for Stratix V devices.

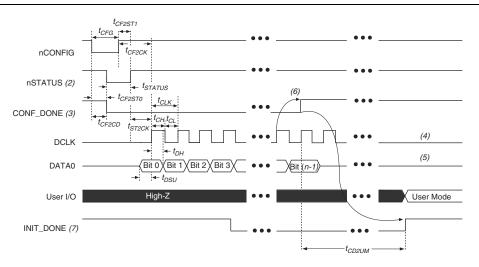
	Member		Active Serial ⁽¹⁾		Fast Passive Parallel ⁽²⁾			
Variant	Member Code	Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)	
	A3	4	100	0.534	32	100	0.067	
	AS	4	100	0.344	32	100	0.043	
	A4	4	100	0.534	32	100	0.067	
	A5	4	100	0.675	32	100	0.084	
	A7	4	100	0.675	32	100	0.084	
GX	A9	4	100	0.857	32	100	0.107	
	AB	4	100	0.857	32	100	0.107	
	B5	4	100	0.676	32	100	0.085	
	B6	4	100	0.676	32	100	0.085	
	B9	4	100	0.857	32	100	0.107	
	BB	4	100	0.857	32	100	0.107	
ст	C5	4	100	0.675	32	100	0.084	
GT	C7	4	100	0.675	32	100	0.084	

Symbol	Parameter	Minimum	Maximum	Units
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{cd2cu} + (8576 × clkusr period)	_	—

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 53:

(1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.


(2) t_{CF2CD}, t_{CF2ST0}, t_{CF2ST0}, t_{CF6}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63.

(3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

Passive Serial Configuration Timing

Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Figure 15. PS Configuration Timing Waveform ⁽¹⁾

Notes to Figure 15:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power-up, the Stratix V device holds <code>nSTATUS</code> low for the time of the POR delay.
- (3) After power-up, before and during configuration, CONF DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**.
- (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Parameter	Available	Min	Fast	Model				Slow N	lodel			
(1)	Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D3	8	0	1.587	1.699	2.793	2.793	2.992	3.192	2.811	3.047	3.257	ns
D4	64	0	0.464	0.492	0.838	0.838	0.924	1.011	0.843	0.920	1.006	ns
D5	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D6	32	0	0.229	0.244	0.415	0.415	0.458	0.503	0.418	0.456	0.499	ns

Notes to Table 58:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor.

(2) Minimum offset does not include the intrinsic delay.

Programmable Output Buffer Delay

Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

Table 59. Programmable Output Buffer Delay for Stratix V Devices (Table 59.	Programmable Out	put Buffer Delay	y for Stratix V Devices (
--	-----------	------------------	------------------	---------------------------

Symbol	Parameter	Typical	Unit
		0 (default)	ps
D	Rising and/or falling edge delay	25	ps
D _{OUTBUF}		50	ps
		75	ps

Note to Table 59:

(1) You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

Glossary

Table 60 lists the glossary for this chapter.

Table 60. Glossary (Part 1 of 4)

Letter	Subject	Definitions	
Α			
В	—	—	
С			
D	_	—	
E	—	_	
	f _{HSCLK}	Left and right PLL input clock frequency.	
F	f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.	
	f _{hsdrdpa}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.	

Table 60.	Glossary	(Part 3 of 4)
-----------	----------	---------------

Letter	Subject	Definitions					
	SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS RSKM					
S	Single-ended voltage referenced I/O standard	The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: <i>Single-Ended Voltage Referenced I/O Standard</i> 					
	t _C	High-speed receiver and transmitter input and output clock period.					
	TCCS (channel- to-channel-skew)	The timing difference between the fastest and slowest output edges, including t_{c0} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table).					
		High-speed I/O block—Duty cycle on the high-speed transmitter output clock.					
т	t _{DUTY}	Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{receiver input clock frequency multiplication factor}) = t_c/w)$					
	t _{FALL}	Signal high-to-low transition time (80-20%)					
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.					
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.					
	t _{outpj_dc}	Period jitter on the dedicated clock output driven by a PLL.					
	t _{RISE}	Signal low-to-high transition time (20-80%)					
U	_	_					

Document Revision History

Table 61 lists the revision history for this chapter.

 Table 61. Document Revision History (Part 1 of 3)

Date	Version	Changes		
June 2018	3.9	 Added the "Stratix V Device Overshoot Duration" figure. 		
		 Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. 		
		 Changed the minimum value for t_{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. 		
		 Changed the condition for 100-Ω R_D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. 		
April 2017	3.8	 Changed the minimum value for t_{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table 		
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 		
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 		
		 Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. 		
June 2016	3.7	 Added the V_{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table 		
Julie 2010		 Added the I_{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. 		
December 2015	3.6	Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.		
December 2015	3.5	 Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 		
December 2015		 Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. 		
		• Changed the data rate specification for transceiver speed grade 3 in the following tables:		
		 "Transceiver Specifications for Stratix V GX and GS Devices" 		
		 "Stratix V Standard PCS Approximate Maximum Date Rate" 		
		 "Stratix V 10G PCS Approximate Maximum Data Rate" 		
July 2015	3.4	 Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. 		
		 Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 		
		 Changed the t_{co} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. 		
		 Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. 		