E·XFL

Intel - 5SGSMD8K1F40C2N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	262400
Number of Logic Elements/Cells	695000
Total RAM Bits	51200000
Number of I/O	696
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgsmd8k1f40c2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

				shoon and	le entening		(-,
Transceiver Speed Grade				Core Spe	ed Grade			
	C1	C2, C2L	C3	C4	12, 12L	13, 13L	I 3YY	14
3		Yes	Yes	Yes		Yes	Yes (4)	Yes
GX channel—8.5 Gbps		165	165 165			163	16317	165

Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering ^{(1), (2), (3)} (Part 2 of 2)

Notes to Table 1:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

(3) C2L, I2L, and I3L speed grades are for low-power devices.

(4) I3YY speed grades can achieve up to 10.3125 Gbps.

Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices. **Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering** ⁽¹⁾, ⁽²⁾

Transaction Oracle Oracle		Core Speed Grade						
Transceiver Speed Grade	C1	C2	12	13				
2 GX channel—12.5 Gbps GT channel—28.05 Gbps	Yes	Yes	_	_				
3 GX channel—12.5 Gbps GT channel—25.78 Gbps	Yes	Yes	Yes	Yes				

Notes to Table 2:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 3.	Absolute	Maximum	Ratings	for Stratix \	/ Devices	(Part 1 of 2)
----------	----------	---------	----------------	---------------	-----------	---------------

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
+	P Power supply ramp time	Standard POR	200 µs	_	100 ms	—
LRAMP		Fast POR	200 µs			_

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2)

Notes to Table 6:

(1) V_{CCPD} must be 2.5 V when V_{CCI0} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCI0} is 3.0 V.

(2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low.

(3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades.

(4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices.

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2)

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left	GX, GS, GT	2.85	3.0	3.15	V
(1), (3)	side)	un, uo, ui	2.375	2.5	2.625	v
V _{CCA_GXBR}	Transceiver channel PLL power supply (right	GX, GS	2.85	3.0	3.15	V
(1), (3)	side)	ux, us	2.375	2.5	2.625	v
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	2.85	3.0	3.15	V
	Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
V _{CCHIP_R}	Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
	Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
			0.82	0.85	0.88	
V _{CCR_GXBL}	Pacaivar analog powar supply (left side)		0.87	0.90	0.93	V
(2)	Receiver analog power supply (left side)	GX, GS, GT	0.97	1.0	1.03	
			1.03	1.05	1.07	

Table 8 shows the transceiver power supply voltage requirements for various conditions.

Table 8. Transceiver Power Supply Voltage Requirements

Conditions	Core Speed Grade	VCCR_GXB & VCCT_GXB ⁽²⁾	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:	All	1.05			
 Data rate > 10.3 Gbps. DFE is used. 	All	1.05			
If ANY of the following conditions are true ⁽¹⁾ :			3.0		
ATX PLL is used.					
■ Data rate > 6.5Gbps.	All	1.0			
■ DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used.				1.5	V
If ALL of the following	C1, C2, I2, and I3YY	0.90	2.5		
conditions are true:ATX PLL is not used.					
■ Data rate ≤ 6.5Gbps.	C2L, C3, C4, I2L, I3, I3L, and I4	0.85	2.5		
 DFE, AEQ, and EyeQ are not used. 					

Notes to Table 8:

(1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.

(2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply.

DC Characteristics

This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications.

Supply Current

Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

I/O Pin Leakage Current

Table 9 lists the Stratix V I/O pin leakage current specifications.

Table 9. I/	0 Pin Leakage	Current for Stratix 	/ Devices ⁽¹⁾
-------------	---------------	-----------------------------	--------------------------

Symbol	Description	Conditions	Min	Тур	Max	Unit
I _I	Input pin	$V_I = 0 V \text{ to } V_{CCIOMAX}$	-30	—	30	μA
I _{0Z}	Tri-stated I/O pin	$V_0 = 0 V$ to $V_{CCIOMAX}$	-30		30	μA

Note to Table 9:

(1) If $V_0 = V_{CCIO}$ to $V_{CCIOMax}$, 100 μ A of leakage current per I/O is expected.

Bus Hold Specifications

Table 10 lists the Stratix V device family bus hold specifications.

Table 10. Bus Hold Parameters for Stratix V Devices

			V _{CCIO}										
Parameter	Symbol	Conditions	1.2	2 V	1.	5 V	1.8	B V	2.	5 V	3.0	V	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (maximum)	22.5	_	25.0	_	30.0	_	50.0	_	70.0	_	μA
High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (minimum)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μA
Low overdrive current	I _{odl}	$0V < V_{IN} < V_{CCIO}$	_	120	_	160	_	200	_	300	_	500	μA
High overdrive current	I _{odh}	0V < V _{IN} < V _{CCI0}		-120		-160	_	-200		-300	_	-500	μA
Bus-hold trip point	V _{trip}	_	0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

On-Chip Termination (OCT) Specifications

If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block. Table 11 lists the Stratix V OCT termination calibration accuracy specifications.

Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices ⁽¹⁾ (Part 1 of 2)

Symbol			Calibration Accuracy				
Symbol	Description	Conditions	C1	C2,12	C3,I3, I3YY	C4,I4 ±15	Unit
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%

			Calibration Accuracy					
Symbol	Description	Conditions	C1	C2,12	C3,I3, I3YY	C4,14	Unit	
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%	
34-Ω and 40-Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	±15	±15	%	
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	V _{CCI0} = 1.2 V	±15	±15	±15	±15	%	
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%	
20- $Ω$, 30- $Ω$, 40- $Ω$,60- $Ω$, and 120- $Ω$ R _T	Internal parallel termination with calibration ($20 \cdot \Omega$, $30 \cdot \Omega$, $40 \cdot \Omega$, $60 \cdot \Omega$, and $120 \cdot \Omega$ setting)	V _{CCI0} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%	
60-Ω and 120-Ω R_T	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	V _{CCI0} = 1.2	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%	
$\begin{array}{l} \textbf{25-}\Omega\\ \textbf{R}_{S_left_shift} \end{array}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%	

Table 11. OCT Calibration Accurat	y Specifications for Stratix V Devices ⁽¹⁾ ((Part 2 of 2)
-----------------------------------	---	---------------

Note to Table 11:

(1) OCT calibration accuracy is valid at the time of calibration only.

Table 12 lists the Stratix V OCT without calibration resistance to PVT changes.

			Resistance Tolerance					
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit	
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 3.0$ and 2.5 V	±30	±30	±40	±40	%	
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	$V_{CCIO} = 1.8$ and 1.5 V	±30	±30	±40	±40	%	
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%	

- You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.
- ***** For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	Fransceiver Speed Grade 3		Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Spread-spectrum downspread	PCle	_	0 to 0.5	_	_	0 to 0.5		_	0 to 0.5	_	%
On-chip termination resistors ⁽²¹⁾	_	_	100		_	100		_	100		Ω
Absolute V _{MAX} ⁽⁵⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_	_	1.2	_		1.2		_	1.2	
Absolute V_{MIN}	—	-0.4	—		-0.4	—	—	-0.4	—	—	V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	200	_	1600	mV
V _{ICM} (AC	Dedicated reference clock pin	1050/1000/900/850 ⁽²⁾			1050/1000/900/850 ⁽²⁾			1050/	1000/90	00/850 ⁽²⁾	mV
coupled) ⁽³⁾	RX reference clock pin	1.	.0/0.9/0	.9/0.85 ⁽⁴⁾ 1.0/0.9/0.85 ⁽⁴⁾ 1.0/0.9/0.85 ⁽⁴⁾			.85 ⁽⁴⁾	V			
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250		550	250		550	250		550	mV
	100 Hz	—	—	-70	—	—	-70	—	—	-70	dBc/Hz
Transmitter	1 kHz			-90			-90		—	-90	dBc/Hz
REFCLK Phase Noise	10 kHz	—	—	-100	—	—	-100	—	—	-100	dBc/Hz
(622 MHz) ⁽²⁰⁾	100 kHz			-110		—	-110	—	—	-110	dBc/Hz
	≥1 MHz	—	—	-120	—	—	-120	—	—	-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁷⁾	10 kHz to 1.5 MHz (PCle)	_	_	3	_	_	3	_	_	3	ps (rms)
R _{REF} (19)			1800 ±1%		_	1800 ±1%	_		180 0 ±1%		Ω
Transceiver Clocks	S										
fixedclk clock frequency	PCIe Receiver Detect		100 or 125	_	_	100 or 125	_	_	100 or 125	_	MHz

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 2 of 7)

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Transceiver Speed Grade 3			Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	DC Gain Setting = 0		0	_	_	0		_	0	_	dB
	DC Gain Setting = 1	_	2	_	—	2	_	_	2	_	dB
Programmable DC gain	DC Gain Setting = 2	_	4	_	_	4	_	_	4	_	dB
	DC Gain Setting = 3	_	6	_	_	6	_	_	6	_	dB
	DC Gain Setting = 4	_	8	_	_	8	_	_	8	—	dB
Transmitter											
Supported I/O Standards	_				-	I.4-V ar	nd 1.5-V PC	ML			
Data rate (Standard PCS)	_	600	_	12200	600	_	12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS)	_	600	_	14100	600		12500	600		8500/ 10312.5 (24)	Mbps
	85-Ω setting		85 ± 20%	_	_	85 ± 20%		_	85 ± 20%	_	Ω
Differential on-	100-Ω setting	_	100 ± 20%	_	_	100 ± 20%	_	_	100 ± 20%	_	Ω
chip termination resistors	120-Ω setting	_	120 ± 20%		_	120 ± 20%		_	120 ± 20%		Ω
	150-Ω setting		150 ± 20%			150 ± 20%			150 ± 20%		Ω
V _{OCM} (AC coupled)	0.65-V setting		650		_	650		_	650	_	mV
V _{OCM} (DC coupled)	_		650		_	650		_	650	_	mV
Rise time (7)	20% to 80%	30		160	30		160	30		160	ps
Fall time ⁽⁷⁾	80% to 20%	30		160	30		160	30		160	ps
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps			15			15			15	ps
Intra-transceiver block transmitter channel-to- channel skew	x6 PMA bonded mode			120			120			120	ps

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 5 of 7)

Symbol/	Conditions	Transceiver Speed Grade 2				Transceive peed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	
Differential on-chip termination resistors ⁽⁷⁾	GT channels		100	_	_	100	_	Ω
	85- Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-chip termination resistors for GX channels ⁽¹⁹⁾	100-Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	Ω
	120-Ω setting	_	120 ± 30%	_	_	120 ± 30%	_	Ω
	150-Ω setting		150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC coupled)	GT channels		650		—	650	—	mV
	VCCR_GXB = 0.85 V or 0.9 V		600	_	_	600		mV
VICM (AC and DC coupled) for GX Channels	VCCR_GXB = 1.0 V full bandwidth	_	700	_	_	700	_	mV
	VCCR_GXB = 1.0 V half bandwidth		750	_	_	750	_	mV
t _{LTR} ⁽⁹⁾	—	—	—	10	—	—	10	μs
t _{LTD} ⁽¹⁰⁾		4			4			μs
t _{LTD_manual} ⁽¹¹⁾	—	4	—	—	4	—	_	μs
t _{LTR_LTD_manual} ⁽¹²⁾	_	15			15	—		μs
Run Length	GT channels	_	_	72	—	—	72	CID
nun Lengin	GX channels				(8)			
CDR PPM	GT channels			1000	_	—	1000	± PPM
	GX channels				(8)			
Programmable	GT channels	_	_	14	—	—	14	dB
equalization (AC Gain) ⁽⁵⁾	GX channels				(8)			
Programmable	GT channels	_	—	7.5	—	—	7.5	dB
DC gain ⁽⁶⁾	GX channels				(8)			
Differential on-chip termination resistors ⁽⁷⁾	GT channels	_	100	_	_	100	_	Ω
Transmitter	·1							
Supported I/O Standards	_			1.4-V	and 1.5-V F	PCML		
Data rate (Standard PCS)	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS)	GX channels	600		12,500	600	_	12,500	Mbps

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5)⁽¹⁾

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) ⁽¹⁾
--

Symbol/	Conditions		Transceive peed Grade			er e 3	Unit	
Description		Min	Тур	Max	Min	Тур	Max	
Data rate	GT channels	19,600		28,050	19,600		25,780	Mbps
Differential on-chip	GT channels		100	_		100		Ω
termination resistors	GX channels		1	1	(8)		11	
	GT channels		500	_		500	—	mV
V_{OCM} (AC coupled)	GX channels		1	1	(8)		11	
Dies/Fall times	GT channels	_	15	_		15	—	ps
Rise/Fall time	GX channels				(8)		1	
Intra-differential pair skew	GX channels				(8)			
Intra-transceiver block transmitter channel-to- channel skew	GX channels				(8)			
Inter-transceiver block transmitter channel-to- channel skew	GX channels				(8)			
CMU PLL	· · · · · ·							
Supported Data Range	—	600	—	12500	600	—	8500	Mbps
t _{pll_powerdown} (13)	—	1	—	—	1	_	—	μs
t _{pll_lock} ⁽¹⁴⁾	—	_	—	10	—	_	10	μs
ATX PLL								
	VCO post- divider L=2	8000	_	12500	8000	_	8500	Mbps
	L=4	4000	—	6600	4000	_	6600	Mbps
Supported Data Rate	L=8	2000	—	3300	2000	-	3300	Mbps
channel skew CMU PLL Supported Data Range tpII_powerdown ⁽¹³⁾ tpII_lock ⁽¹⁴⁾ ATX PLL Supported Data Rate Range for GX Channels Supported Data Rate Range for GT Channels	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	Mbps
Supported Data Rate Range for GT Channels	VCO post- divider L=2	9800	_	14025	9800	_	12890	Mbps
t _{pll_powerdown} ⁽¹³⁾	—	1	—	—	1	—	—	μs
t _{pll_lock} ⁽¹⁴⁾	—		—	10	—	—	10	μs
fPLL							· ·	
Supported Data Range	_	600		3250/ 3.125 ⁽²³⁾	600	_	3250/ 3.125 ⁽²³⁾	Mbps
t _{pll_powerdown} (13)		1	_		1			μs

Figure 6 shows the Stratix V DC gain curves for GT channels.

Figure 6. DC Gain Curves for GT Channels

Transceiver Characterization

This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols:

- Interlaken
- 40G (XLAUI)/100G (CAUI)
- 10GBase-KR
- QSGMII
- XAUI
- SFI
- Gigabit Ethernet (Gbe / GIGE)
- SPAUI
- Serial Rapid IO (SRIO)
- CPRI
- OBSAI
- Hyper Transport (HT)
- SATA
- SAS
- CEI

- XFI
- ASI
- HiGig/HiGig+
- HiGig2/HiGig2+
- Serial Data Converter (SDC)
- GPON
- SDI
- SONET
- Fibre Channel (FC)
- PCIe
- QPI
- SFF-8431

Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols.

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications.

Clock Tree Specifications

Table 30 lists the clock tree specifications for Stratix V devices.

Table 30. Clock Tree Performance for Stratix V Devices (1)

		Performance		
Symbol	C1, C2, C2L, I2, and I2L	C3, I3, I3L, and I3YY	C4, I4	Unit
Global and Regional Clock	717	650	580	MHz
Periphery Clock	550	500	500	MHz

Note to Table 30:

(1) The Stratix V ES devices are limited to 600 MHz core clock tree performance.

PLL Specifications

Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (-40° to 100° C).

Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (C1, C2, C2L, I2, and I2L speed grades)	5	_	800 (1)	MHz
f _{IN}	Input clock frequency (C3, I3, I3L, and I3YY speed grades)	5	_	800 (1)	MHz
	Input clock frequency (C4, I4 speed grades)	5	_	650 ⁽¹⁾	MHz
f _{INPFD}	Input frequency to the PFD	5	—	325	MHz
f _{finpfd}	Fractional Input clock frequency to the PFD	50	_	160	MHz
	PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades)	600	_	1600	MHz
f _{VCO}	PLL VCO operating range (C3, I3, I3L, I3YY speed grades)	600	_	1600	MHz
	PLL VCO operating range (C4, I4 speed grades)	600	—	1300	MHz
t _{einduty}	Input clock or external feedback clock input duty cycle	40		60	%
	Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades)	—	_	717 ⁽²⁾	MHz
f _{out}	Output frequency for an internal global or regional clock (C3, I3, I3L speed grades)	_	_	650 ⁽²⁾	MHz
	Output frequency for an internal global or regional clock (C4, I4 speed grades)	_	_	580 ⁽²⁾	MHz
	Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades)	_	_	800 (2)	MHz
f _{out_ext}	Output frequency for an external clock output (C3, I3, I3L speed grades)	_	_	667 ⁽²⁾	MHz
	Output frequency for an external clock output (C4, I4 speed grades)	_	_	553 ⁽²⁾	MHz
t _{outduty}	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	—	10	ns
f _{dyconfigclk}	Dynamic Configuration Clock used for <code>mgmt_clk</code> and <code>scanclk</code>	_	_	100	MHz
t _{LOCK}	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
t _{olock}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth		0.3	—	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	_	1.5		MHz
	PLL closed-loop high bandwidth (7)		4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift			±50	ps
t _{areset}	Minimum pulse width on the areset signal	10	_		ns

Symbol	Parameter	Min	Тур	Max	Unit
+ (3) (4)	Input clock cycle-to-cycle jitter ($f_{REF} \ge 100 \text{ MHz}$)	_	—	0.15	UI (p-p)
t _{INCCJ} ^{(3),} ⁽⁴⁾	Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz)	-750	_	+750	ps (p-p)
t	Period Jitter for dedicated clock output (f_{OUT} \geq 100 MHz)	_	_	175 ⁽¹⁾	ps (p-p)
t _{outpj_dc} ⁽⁵⁾	Period Jitter for dedicated clock output (f _{OUT} < 100 MHz)	_		17.5 ⁽¹⁾	mUI (p-p)
+ (5)	Period Jitter for dedicated clock output in fractional PLL ($f_{0UT} \geq 100 \mbox{ MHz})$	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{foutpj_dc} ⁽⁵⁾	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
+	Cycle-to-Cycle Jitter for a dedicated clock output ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{outccj_dc} ⁽⁵⁾	Cycle-to-Cycle Jitter for a dedicated clock output (f _{0UT} < 100 MHz)	_	_	17.5	mUI (p-p)
+ <i>(5)</i>	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f_{OUT} \geq 100 MHz)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)+	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
t _{outpj_io} (5),	Period Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} \geq 100 MHz)	_	_	600	ps (p-p)
(8)	Period Jitter for a clock output on a regular I/O (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{FOUTPJ_IO} (5),	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600 (10)	ps (p-p)
(8), (11)	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{outccj_io} (5),	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} \geq 100 MHz)	_	_	600	ps (p-p)
(8)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{foutccj_10} ^{(5),}	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{0UT} \geq 100 \mbox{ MHz})$	_	_	600 ⁽¹⁰⁾	ps (p-p)
(8), (11)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)	_	_	60	mUI (p-p)
t _{casc_outpj_dc}	Period Jitter for a dedicated clock output in cascaded PLLs (f_{0UT} \geq 100 MHz)		_	175	ps (p-p)
(5), (6)	Period Jitter for a dedicated clock output in cascaded PLLs (f _{OUT} < 100 MHz)		_	17.5	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits
k _{value}	Numerator of Fraction	128	8388608	2147483648	

Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3)

0h.a.l	Conditions	C1			C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,14			Unit		
Symbol		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Transmitter	•													•
	SERDES factor J = 3 to 10 (9), (11), (12), (13), (14), (15), (16)	(6)	_	1600	(6)	_	1434	(6)	_	1250	(6)	_	1050	Mbps
	$\begin{array}{c} \text{SERDES factor J} \\ \geq 4 \end{array}$													
True Differential I/O Standards	LVDS TX with DPA ⁽¹²⁾ , ⁽¹⁴⁾ , ⁽¹⁵⁾ , ⁽¹⁶⁾	(6)		1600	(6)	_	1600	(6)	_	1600	(6)	_	1250	Mbps
- f _{HSDR} (data rate)	SERDES factor J = 2,	(6)		(7)	(6)		(7)	(6)		(7)	(6)		(7)	Mbps
	uses DDR Registers	(-)		(1)	(-)		(1)	(-)		(*)	(")		(*)	INIDA2
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) ⁽¹⁰⁾	SERDES factor J = 4 to 10 $(^{17})$	(6)		1100	(6)		1100	(6)		840	(6)		840	Mbps
t _{x Jitter} - True Differential	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	160	_	_	160			160	_		160	ps
I/O Standards	Total Jitter for Data Rate < 600 Mbps	_	_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - Emulated Differential I/O Standards	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	300	_	_	300	_	_	300	_	_	325	ps
with Three External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_		0.2	_	_	0.2	_	_	0.2	_		0.25	UI

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 2 of 4)

Gumbal	Conditions		C1		C2,	C2L, I	2, I2L	C3,	13, I3L	., I 3 YY	C4,14			Unit
Symbol		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	SERDES factor J = 3 to 10	(6)	_	(8)	(6)	_	(8)	(6)		(8)	(6)		(8)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)	_	(7)	(6)		(7)	(6)		(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)		(7)	(6)		(7)	Mbps
DPA Mode														
DPA run length	—			1000 0		_	1000 0		_	1000 0		_	1000 0	UI
Soft CDR mode)													
Soft-CDR PPM tolerance	_	_	_	300	_	—	300	_		300	_		300	± PPM
Non DPA Mode	•	•		-		-		•		-			-	-
Sampling Window	_			300			300			300			300	ps

Table 36. High-Speed I/O Specifications for Stratix V Devices ^{(1), (2)} (Part 4 of 4)

Notes to Table 36:

(1) When J = 3 to 10, use the serializer/deserializer (SERDES) block.

(2) When J = 1 or 2, bypass the SERDES block.

(3) This only applies to DPA and soft-CDR modes.

(4) Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.

(5) This is achieved by using the **LVDS** clock network.

(6) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

(7) The maximum ideal frequency is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.

(8) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

(9) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.

(10) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.

(11) The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design-dependent and requires timing analysis.

(12) Stratix V RX LVDS will need DPA. For Stratix V TX LVDS, the receiver side component must have DPA.

(13) Stratix V LVDS serialization and de-serialization factor needs to be x4 and above.

(14) Requires package skew compensation with PCB trace length.

(15) Do not mix single-ended I/O buffer within LVDS I/O bank.

(16) Chip-to-chip communication only with a maximum load of 5 pF.

(17) When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled.

Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled

rx_reset	i		
rx_dpa_locked			

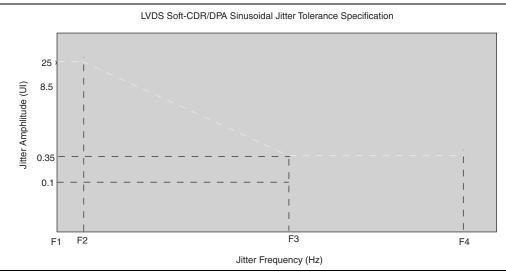
Table 37 lists the DPA lock time specifications for Stratix V devices.

Table 37. DPA Lock Time Specifications for Stratix V GX Devices Only (1), (2), (3)

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁴⁾	Maximum
SPI-4	0000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
Wiscenardous	01010101	8	32	640 data transitions

Notes to Table 37:

(1) The DPA lock time is for one channel.


(2) One data transition is defined as a 0-to-1 or 1-to-0 transition.

(3) The DPA lock time stated in this table applies to both commercial and industrial grade.

(4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 8 shows the **LVDS** soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps.

	Member Code		Active Serial (1))	Fast Passive Parallel ⁽²⁾			
Variant		Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)	
	D3	4	100	0.344	32	100	0.043	
	D4	4	100	0.534	32	100	0.067	
GS	D4	4	100	0.344	32	100	0.043	
65	D5	4	100	0.534	32	100	0.067	
	D6	4	100	0.741	32	100	0.093	
	D8	4	100	0.741	32	100	0.093	
Е	E9	4	100	0.857	32	100	0.107	
	EB	4	100	0.857	32	100	0.107	

Table 48. Minimum Configuration Time Estimation for Stratix V Devices

Notes to Table 48:

(1) DCLK frequency of 100 MHz using external CLKUSR.

(2) Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Fast Passive Parallel Configuration Timing

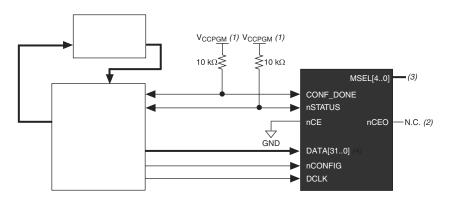
This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices.

DCLK-to-DATA[] Ratio for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[]ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[]ratio for each combination.

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FPP ×8	Disabled	Enabled	1
FFF X0	Enabled	Disabled	2
	Enabled	Enabled	2
	Disabled	Disabled	1
FPP ×16	Disabled	Enabled	2
	Enabled	Disabled	4
	Enabled	Enabled	4

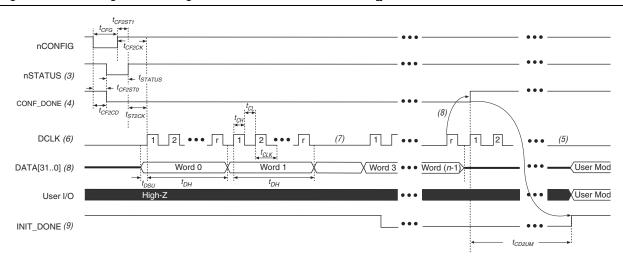
 Table 49. DCLK-to-DATA[] Ratio ⁽¹⁾ (Part 1 of 2)


Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio		
	Disabled	Disabled	1		
FPP ×32	Disabled	Enabled	4		
FFF X02	Enabled	Disabled	8		
	Enabled	Enabled	8		

Note to Table 49:

(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.


Figure 11. Single Device FPP Configuration Using an External Host

Notes to Figure 11:

- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM} .
- (2) You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device's nCE pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP ×8, use DATA [7..0]. If you use FPP ×16, use DATA [15..0].

IF the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio – 1) clock cycles after the last data is latched into the Stratix V device.

Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2)

Notes to Figure 13:

- (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay.
- (4) After power-up, before and during configuration, CONF_DONE is low.
- (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (6) "r" denotes the DCLK-to-DATA [] ratio. For the DCLK-to-DATA [] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55.
- (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge.
- (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.