E·XFL

Intel - 5SGSED6K2F40I3LN Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

D	et	a	i	ls

Product Status	Obsolete
Number of LABs/CLBs	220000
Number of Logic Elements/Cells	583000
Total RAM Bits	46080000
Number of I/O	696
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgsed6k2f40i3In

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V
VI	DC input voltage	-0.5	3.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2)

Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices.

Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices

Symbol	Description	Devices	Minimum	Maximum	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	GX, GS, GT	Minimum Maximum -0.5 3.75 -0.5 3.75 -0.5 3.75 -0.5 3.75 -0.5 3.75 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35 -0.5 1.35		V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	GX, GS	-0.5	3.75	V
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHIP_R}	Transceiver hard IP power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCL_GTBR}	Transmitter clock network power supply (right side)	GT	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
t _{RAMP}	Power supply ramp time	Standard POR	200 µs	_	100 ms	—
	Power supply ramp time	Fast POR	200 µs		4 ms	

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2)

Notes to Table 6:

(1) V_{CCPD} must be 2.5 V when V_{CCI0} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCI0} is 3.0 V.

(2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low.

(3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades.

(4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices.

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2)

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
V _{CCA GXBL}	Transceiver channel PLL power supply (left		2.85	3.0	3.15	V
(1), (3)	side)	un, us, ui	2.375	2.5	2.625	v
V _{CCA_GXBR}	Transceiver channel PLL power supply (right	CV CS	2.85	3.0	3.15	V
(1), (3)	side)	ux, us	2.375	2.5	2.625	v
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	2.85	3.0	3.15	V
	Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHIP_R}	Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
			0.82	0.85	0.88	
V _{CCR_GXBL}	Receiver analog nower supply (left side)		0.87	0.90	0.93	v
(2) _	Therefore analog power supply (left Slue)	un, uo, ui	0.97	1.0	1.03	v
			1.03	1.05	1.07	

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
			0.82	0.85	0.88	
V _{CCR_GXBR}	Receiver analog power supply (right side)		0.87	0.90	0.93	V
(2)		ux, us, ui	0.97	1.0	1.03	v
			1.03	1.05	1.07	
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
			0.82	0.85	0.88	
V _{CCT_GXBL}	Transmitter analog power supply (left side)	GX, GS, GT	0.87	0.90	0.93	V
			0.97	1.0	1.03	
			1.03	1.05	1.07	
		GX, GS, GT	0.82	0.85	0.88	V
V _{CCT GXBR}	Transmitter analog power supply (right side)		0.87	0.90	0.93	
(2) _			0.97	1.0	1.03	
			1.03	1.05	1.07	
V_{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
V_{CCL_GTBR}	Transmitter clock network power supply	GT	1.02	1.05	1.08	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	1.425	1.5	1.575	V

Table 7.	Recommended Transceiver Power Supply Operating Conditions for Stratix V GX ,	GS , and GT Devices
(Part 2	of 2)	

Notes to Table 7:

(1) This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

(2) Refer to Table 8 to select the correct power supply level for your design.

(3) When using ATX PLLs, the supply must be 3.0 V.

(4) This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

				Calibratio	n Accuracy		
Symbol	Description	Conditions	C1	C2,I2	C3,I3, I3YY	C4,14	Unit
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%
34- Ω and 40- Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	±15	±15	%
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	V _{CCI0} = 1.2 V	±15	±15	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCI0} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
20-Ω, 30-Ω, 40-Ω,60-Ω, and 120-Ω R _T	Internal parallel termination with calibration ($20 - \Omega$, $30 - \Omega$, $40 - \Omega$, $60 - \Omega$, and $120 - \Omega$ setting)	V _{CCI0} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
60- $Ω$ and 120- $Ω$ R _T	Internal parallel termination with calibration (60-Ω and 120-Ω setting)	V _{CCI0} = 1.2	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
$25-\Omega \\ R_{S_left_shift}$	Internal left shift series termination with calibration ($25-\Omega$ R _{S_left_shift} setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%

Table II. OUI Valiblation Accuracy specifications for Stratix V Devices' / (I all 2 of	Table 11.	OCT Calibration A	ccuracy Specificati	ons for Stratix V D	Devices ⁽¹⁾ (Part 2 of
--	-----------	--------------------------	---------------------	---------------------	--------------------------	-----------

Note to Table 11:

(1) OCT calibration accuracy is valid at the time of calibration only.

Table 12 lists the Stratix V OCT without calibration resistance to PVT changes.

Table 12.	OCT Without Calibration	Resistance 1	Tolerance	Specifications	for Stratix	V Devices	(Part 1	of 2)
-----------	-------------------------	---------------------	------------------	-----------------------	-------------	------------------	---------	-------

		Resistance Tolerance					
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25-Ω setting)	$V_{CCIO} = 3.0$ and 2.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.8 and 1.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%

I/O		V _{ccio} (V)		V _{DIF(}	_{DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)	V _{DIF(AC)} (V)	
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCI0} + 0.3	_	0.5* V _{CCI0}	_	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCI0}	0.3	V _{CCI0} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5*V _{CCI0} - 0.12	0.5* V _{CCI0}	0.5*V _{CCI0} + 0.12	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.44	0.44

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2)

Table 22. Differential I/O Standard Specifications for Stratix V Devices (7)

I/O	Vc	_{cio} (V)	(10)		V _{ID} (mV) ⁽⁸⁾			V _{ICM(DC)} (V)		V _{0D} (V) ⁽⁶⁾			V _{OCM} (V) ⁽⁶⁾		
Standard	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Trar	nsmitte	er, receiv transmi	ver, and itter, rec	input referer ceiver, and re	nce cloo eference	ck pins e clock	of the high-s I/O pin speci	peed tra fications	nsceiver , refer to	rs use o Table	the PC e 23 on	ML I/O s page 18	standard 3.	. For
2.5 V	2 375	25	2 625	100	V _{CM} =	_	0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	_	0.6	1.125	1.25	1.375
LVDS ⁽¹⁾	2.575	2.0	2.025	100	1.25 V	_	1.05	D _{MAX} > 700 Mbps	1.55	0.247	_	0.6	1.125	1.25	1.375
BLVDS (5)	2.375	2.5	2.625	100	_	—	_	_	_	_	_	—	_	—	
RSDS (HIO) ⁽²⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	_	1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini- LVDS (HIO) ⁽³⁾	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25	_	0.6	1	1.2	1.4
LVPECL (4	_	_	_	300	_		0.6	D _{MAX} ≤ 700 Mbps	1.8	_	_	_	_	_	_
), (9)				300			1	D _{MAX} > 700 Mbps	1.6						

Notes to Table 22:

(1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.

(2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.

(3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.

- (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.
- (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology.
- (6) RL range: $90 \le RL \le 110 \Omega$.
- (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18.
- (8) The minimum VID value is applicable over the entire common mode range, VCM.
- (9) LVPECL is only supported on dedicated clock input pins.
- (10) Differential inputs are powered by VCCPD which requires 2.5 V.

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature.

Switching Characteristics

This section provides performance characteristics of the Stratix V core and periphery blocks.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary."
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Transceiver Performance Specifications

This section describes transceiver performance specifications.

Table 23 lists the Stratix V GX and GS transceiver specifications.

Table 23.	Transceiver 3	Specifications	for Stratix	V GX	and GS	Devices	(1)	(Part 1	nf 7	۱
Table 20.	TIANSUCIACI	opeonitionationa	IUI UIIAIIA	I UA	anu uu	DEVICES	• •	(1 61 6 1		

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	er Speed e 3	Unit	
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reference Clock											
Supported I/O	Dedicated reference clock pin	1.2-V	PCML,	1.4-V PCM	IL, 1.5-∖	/ PCML	, 2.5-V PCN HCSL	1L, Diffe	rential	LVPECL, L\	/DS, and
Standards	RX reference clock pin			1.4-V PCMI	L, 1.5-V	PCML,	2.5-V PCM	l, lvpe	CL, and	d LVDS	
Input Reference Clock Frequency (CMU PLL) ⁽⁸⁾	_	40		710	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽⁸⁾		100		710	100		710	100		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽²⁶⁾			400	_		400			400	ns
Fall time	Measure at ±60 mV of differential signal ⁽²⁶⁾		_	400	_		400			400	μs
Duty cycle		45		55	45		55	45	—	55	%
Spread-spectrum modulating clock frequency	PCI Express® (PCIe [®])	30		33	30		33	30	_	33	kHz

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	nsceive Grade	er Speed e 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Spread-spectrum downspread	PCIe	_	0 to 0.5	_	_	0 to 0.5	_	_	0 to 0.5	_	%
On-chip termination resistors ⁽²¹⁾	_	_	100		_	100		_	100		Ω
Absolute V _{MAX} ⁽⁵⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_		1.2		_	1.2			1.2	
Absolute V _{MIN}	—	-0.4	-	_	-0.4	_		-0.4	—		V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	200	_	1600	mV
V _{ICM} (AC	Dedicated reference clock pin	1050/	(1000/90	00/850 ⁽²⁾	1050/	1000/9	00/850 ⁽²⁾	1050/	1000/9	00/850 ⁽²⁾	mV
coupled) (9	RX reference clock pin	1	.0/0.9/0	.85 (4)	1.	.0/0.9/0	.85 (4)	1.	.0/0.9/0	.85 ⁽⁴⁾	V
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250		550	250		550	250	_	550	mV
	100 Hz	—	—	-70	—	—	-70	—	—	-70	dBc/Hz
Transmitter	1 kHz	—	—	-90	—	—	-90	—	—	-90	dBc/Hz
REFCLK Phase	10 kHz	—	—	-100	—	—	-100	—	—	-100	dBc/Hz
(622 MHz) ⁽²⁰⁾	100 kHz	—	—	-110	—	—	-110	—	—	-110	dBc/Hz
	≥1 MHz	—	—	-120		—	-120	—	—	-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁷⁾	10 kHz to 1.5 MHz (PCIe)	_	_	3	_	_	3	_	_	3	ps (rms)
R _{REF} (19)	_	_	1800 ±1%	_	_	1800 ±1%	_	_	180 0 ±1%	_	Ω
Transceiver Clock	s										
fixedclk clock frequency	PCIe Receiver Detect		100 or 125			100 or 125		_	100 or 125		MHz

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 2 of 7)

Symbol/ Description	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trar	er Speed e 3	Unit	
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reconfiguration clock (mgmt_clk_clk) frequency	_	100		125	100		125	100	_	125	MHz
Receiver											
Supported I/O Standards	_			1.4-V PCMI	L, 1.5-V	PCML,	2.5-V PCM	L, LVPE	CL, and	d LVDS	
Data rate (Standard PCS) (9), (23)	_	600	_	12200	600	_	12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS) ^{(9),} ⁽²³⁾	_	600	_	14100	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
Absolute V _{MAX} for a receiver pin ⁽⁵⁾	_	_	_	1.2	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V
Maximum peak- to-peak differential input voltage V _{ID} (diff p- p) before device configuration ⁽²²⁾	_	_	_	1.6	_	_	1.6	_		1.6	V
Maximum peak- to-peak	V _{CCR_GXB} = 1.0 V/1.05 V (V _{ICM} = 0.70 V)	_	_	2.0	_	_	2.0	_	_	2.0	V
voltage V_{ID} (diff p- p) after device configuration ⁽¹⁸⁾ .	$V_{CCR_GXB} = 0.90 V$ (V _{ICM} = 0.6 V)			2.4			2.4			2.4	V
(22)	$V_{CCR_GXB} = 0.85 V$ (V _{ICM} = 0.6 V)			2.4			2.4		_	2.4	V
Minimum differential eye opening at receiver serial input pins ^{(6), (22),} (27)	_	85			85			85	_	_	mV

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 3 of 7)

Symbol/ Description	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	DC Gain Setting = 0		0	_	_	0	_	_	0	—	dB
	DC Gain Setting = 1	_	2		_	2	_	_	2	_	dB
Programmable DC gain	DC Gain Setting = 2	_	4	_	_	4	_	_	4	_	dB
	DC Gain Setting = 3	_	6	_	_	6	_	_	6	_	dB
	DC Gain Setting = 4		8			8	—		8	_	dB
Transmitter											
Supported I/O Standards	_				-	1.4-V ar	nd 1.5-V PC	ML			
Data rate (Standard PCS)	_	600	_	12200	600	_	12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS)	_	600	_	14100	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
	85-Ω setting	_	85 ± 20%	_	_	85 ± 20%	_	_	85 ± 20%	—	Ω
Differential on-	100-Ω setting	_	100 ± 20%	_	_	100 ± 20%	_	_	100 ± 20%	_	Ω
chip termination resistors	120-Ω setting		120 ± 20%	_		120 ± 20%	_		120 ± 20%	_	Ω
	150-Ω setting	_	150 ± 20%			150 ± 20%	_		150 ± 20%	_	Ω
V _{OCM} (AC coupled)	0.65-V setting	_	650		_	650	_	_	650	—	mV
V _{OCM} (DC coupled)	_	_	650	_	_	650		_	650	_	mV
Rise time ⁽⁷⁾	20% to 80%	30	—	160	30	—	160	30	—	160	ps
Fall time ⁽⁷⁾	80% to 20%	30		160	30		160	30	—	160	ps
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps	_	_	15			15		_	15	ps
Intra-transceiver block transmitter channel-to- channel skew	x6 PMA bonded mode	_	_	120	_	_	120	_		120	ps

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 5 of 7)

Mada (2)	Transceiver	PMA Width	20	20	16	16	10	10	8	8
	Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8
	1	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.5	5.8	5.2	4.72
	ŋ	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.5	5.8	5.2	4.72
	۷	C3, I3, I3L core speed grade	9.8	9.0	7.84	7.2	5.3	4.7	4.24	3.76
FIFO		C1, C2, C2L, I2, I2L core speed grade	8.5	8.5	8.5	8.5	6.5	5.8	5.2	4.72
	3	I3YY core speed grade	10.3125	10.3125	7.84	7.2	5.3	4.7	4.24	3.76
	5	C3, I3, I3L core speed grade	8.5	8.5	7.84	7.2	5.3	4.7	4.24	3.76
		C4, I4 core speed grade	8.5	8.2	7.04	6.56	4.8	4.2	3.84	3.44
	1	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.1	5.7	4.88	4.56
	ŋ	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.1	5.7	4.88	4.56
	۷	C3, I3, I3L core speed grade	9.8	9.0	7.92	7.2	4.9	4.5	3.96	3.6
Register		C1, C2, C2L, I2, I2L core speed grade	10.3125	10.3125	10.3125	10.3125	6.1	5.7	4.88	4.56
	3	I3YY core speed grade	10.3125	10.3125	7.92	7.2	4.9	4.5	3.96	3.6
	J	C3, I3, I3L core speed grade	8.5	8.5	7.92	7.2	4.9	4.5	3.96	3.6
		C4, I4 core speed grade	8.5	8.2	7.04	6.56	4.4	4.1	3.52	3.28

Table 25 shows the approximate maximum data rate using the standard PCS.

Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3)

Notes to Table 25:

(1) The maximum data rate is in Gbps.

(2) The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

(3) The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade.

Table 26 shows the approximate maximum data rate using the 10G PCS.

Mada (2)	Transceiver	PMA Width	64	40	40	40	32	32
mode ""	Speed Grade	PCS Width	64	66/67	50	40	64/66/67	32
	1	C1, C2, C2L, I2, I2L core speed grade	14.1	14.1	10.69	14.1	13.6	13.6
	2	C1, C2, C2L, I2, I2L core speed grade	12.5	12.5	10.69	12.5	12.5	12.5
	Z	C3, I3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
FIFO or Register		C1, C2, C2L, I2, I2L core speed grade						
	3	C3, I3, I3L core speed grade			8.5	Gbps		
	5	C4, I4 core speed grade						
		I3YY core speed grade			10.312	25 Gbps		

Notes to Table 26:

(1) The maximum data rate is in Gbps.

(2) The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Figure 3 shows the Stratix V AC gain curves for GX channels.

Figure 3. AC Gain Curves for GX Channels (full bandwidth)

Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23.

Table 28 lists the Stratix V GT transceiver specifications.

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5)⁽¹⁾

Symbol/	Conditions	S	Transceive peed Grade	r 2	SI	Fransceive Deed Grade	r 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	
	100 Hz	—	—	-70			-70	
Transmitter REFCLK	1 kHz		_	-90	_	_	-90	
Phase Noise (622	10 kHz		—	-100	_		-100	dBc/Hz
MHz) ⁽¹⁸⁾	100 kHz			-110			-110	
	\geq 1 MHz	—	—	-120	_	_	-120	
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁵⁾	10 kHz to 1.5 MHz (PCle)	_	_	3		_	3	ps (rms)
RREF ⁽¹⁷⁾	_	_	1800 ± 1%	—	_	1800 ± 1%	_	Ω
Transceiver Clocks								
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_clk) frequency	_	100	_	125	100	_	125	MHz
Receiver	•							
Supported I/O Standards	_		1.4-V PCML	., 1.5-V PCMI	L, 2.5-V PCI	VIL, LVPEC	L, and LVDS	6
Data rate (Standard PCS) ⁽²¹⁾	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS) ⁽²¹⁾	GX channels	600	_	12,500	600	_	12,500	Mbps
Data rate	GT channels	19,600	—	28,050	19,600		25,780	Mbps
Absolute V _{MAX} for a receiver pin ⁽³⁾	GT channels	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	GT channels	-0.4	_	—	-0.4	_	_	V
Maximum peak-to-peak	GT channels	_		1.6	—	_	1.6	V
differential input voltage V _{ID} (diff p-p) before device configuration ⁽²⁰⁾	GX channels				(8)			
	GT channels							
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) after device	V _{CCR_GTB} = 1.05 V (V _{ICM} = 0.65 V)	_	_	2.2	_	—	2.2	V
	GX channels		1	1 1	(8)			1
Minimum differential	GT channels	200	_	—	200		_	mV
eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾	GX channels			·	(8)			

Table 29 shows the V_{OD} settings for the GT channel.

Symbol	V _{OD} Setting	V _{od} Value (mV)
	0	0
	1	200
V., differential neak to neak typical (1)	2	400
The american hear to hear thicat to	3	600
	4	800
	5	1000

Note:

(1) Refer to Figure 4.

Figure 4 shows the differential transmitter output waveform.

Figure 5 shows the Stratix V AC gain curves for GT channels.

Figure 5. AC Gain Curves for GT Channels

Table 31. PLL Specifications for Stratix V Devices (Part 3 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
f _{RES}	Resolution of VCO frequency ($f_{INPFD} = 100 \text{ MHz}$)	390625	5.96	0.023	Hz

Notes to Table 31:

(1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

(2) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.

- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps.
- (4) f_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 44 on page 52.
- (6) The cascaded PLL specification is only applicable with the following condition: a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) The external memory interface clock output jitter specifications use a different measurement method, which is available in Table 42 on page 50.
- (9) The VCO frequency reported by the Quartus II software in the PLL Usage Summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (10) This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05 0.95 must be \geq 1000 MHz, while f_{VCO} for fractional value range 0.20 0.80 must be \geq 1200 MHz.
- (11) This specification only covered fractional PLL for low bandwidth. The f_{VC0} for fractional value range 0.05-0.95 must be \geq 1000 MHz.
- (12) This specification only covered fractional PLL for low bandwidth. The f_{VC0} for fractional value range 0.20-0.80 must be \geq 1200 MHz.

DSP Block Specifications

Table 32 lists the Stratix V DSP block performance specifications.

			F	Peformanc	e			
Mode	C1	C2, C2L	12, 12L	C3	13, 13L, 13YY	C4	14	Unit
		Modes ı	using one	DSP				
Three 9 x 9	600	600	600	480	480	420	420	MHz
One 18 x 18	600	600	600	480	480	420	400	MHz
Two partial 18 x 18 (or 16 x 16)	600	600	600	480	480	420	400	MHz
One 27 x 27	500	500	500	400	400	350	350	MHz
One 36 x 18	500	500	500	400	400	350	350	MHz
One sum of two 18 x 18(One sum of 2 16 x 16)	500	500	500	400	400	350	350	MHz
One sum of square	500	500	500	400	400	350	350	MHz
One 18 x 18 plus 36 (a x b) + c	500	500	500	400	400	350	350	MHz
		Modes u	sing two l	DSPs				
Three 18 x 18	500	500	500	400	400	350	350	MHz
One sum of four 18 x 18	475	475	475	380	380	300	300	MHz
One sum of two 27 x 27	465	465	450	380	380	300	290	MHz
One sum of two 36 x 18	475	475	475	380	380	300	300	MHz
One complex 18 x 18	500	500	500	400	400	350	350	MHz
One 36 x 36	475	475	475	380	380	300	300	MHz

Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 1 of 2)

	Peformance								
Mode	C1	C2, C2L	12, 12L	C3	13, 13L, 13YY	C4	14	Unit	
		Modes us	ing Three	DSPs					
One complex 18 x 25	425	425	415	340	340	275	265	MHz	
Modes using Four DSPs									
One complex 27 x 27	465	465	465	380	380	300	290	MHz	

Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 2 of 2)

Memory Block Specifications

Table 33 lists the Stratix V memory block specifications.

Table 33. Memory Block Performance Specifications for Stratix V Devices ^{(1), (2)} (Part 1 of 2)

		Resources Used		Performance							
Memory	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, 12L	13, 13L, 13YY	14	Unit
	Single port, all supported widths	0	1	450	450	400	315	450	400	315	MHz
MLAR	Simple dual-port, x32/x64 depth	0	1	450	450	400	315	450	400	315	MHz
WILAD	Simple dual-port, x16 depth ⁽³⁾	0	1	675	675	533	400	675	533	400	MHz
	ROM, all supported widths	0	1	600	600	500	450	600	500	450	MHz

		Resour	ces Used			Ρε	erforman	ce			
Memory	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, 12L	13, 13L, 13YY	14	Unit
	Single-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	525	525	455	400	525	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512 × 32	0	1	450	450	400	350	450	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	600	600	500	450	600	500	450	MHz
	True dual port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	ROM, all supported widths	0	1	700	700	650	550	700	500	450	MHz

Table 33. Memory Block Performance Specifications for Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 33:

(1) To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50**% output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

(2) When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

(3) The F_{MAX} specification is only achievable with Fitter options, MLAB Implementation In 16-Bit Deep Mode enabled.

Temperature Sensing Diode Specifications

Table 34 lists the internal TSD specification.

Table 34. Internal Temperature Sensing Diode Specification

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°C to 100°C	±8°C	No	1 MHz, 500 KHz	< 100 ms	8 bits	8 bits

Table 35 lists the specifications for the Stratix V external temperature sensing diode.

Table 35.	External	Temperature	Sensing Dic	de Specifica	ations for Stratix	V Devices
-----------	----------	-------------	-------------	--------------	--------------------	-----------

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	—	200	μA
V _{bias,} voltage across diode	0.3	—	0.9	V
Series resistance	—	_	< 1	Ω
Diode ideality factor	1.006	1.008	1.010	_

	0		C1		C2,	C2L, I	2, I2L	C3,	13, 131	., I 3YY		C4,I	4	
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{duty}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards	_	_	160	_	_	160	_	_	200	_	_	200	ps
t _{rise} & t _{fall}	Emulated Differential I/O Standards with three external output resistor networks			250			250			250			300	ps
	True Differential I/O Standards	_	_	150	_	_	150	_	_	150	_	_	150	ps
TCCS	Emulated Differential I/O Standards			300			300	_		300			300	ps
Receiver														
	SERDES factor J = 3 to 10 (11), (12), (13), (14), (15), (16)	150		1434	150	_	1434	150	_	1250	150	_	1050	Mbps
True Differential 1/0 Standards	SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16)	150	_	1600	150	_	1600	150	_	1600	150	_	1250	Mbps
- f _{HSDRDPA} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)		(7)	Mbps

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4)

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
	Disabled	Enabled	4
IFF XJZ	Enabled	Disabled	8
	Enabled	Enabled	8

Table 49.	DCLK-to-DATA[]	Ratio ⁽¹⁾	(Part 2 of 2)
-----------	----------------	----------------------	---------------

Note to Table 49:

(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.

Figure 11. Single Device FPP Configuration Using an External Host

Notes to Figure 11:

- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM} .
- (2) You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device's nCE pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP ×8, use DATA [7..0]. If you use FPP ×16, use DATA [15..0].

IF the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio – 1) clock cycles after the last data is latched into the Stratix V device.