E·XFL

Intel - 5SGSED8K2F40I3LN Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	262400
Number of Logic Elements/Cells	695000
Total RAM Bits	51200000
Number of I/O	696
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgsed8k2f40i3ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 6.	Recommended	Operating	Conditions	for Stratix	V Devices	(Part 1 of 2))
----------	-------------	-----------	------------	-------------	-----------	---------------	---

Symbol	Description	Condition	Mith	Тур	Max ⁽⁴⁾	Unit	
	Core voltage and periphery circuitry por supply (C1, C2, I2, and I3YY speed gra	wer des)	0.87	0.9	0.93	V	
V _{CC}	Core voltage and periphery circuitry por supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades ³⁾	ver 4 —	0.82	0.85	0.88	V	
V _{CCPT}	Power supply for programmable power technology	—	1.45	1.50	1.55	V	
V _{CC_AUX}	Auxiliary supply for the programmable power technology	—	2.375	2.5	2.625	V	
V (1)	I/O pre-driver (3.0 V) power supply	—	2.85	3.0	3.1	5	V
VCCPD''	I/O pre-driver (2.5 V) power supply	—	2.375	5 2.5	2.62	5	V
	I/O buffers (3.0 V) power supply	—	2.85	3.0	3.15	5	V
	I/O buffers (2.5 V) power supply	—	2.375	2.5	2.62	5	V
	I/O buffers (1.8 V) power supply	—	1.71	1.8	1.89	9	V
V _{CCIO}	I/O buffers (1.5 V) power supply	—	1.425	1.5	1.57	5	V
	I/O buffers (1.35 V) power supply		1.283	1.35	1.4	5	V
	I/O buffers (1.25 V) power supply	—	1.19	1.25	1.3	1	V
	I/O buffers (1.2 V) power supply	—	1.14	1.2	1.26	5	V
	Configuration pins (3.0 V) power supply	(2.85	3.0	3.1	5	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	· —	2.37	5 2.5	2.6	25	V
	Configuration pins (1.8 V) power supply	· —	1.71	1.8	1.8	9	V
V _{CCA_FPLL}	PLL analog voltage regulator power su	pply —	2.37	75 2.	5 2.6	25	V
V _{CCD_FPLL}	PLL digital voltage regulator power sup	ply —	1.4	5 1.5	5 1.5	5	V
V _{CCBAT} ⁽²⁾	Battery back-up power supply (For des security volatile key register)	ign	1.2		3.0	V	
VI	DC input voltage		-0.5		3.6	V	
Vo	Output voltage	—	0	_	cKio	V	
т.		Commercial	0		85	°C	
IJ		Industrial	-40	_	100	°C	

Symbol/	Conditions	Conditions Transceiver Speed Grade 2		Transceiver Speed Grade 3			Unit	
Description		Min	Тур	Max	Min	Тур	Max	
Reference Clock								
Supported I/O	Dedicated reference clock pin	1.2-V PCI	ML, 1.4-V F	PCML, 1.5-'	V PCM5L,V2 and HCSL	PCML, Dif	ferential L\	/PECL, LV
Standards	RX reference clock pin	•	1.4-V PCN	IL, 1.5-V P(CML, 2%.5PC	ML, LVPE	ECL, and L	VDS
Input Reference Clock Frequency (CMU PLL) ⁽⁶⁾	_	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLଏ)	_	100	_	710	100		710	MHz
Rise time	20% to 80%	<u> </u>	_	400		—	400	n -
Fall time	80% to 20%	, —		400			400	ps
Duty cycle	_	45		55	45		55	%
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30	_	33	30		33	kHz
Spread-spectrum downspread	PCle	_	0 to -0.5	-	_	0 to –0	5 —	%
On-chip termination resistors ⁽¹⁹⁾		—	100	_	_	100	_	Ω
Absolute M _{AX} ⁽³⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	V
	RX reference clock pin	•	_	1.2	_	_	1.2	
Absolute M _{IN}	_	-0.4	—	—	-0.4	—	—	V
Peak-to-peak differential input voltage	_	200	_	1600	200		1600	mV
V _{ICM} (AC coupled)	Dedicated reference clock pin	ed ee 1050/1000 ²⁾ n		1050/1000 ²⁾			mV	
	RX reference clock pin	1	.0/0.9/0.85	22)	1.	V		
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250		550	250	_	550	mV

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 & 5)

Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled.

	Figure 7.	DPA Lock	Time Sp	ecification	with DPA	PLL	Calibration	Enabled
--	-----------	----------	---------	-------------	----------	------------	-------------	---------

rx_reset			
rx_dpa_locked			

Table 37 lists the DPA lock time specifications for Stratix V devices.

Table 37. DPA Lock Time Specifications for Stratix V GX Devices 10 (A) (3)

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern Number of Repetitions per 256 Data Transitions ⁽⁴⁾		Maximum
SPI-4	0000000000111111111	1 2	128	640 data transitions
Parallal Papid I/O	00001111	2	128	640 data transitions
Parallel Rapid I/O	10010000	4	64	640 data transitions
Missellaneous	10101010	8	32	640 data transitions
Miscellaneous	01010101	8	32	640 data transitions

Notes toTable 37

(1) The DPA lock time is for one channel.

(2) One data transition is defined as a 0-to-1 or 1-to-0 transition.

(3) The DPA lock time stated in this tablelies to both commendiand industrial grade.

(4) This is the number of repetition for the stated training patternachieve the 256 tata transitions.

Figure 8 shows the LVDS soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps.

Duty Cycle Distortin (DCD) Specifications

Table 44 lists the worst-case DCD for Stratix V devices.

Table 44. Worst-Case DCD on Stratix V I/O Pins

Symbol	C	;1	C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,I4		Unit
,	Min	Max	Min	Max	Min	Max	Min	Max	
Output Duty Cycle	45	55	45	55	4	5 55	i 4	5 5	5 %

Note toTable 44

(1) The DCD numbers do not veo the core clock network.

Configuration Specification

POR Delay Specification

Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS released high and your device is ready to begin configuration.

f For more information about the POR delay, refer to the *Hot Socketing and Power-On Reset in Stratix V Devices* chapter.

Table 45 lists the fast and standard POR delay specification.

Table 45. Fast and Standard POR Delay Specification

POR Delay	Minimum	Maximum	
Fast	4 ms	12 ms	
Standard	100 ms	300 ms	

Note toTable 45

(1) You can select the POR delay based dh/3E besettings as described in th/4EEL Pin Settings section of the "Configuration, Design Security, and Rten Saystem Upgrades in Stratix V Devicea batter."

JTAG Configuration Specifications

Table 46 lists the JTAG timing parameters and values for Stratix V devices.

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30	_	ns
t _{JCP}	TCK clock period	167		ns
t _{JCH}	TCK clock high time	14	_	ns
t _{JCL}	TCK clock low time	14	_	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	_	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns

Table 60. Glossary (Part 3 of 4)

Letter	Subject	Definitions
	SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time Image: Bit Time Image: Bit Time Image: O.5 x TCCS RSKM Sampling Window (SW)
S	Single-ended voltage referenced I/O standard	The JEDEC standard SS TLandHSTL/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard
	t _C	High-speed receiver and transmitter input and output clock period.
	TCCS (channel- to-channel-skew)	The timing difference between the fastest and slowest output edges, includingtion and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to trieming Diagrarfigure undeSWin this table).
		High-speed I/O block—Duty cycle on the high-speed transmitter output clock.
	touty	Timing Unit Interval (TUI)
T		The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = 1/(receiver input clock frequency multiplication fact@ny)= t
	t _{FALL}	Signal high-to-low transition time (80-20%)
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.
	t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.
	t _{RISE}	Signal low-to-high transition time (20-80%)
U	—	

Letter	Subject	Definitions	
V	V _{CM(DC)}	DC common mode input voltage.	
	V _{ICM}	Input common mode voltage—The common mode of the differential signal at the rec	eiver.
	V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.	
	V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switt	ching.
	V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for swi	itching.
	V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accept the device as a logic high.	pted by
	V _{IH(AC)}	High-level AC input voltage	
	V _{IH(DC)}	High-level DC input voltage	
	VIL	Voltage input low—The maximum positive voltage applied to the input which is accept the device as a logic low.	pted by
	V _{IL(AC)}	Low-level AC input voltage	
	V _{IL(DC)}	Low-level DC input voltage	
	V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.	
	V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.	t
	V _{SWING}	Differential input voltage	
	V _X	Input differential cross point voltage	
	V _{OX}	Output differential cross point voltage	
W	W	High-speed I/O block—clock boost factor	
Х			
Y	—	-	
Z			

Table 60. Glossary (Part 4 of 4)