E·XFL

Intel - 55GSED8N2F45I3LN Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	262400
Number of Logic Elements/Cells	695000
Total RAM Bits	51200000
Number of I/O	840
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1932-BBGA, FCBGA
Supplier Device Package	1932-FBGA, FC (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgsed8n2f45i3ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
			0.82	0.85	0.88	
V _{CCR_GXBR}		GX, GS, GT	0.87	0.90	0.93	v
(2)	Receiver analog power supply (right side)	un, us, ui	0.97	1.0	1.03	v
			1.03	1.05	1.07	
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
			0.82	0.85	0.88	
V _{CCT_GXBL}	Transmitter analog newer supply (left side)		0.87	0.90	0.93	V
(2)	Transmitter analog power supply (left side)	GX, GS, GT	0.97	1.0	1.03	
			1.03	1.05	1.07	
			0.82	0.85	0.88	
V _{CCT_GXBR}	Transmitter analog neuror supply (right side)		0.87	0.90	0.93	v
(2)	Transmitter analog power supply (right side)	GX, GS, GT	0.97	1.0	1.03	v
			1.03	1.05	1.07	
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
V_{CCL_GTBR}	Transmitter clock network power supply	GT	1.02	1.05	1.08	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	1.425	1.5	1.575	V

Table 7.	Recommended Transceiver Power Supply Operating Conditions for Stratix V GX,	GS, and GT Devices
(Part 2	of 2)	

Notes to Table 7:

(1) This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

(2) Refer to Table 8 to select the correct power supply level for your design.

(3) When using ATX PLLs, the supply must be 3.0 V.

(4) This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 8 shows the transceiver power supply voltage requirements for various conditions.

Table 8. Transceiver Power Supply Voltage Requirements

Conditions	Core Speed Grade	VCCR_GXB & VCCT_GXB ⁽²⁾	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:	All	1.05			
 Data rate > 10.3 Gbps. DFE is used. 	All	1.05			
If ANY of the following conditions are true ⁽¹⁾ :			3.0		
ATX PLL is used.					
■ Data rate > 6.5Gbps.	All	1.0			
■ DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used.				1.5	V
If ALL of the following	C1, C2, I2, and I3YY	0.90	2.5		
conditions are true:ATX PLL is not used.					
■ Data rate ≤ 6.5Gbps.	C2L, C3, C4, I2L, I3, I3L, and I4	0.85	2.5		
 DFE, AEQ, and EyeQ are not used. 					

Notes to Table 8:

(1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.

(2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply.

DC Characteristics

This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications.

Supply Current

Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

			Calibration Accuracy				
Symbol	Description	Conditions	C1	C2,12	C3,I3, I3YY	C4,14	Unit
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%
34-Ω and 40-Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	±15	±15	%
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	V _{CCI0} = 1.2 V	±15	±15	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
20- $Ω$, 30- $Ω$, 40- $Ω$,60- $Ω$, and 120- $Ω$ R _T	Internal parallel termination with calibration ($20 \cdot \Omega$, $30 \cdot \Omega$, $40 \cdot \Omega$, $60 \cdot \Omega$, and $120 \cdot \Omega$ setting)	V _{CCI0} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
60-Ω and 120-Ω R_T	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	V _{CCI0} = 1.2	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
$\begin{array}{l} \textbf{25-}\Omega\\ \textbf{R}_{S_left_shift} \end{array}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%

Table 11. OCT Calibration Accurat	y Specifications for Stratix V Devices ⁽¹⁾ ((Part 2 of 2)
-----------------------------------	---	---------------

Note to Table 11:

(1) OCT calibration accuracy is valid at the time of calibration only.

Table 12 lists the Stratix V OCT without calibration resistance to PVT changes.

			Re	esistance	Tolerance	1	
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 3.0$ and 2.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	$V_{CCIO} = 1.8$ and 1.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%

Symbol	Description	V _{CCIO} (V)	Typical	Unit
			0.189	
	IT OCT variation with temperature without recalibration	2.5	0.208	
dR/dT		1.8	0.266	%/°C
	without robalibration	1.5	0.273	
		1.2	0.317	

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2)⁽¹⁾

Note to Table 13:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to 85°C.

Pin Capacitance

Table 14 lists the Stratix V device family pin capacitance.

Table 14. Pin Capacitance for Stratix V Devices

Symbol Description		Value	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	6	рF

Hot Socketing

Table 15 lists the hot socketing specifications for Stratix V devices.

Table 15.	Hot Socketing Specifications for Stratix V Devices
-----------	--

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μA
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Note to Table 15:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{10PIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

I/O Standard	V _{IL(DI}	_{c)} (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{ol} (V)	V _{oh} (V)	I (mA)	I _{oh}
i/U Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	l _{oi} (mA)	(mA)
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	$V_{REF} - 0.2$	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCI0}	0.75* V _{CCI0}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCI0}	16	-16
HSUL-12	_	V _{REF} – 0.13	V _{REF} + 0.13	_	V _{REF} – 0.22	V _{REF} + 0.22	0.1* V _{CCIO}	0.9* V _{CCI0}	_	_

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 2 of 2)

Table 20. Differential SSTL I/O Standards for Stratix V Devices

I/O Standard		V _{ccio} (V)		V _{SWIN}	_{G(DC)} (V)		V _{X(AC)} (V)		V _{swing(} ,	_{AC)} (V)
ijo Stanuaru	Min	Тур	Max	Min	Max	Min	Min Typ		Min	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCI0} + 0.6	V _{CCI0} /2- 0.2	_	V _{CCI0} /2 + 0.2	0.62	V _{CCI0} + 0.6
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCI0} + 0.6	V _{CCI0} /2- 0.175	_	V _{CCI0} /2 + 0.175	0.5	V _{CCI0} + 0.6
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(1)	V _{CCI0} /2- 0.15	_	V _{CCI0} /2 + 0.15	0.35	_
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(1)	V _{CCI0} /2- 0.15	V _{CCI0} /2	V _{CCI0} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	2(V _{IL(AC)} - V _{REF})
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(1)	V _{CCI0} /2- 0.15	V _{CCI0} /2	V _{CCI0} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	_	V _{REF} -0.15	V _{CCI0} /2	V _{REF} + 0.15	-0.30	0.30

Note to Table 20:

(1) The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits $(V_{IH(DC)} \text{ and } V_{IL(DC)})$.

I/O		V _{ccio} (V)	CIO (V) V _{DIF(DC)} (V) V _{X(AC)} (V)			V _{CM(DC)} (V)	V _{DIF(AC)} (V)					
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78	_	1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68	_	0.9	0.68	_	0.9	0.4	_

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Spread-spectrum downspread	PCle	_	0 to 0.5	_	_	0 to 0.5		_	0 to 0.5	_	%
On-chip termination resistors ⁽²¹⁾	_	_	100		_	100		_	100		Ω
Absolute V _{MAX} ⁽⁵⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_	_	1.2	_		1.2		_	1.2	
Absolute V_{MIN}	—	-0.4	—		-0.4	—	—	-0.4	—	—	V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	200	_	1600	mV
V _{ICM} (AC	Dedicated reference clock pin	1050/	1000/90	00/850 ⁽²⁾	1050/	1000/90	00/850 ⁽²⁾	1050/1000/900/850 (2)		mV	
coupled) ⁽³⁾	RX reference clock pin	1.	.0/0.9/0	.85 ⁽⁴⁾	1.	0/0.9/0	.85 ⁽⁴⁾	1.	0/0.9/0	.85 ⁽⁴⁾	V
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250		550	250		550	250		550	mV
	100 Hz	—	—	-70	—	—	-70	—	—	-70	dBc/Hz
Transmitter	1 kHz			-90			-90		—	-90	dBc/Hz
REFCLK Phase Noise	10 kHz	—	—	-100	—	—	-100	—	—	-100	dBc/Hz
(622 MHz) ⁽²⁰⁾	100 kHz			-110	—	—	-110	—	—	-110	dBc/Hz
	≥1 MHz	—	—	-120	—	—	-120	—	—	-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁷⁾	10 kHz to 1.5 MHz (PCle)	_	_	3	_	_	3	_	_	3	ps (rms)
R _{REF} (19)			1800 ±1%		_	1800 ±1%	_		180 0 ±1%		Ω
Transceiver Clocks	S										
fixedclk clock frequency	PCIe Receiver Detect		100 or 125	_	_	100 or 125	_	_	100 or 125	_	MHz

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 2 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	Unit		
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reconfiguration clock (mgmt_clk_clk) frequency	_	100	_	125	100		125	100		125	MHz
Receiver											
Supported I/O Standards	_			1.4-V PCM	L, 1.5-V	PCML,	2.5-V PCM	L, LVPE	CL, and	d LVDS	
Data rate (Standard PCS) (9), (23)	_	600	_	12200	600	_	12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS) ^{(9),} ⁽²³⁾		600	_	14100	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
Absolute V_{MAX} for a receiver pin (5)		_	_	1.2	—	_	1.2	—	_	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_		-0.4	_	_	-0.4	_	_	V
Maximum peak- to-peak differential input voltage V _{ID} (diff p- p) before device configuration ⁽²²⁾	_	_	_	1.6	_	_	1.6	_	_	1.6	V
Maximum peak- to-peak	V _{CCR_GXB} = 1.0 V/1.05 V (V _{ICM} = 0.70 V)	_	_	2.0	_	_	2.0	_	_	2.0	V
differential input voltage V_{ID} (diff p- p) after device configuration ⁽¹⁸⁾ ,	$V_{CCR_GXB} = 0.90 V$ (V _{ICM} = 0.6 V)	_	_	2.4	_	_	2.4	_	_	2.4	V
(22)	$V_{CCR_GXB} = 0.85 V$ (V _{ICM} = 0.6 V)			2.4			2.4			2.4	V
Minimum differential eye opening at receiver serial input pins ^{(6), (22),} (27)	_	85		_	85		_	85	_	_	mV

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 3 of 7)

Figure 6 shows the Stratix V DC gain curves for GT channels.

Figure 6. DC Gain Curves for GT Channels

Transceiver Characterization

This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols:

- Interlaken
- 40G (XLAUI)/100G (CAUI)
- 10GBase-KR
- QSGMII
- XAUI
- SFI
- Gigabit Ethernet (Gbe / GIGE)
- SPAUI
- Serial Rapid IO (SRIO)
- CPRI
- OBSAI
- Hyper Transport (HT)
- SATA
- SAS
- CEI

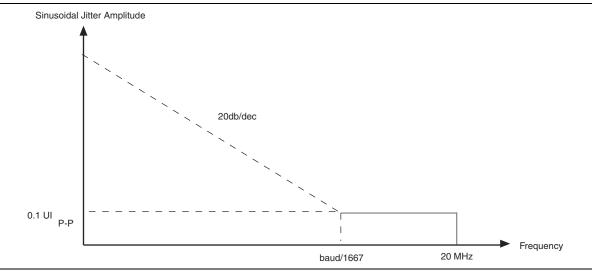
PLL Specifications

Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (-40° to 100° C).

Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (C1, C2, C2L, I2, and I2L speed grades)	5	_	800 (1)	MHz
f _{IN}	Input clock frequency (C3, I3, I3L, and I3YY speed grades)	5	_	800 (1)	MHz
	Input clock frequency (C4, I4 speed grades)	5	_	650 ⁽¹⁾	MHz
f _{INPFD}	Input frequency to the PFD	5	—	325	MHz
f _{finpfd}	Fractional Input clock frequency to the PFD	50	—	160	MHz
	PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades)	600	_	1600	MHz
f _{VCO}	PLL VCO operating range (C3, I3, I3L, I3YY speed grades)	600	_	1600	MHz
	PLL VCO operating range (C4, I4 speed grades)	600	—	1300	MHz
t _{einduty}	Input clock or external feedback clock input duty cycle	40		60	%
	Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades)	—	_	717 ⁽²⁾	MHz
f _{out}	Output frequency for an internal global or regional clock (C3, I3, I3L speed grades)	_	_	650 ⁽²⁾	MHz
	Output frequency for an internal global or regional clock (C4, I4 speed grades)	_	_	580 ⁽²⁾	MHz
	Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades)	_	_	800 (2)	MHz
f _{out_ext}	Output frequency for an external clock output (C3, I3, I3L speed grades)	_	_	667 ⁽²⁾	MHz
	Output frequency for an external clock output (C4, I4 speed grades)	_	_	553 ⁽²⁾	MHz
t _{outduty}	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	—	10	ns
f _{dyconfigclk}	Dynamic Configuration Clock used for <code>mgmt_clk</code> and <code>scanclk</code>	_	_	100	MHz
t _{LOCK}	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
t _{olock}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth		0.3	—	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	_	1.5		MHz
	PLL closed-loop high bandwidth (7)		4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift			±50	ps
t _{areset}	Minimum pulse width on the areset signal	10	_		ns

0b.al	Oanditiana		C1		C2,	C2L, I	2, I2L	C3,	13, 131	., I 3YY	C4,14			Unit
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Transmitter				<u>.</u>						<u>.</u>				
	SERDES factor J = 3 to 10 ⁽⁹⁾ , ⁽¹¹⁾ , ⁽¹²⁾ , ⁽¹³⁾ , ⁽¹⁴⁾ , ⁽¹⁵⁾ , ⁽¹⁶⁾	(6)		1600	(6)		1434	(6)		1250	(6)		1050	Mbps
	SERDES factor J ≥ 4													
True Differential I/O Standards	LVDS TX with DPA ⁽¹²⁾ , ⁽¹⁴⁾ , ⁽¹⁵⁾ , ⁽¹⁶⁾	(6)	_	1600	(6)	_	1600	(6)	_	1600	(6)	_	1250	Mbps
- f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) ⁽¹⁰⁾	SERDES factor J = 4 to 10 (17)	(6)		1100	(6)		1100	(6)		840	(6)		840	Mbps
t _{x Jitter} - True Differential	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_		160	_	_	160			160	_	_	160	ps
I/O Standards	Total Jitter for Data Rate < 600 Mbps	_	_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - Emulated Differential I/O Standards	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_		300	_		300	_	_	300	_		325	ps
with Three External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_		0.2			0.2			0.2	_		0.25	UI


Table 36. High-Speed I/O Specifications for Stratix V Devices ^{(1), (2)} (Part 2 of 4)

Jitter Fre	Sinusoidal Jitter (UI)	
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Table 38.	LVDS Soft-CDR/DP/	Sinusoidal J	itter Mask Value	es for a Data Rat	e > 1.25 Gbps
-----------	-------------------	--------------	------------------	-------------------	---------------

Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps.

DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications

Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices.

Table 39. DLL Range Specifications for Stratix V Devices (1)

C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,14	Unit
300-933	300-933	300-890	300-890	MHz

Note to Table 39:

(1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL.

Table 40 lists the DQS phase offset delay per stage for Stratix V devices.

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices ^{(1), (2)} (Part 1 of 2)

Speed Grade	Min	Max	Unit
C1	8	14	ps
C2, C2L, I2, I2L	8	14	ps
C3,I3, I3L, I3YY	8	15	ps

Clock	Parameter	Symbol	C	1	C2, C2L	, 12, 12L	C3, I3 I3		C4	,14	Unit
Network			Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	$t_{JIT(per)}$	-25	25	-25	25	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	$t_{\text{JIT(cc)}}$	-50	50	-50	50	-60	60	-70	70	ps
	Duty cycle jitter	$t_{\text{JIT}(\text{duty})}$	-37.5	37.5	-37.5	37.5	-45	45	-56	56	ps

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3)

Notes to Table 42:

(1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

(2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

(3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

OCT Calibration Block Specifications

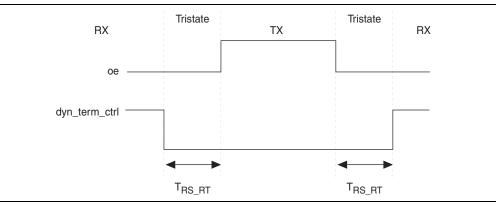

Table 43 lists the OCT calibration block specifications for Stratix V devices.

Table 43. OCT Calibration Block Specifications for Stratix V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks		_	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT $\rm R_S/R_T$ calibration	_	1000	_	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	—	32	_	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10)	_	2.5		ns

Figure 10 shows the timing diagram for the oe and dyn_term_ctrl signals.

Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals

Duty Cycle Distortion (DCD) Specifications

Table 44 lists the worst-case DCD for Stratix V devices.

Table 44. Worst-Case DCD on Stratix V I/O Pins (1)

Symbol	C	1	C2, C2	L, 12, 12L		3, I3L, Syy	C4	4,14	Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
Output Duty Cycle	45	55	45	55	45	55	45	55	%

Note to Table 44:

(1) The DCD numbers do not cover the core clock network.

Configuration Specification

POR Delay Specification

Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration.

For more information about the POR delay, refer to the *Hot Socketing and Power-On Reset in Stratix V Devices* chapter.

Table 45 lists the fast and standard POR delay specification.

Table 45. Fast and Standard POR Delay Specification (1)

POR Delay	Minimum	Maximum
Fast	4 ms	12 ms
Standard	100 ms	300 ms

Note to Table 45:

(1) You can select the POR delay based on the MSEL settings as described in the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

JTAG Configuration Specifications

Table 46 lists the JTAG timing parameters and values for Stratix V devices.

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period ⁽²⁾	30	—	ns
t _{JCP}	TCK clock period ⁽²⁾	167	—	ns
t _{JCH}	TCK clock high time ⁽²⁾	14	—	ns
t _{JCL}	TCK clock low time ⁽²⁾	14	—	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	—	ns

Symbol	Description	Min	Max	Unit
t _{JPH}	JTAG port hold time	5	—	ns
t _{JPCO}	JTAG port clock to output	—	11 ⁽¹⁾	ns
t _{JPZX}	JTAG port high impedance to valid output	—	14 ⁽¹⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	1 4 ⁽¹⁾	ns

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Notes to Table 46:

(1) A 1 ns adder is required for each V_{CCI0} voltage step down from 3.0 V. For example, $t_{JPC0} = 12$ ns if V_{CCI0} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

(2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

Raw Binary File Size

For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices".

Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices.

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) ^{(4), (5)}
	ECCVA2	H35, F40, F35 ⁽²⁾	213,798,880	562,392
	5SGXA3	H29, F35 ⁽³⁾	137,598,880	564,504
	5SGXA4	_	213,798,880	563,672
	5SGXA5	_	269,979,008	562,392
	5SGXA7	_	269,979,008	562,392
Stratix V GX	5SGXA9	_	342,742,976	700,888
	5SGXAB	_	342,742,976	700,888
	5SGXB5	_	270,528,640	584,344
	5SGXB6	_	270,528,640	584,344
	5SGXB9	_	342,742,976	700,888
	5SGXBB	_	342,742,976	700,888
Stratix V GT	5SGTC5	_	269,979,008	562,392
	5SGTC7	—	269,979,008	562,392
	5SGSD3	_	137,598,880	564,504
	5SGSD4	F1517	213,798,880	563,672
Ctratic V CC	556504	_	137,598,880	564,504
Stratix V GS	5SGSD5	_	213,798,880	563,672
	5SGSD6	_	293,441,888	565,528
	5SGSD8	—	293,441,888	565,528

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1.

Table 50. FPP Timing Parameters for Stratix V Devices (1)

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μS
t _{status}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽³⁾	μS
t _{CF2CK} (6)	nCONFIG high to first rising edge on DCLK	1,506	_	μS
t _{ST2CK} ⁽⁶⁾	nSTATUS high to first rising edge of DCLK	2	_	μS
t _{DSU}	DATA [] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA [] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45\times1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45\times1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f	DCLK frequency (FPP ×8/×16)	—	125	MHz
f _{MAX}	DCLK frequency (FPP ×32)	—	100	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁴⁾	175	437	μS
+	CONTRACT high to an union analysis	4 × maximum		
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	DCLK period	—	
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	$\begin{array}{c} t_{\text{CD2CU}} + \\ (8576 \times \text{CLKUSR} \\ \text{period}) \ ^{(5)} \end{array}$	_	_

Notes to Table 50:

(1) Use these timing parameters when the decompression and design security features are disabled.

(2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(3) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

- (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.
- (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

FPP Configuration Timing when DCLK-to-DATA [] > 1

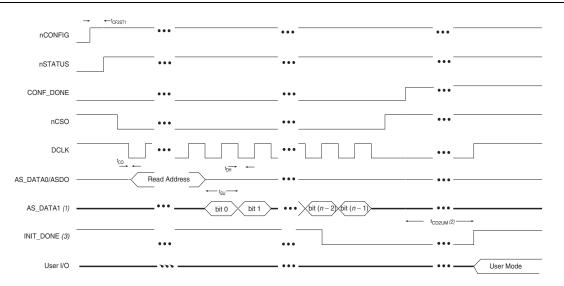
Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1.

Active Serial Configuration Timing

Table 52 lists the DCLK frequency specification in the AS configuration scheme.

Table 52.	DCLK Frequency	Specification in the <i>l</i>	AS Configuration Scheme	(1), (2)
-----------	----------------	-------------------------------	-------------------------	----------

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz


Notes to Table 52:

(1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

(2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Figure 14 shows the single-device configuration setup for an AS ×1 mode.

Notes to Figure 14:

- (1) If you are using AS $\times 4$ mode, this signal represents the AS_DATA[3..0] and EPCQ sends in 4-bits of data for each DCLK cycle.
- (2) The initialization clock can be from internal oscillator or CLKUSR pin.
- (3) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices.

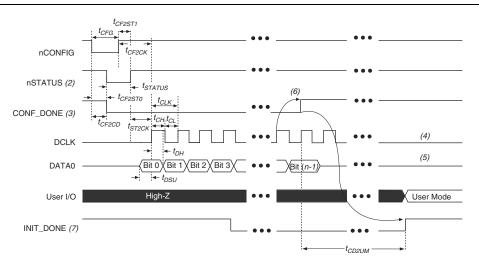
Symbol	Parameter	Minimum	Maximum	Units
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output	—	2	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	—	ns
t _H	Data hold time after falling edge on DCLK	0	—	ns

Symbol	Parameter	Minimum	Maximum	Units
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{cd2cu} + (8576 × clkusr period)	_	—

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 53:

(1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.


(2) t_{CF2CD}, t_{CF2ST0}, t_{CF2ST0}, t_{CF6}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63.

(3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

Passive Serial Configuration Timing

Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Figure 15. PS Configuration Timing Waveform ⁽¹⁾

Notes to Figure 15:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power-up, the Stratix V device holds <code>nSTATUS</code> low for the time of the POR delay.
- (3) After power-up, before and during configuration, CONF DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**.
- (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specifications

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} ⁽¹⁾	250	—	ns
t _{RU_nRSTIMER} ⁽²⁾	250	—	ns

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum	Typical	Maximum	Units
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

 You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Deremeter	Available	Min	Fast	Model				Slow N	lodel			
Parameter (1)	Available Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns

Parameter	Available	Min	Fast	Model				Slow N	lodel			
(1)	Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D3	8	0	1.587	1.699	2.793	2.793	2.992	3.192	2.811	3.047	3.257	ns
D4	64	0	0.464	0.492	0.838	0.838	0.924	1.011	0.843	0.920	1.006	ns
D5	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D6	32	0	0.229	0.244	0.415	0.415	0.458	0.503	0.418	0.456	0.499	ns

Notes to Table 58:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor.

(2) Minimum offset does not include the intrinsic delay.

Programmable Output Buffer Delay

Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

Table 59. Programmable Output Buffer Delay for Stratix V Devices (Table 59.	Programmable Out	put Buffer Delay	y for Stratix V Devices (
--	-----------	------------------	------------------	---------------------------

Symbol	Parameter	Typical	Unit
		0 (default)	ps
D	Rising and/or falling edge	25	ps
D _{OUTBUF}	delay	50	ps
		75	ps

Note to Table 59:

(1) You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

Glossary

Table 60 lists the glossary for this chapter.

Table 60. Glossary (Part 1 of 4)

Letter	Subject Definitions			
Α				
В	—	—		
С				
D	_	—		
E	—	_		
	f _{HSCLK}	Left and right PLL input clock frequency.		
F	f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.		
	f _{hsdrdpa}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.		

Table 60. Glossary (Part 2 of 4)

Letter	Subject	Definitions
G		
Н	_	_
Ι		
J	J JTAG Timing Specifications	High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS
K L M N O	_	_
Ρ	PLL Specifications	Diagram of PLL Specifications (1)
Q		_
	1	