

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	262400
Number of Logic Elements/Cells	695000
Total RAM Bits	51200000
Number of I/O	696
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgsmd8k2f40i2ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics Page 3

Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V
V _I	DC input voltage	-0.5	3.8	V
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices.

Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices

Symbol	Description	Devices	Minimum	Maximum	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	GX, GS, GT	-0.5	3.75	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	GX, GS	-0.5	3.75	V
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHIP_R}	Transceiver hard IP power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCL_GTBR}	Transmitter clock network power supply (right side)	GT	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

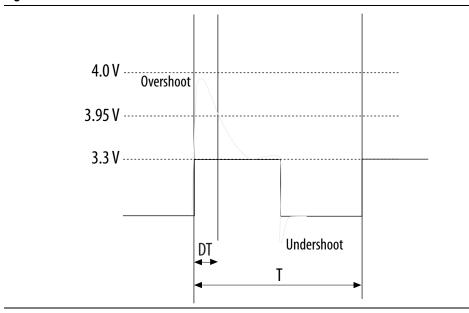

Page 4 Electrical Characteristics

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

Table 5. Maximum Allowed Overshoot During Transitions

Symbol	Description	Condition (V)	Overshoot Duration as % @ T _J = 100°C	Unit
		3.8	100	%
		3.85	64	%
		3.9	36	%
		3.95	21	%
Vi (AC)	AC input voltage	4	12	%
		4.05	7	%
		4.1	4	%
		4.15	2	%
	,	4.2	1	%

Figure 1. Stratix V Device Overshoot Duration

Electrical Characteristics Page 7

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2)

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
			0.82	0.85	0.88	
V _{CCR_GXBR}	Receiver analog power supply (right side)	CV CC CT	0.87	0.90	0.93	V
(2)	neceiver arialog power supply (right side)	ux, us, u1	0.97	1.0	1.03	v
			O.82			
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	O.82 O.85 O.88 O.87 O.90 O.93 O.97 O.97			1.08	V
	Transmitter analog power supply (left side)		0.82	0.85	0.88	
V _{CCT_GXBL}		GX, GS, GT	0.87	0.90	0.93	V
(2)	Transmitter analog power supply (left side)		0.97	1.0	1.03	
			1.03	1.05	1.07	
) GX, GS, GT	0.82	0.85	0.88	
V _{CCT_GXBR}	Tuesda see that a see also a see		0.87	0.90	0.93	V
(2)	Transmitter analog power supply (right side)		0.97	1.0	1.03	l V
			1.03	1.05	1.07	
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
V _{CCL_GTBR}	Transmitter clock network power supply	GT	1.02	1.05	1.08	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	1.425	1.5	1.575	V

Notes to Table 7:

⁽¹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

⁽²⁾ Refer to Table 8 to select the correct power supply level for your design.

⁽³⁾ When using ATX PLLs, the supply must be 3.0 V.

⁽⁴⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Page 10 Electrical Characteristics

Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 2 of 2)

			Calibration Accuracy					
Symbol	Description	Conditions	C1	C2,I2	C3,I3, I3YY	C4,I4	Unit	
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%	
$34\text{-}\Omega$ and $40\text{-}\Omega$ R_S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2 V ±15 ±15 ±15		%				
48 - Ω , 60 - Ω , 80 - Ω , and 240 - Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	V _{CCIO} = 1.2 V	V _{CCIO} = 1.2 V ±15 ±15 ±15 ±15		%			
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%	
$\begin{array}{c} 20\text{-}\Omega,30\text{-}\Omega,\\ 40\text{-}\Omega,60\text{-}\Omega,\\ \text{and}\\ 120\text{-}\OmegaR_T \end{array}$	Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%	
60- Ω and 120- Ω R _T	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	V _{CCIO} = 1.2	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%	
$\begin{array}{c} \textbf{25-}\Omega \\ \textbf{R}_{S_left_shift} \end{array}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%	

Note to Table 11:

Table 12 lists the Stratix V OCT without calibration resistance tolerance to PVT changes.

Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 1 of 2)

			Resistance Tolerance				
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.0 and 2.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 1.8 and 1.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 1.2 V	±35	±35	±50	±50	%

⁽¹⁾ OCT calibration accuracy is valid at the time of calibration only.

Electrical Characteristics Page 17

You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Page 24 Switching Characteristics

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 7 of 7)

Symbol/ Description	Conditions	Transceiver Speed Transceiver Speed Grade 1 Grade 2							Transceiver Speed Grade 3			
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		
t _{pll_lock} (16)	_	_	_	10	_	_	10	_	_	10	μs	

Notes to Table 23:

- (1) Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*.
- (2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
- (3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V.
- (4) This supply follows VCCR_GXB.
- (5) The device cannot tolerate prolonged operation at this absolute maximum.
- (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (8) The input reference clock frequency options depend on the data rate and the device speed grade.
- (9) The line data rate may be limited by PCS-FPGA interface speed grade.
- (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (12) t_{I TD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (14) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (15) $t_{pll\ powerdown}$ is the PLL powerdown minimum pulse width.
- (16) t_{nll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (17) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (19) For ES devices, R_{REF} is 2000 Ω ±1%.
- (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (22) Refer to Figure 2.
- (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (24) I3YY devices can achieve data rates up to 10.3125 Gbps.
- (25) When you use fPLL as a TXPLL of the transceiver.
- (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification.
- (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Page 28 Switching Characteristics

Table 27 shows the $\ensuremath{V_{OD}}$ settings for the GX channel.

Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$

Symbol	V _{OD} Setting	V _{op} Value (mV)	V _{op} Setting	V _{op} Value (mV)
	0 (1)	0	32	640
	1 (1)	20	33	660
	2 (1)	40	34	680
	3 (1)	60	35	700
	4 (1)	80	36	720
	5 ⁽¹⁾	100	37	740
	6	120	38	760
	7	140	39	780
	8	160	40	800
	9	180	41	820
	10	200	42	840
	11	220	43	860
	12	240	44	880
	13	260	45	900
	14	280	46	920
V op differential peak to peak	15	300	47	940
typical ⁽³⁾	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

Note to Table 27:

- (1) If TX termination resistance = 100Ω , this VOD setting is illegal.
- (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below.
- (3) Refer to Figure 2.

Table 29 shows the $\ensuremath{V_{\text{OD}}}$ settings for the GT channel.

Table 29. Typical V_{0D} Setting for GT Channel, TX Termination = 100 Ω

Symbol	V _{op} Setting	V _{op} Value (mV)
V _{OD} differential peak to peak typical ⁽¹⁾	0	0
	1	200
V differential peak to peak tunical (1)	2	400
AOD miletelitial hear to hear thical to	3	600
	4	800
	5	1000

Note:

(1) Refer to Figure 4.

Figure 6 shows the Stratix V DC gain curves for GT channels.

Figure 6. DC Gain Curves for GT Channels

Transceiver Characterization

This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols:

- Interlaken
- 40G (XLAUI)/100G (CAUI)
- 10GBase-KR
- QSGMII
- XAUI
- SFI
- Gigabit Ethernet (Gbe / GIGE)
- SPAUI
- Serial Rapid IO (SRIO)
- CPRI
- OBSAI
- Hyper Transport (HT)
- SATA
- SAS
- CEI

PLL Specifications

Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85°C) and the industrial junction temperature range (-40° to 100° C).

Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (C1, C2, C2L, I2, and I2L speed grades)	5	_	800 (1)	MHz
N N N N N N N N N N N N N N N N N N N	Input clock frequency (C3, I3, I3L, and I3YY speed grades)	5	_	800 (1)	MHz
	Input clock frequency (C4, I4 speed grades)	5	_	650 ⁽¹⁾	MHz
INPFD	Input frequency to the PFD	5	_	325	MHz
FINPFD	Fractional Input clock frequency to the PFD	50	_	160	MHz
	PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades)	600	_	1600	MHz
f _{vco} ⁽⁹⁾	PLL VCO operating range (C3, I3, I3L, I3YY speed grades)	600	_	1600	MHz
	PLL VCO operating range (C4, I4 speed grades)	600	_	1300	MHz
EINDUTY	Input clock or external feedback clock input duty cycle	40	_	60	%
	Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades)	_	_	717 (2)	MHz
f _{out}	Output frequency for an internal global or regional clock (C3, I3, I3L speed grades)	_	_	650 ⁽²⁾	MHz
	Output frequency for an internal global or regional clock (C4, I4 speed grades)	_	_	— 650 ⁽²⁾ МН — 580 ⁽²⁾ МН — 800 ⁽²⁾ МН	MHz
	Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades)	_	_	800 (2)	MHz
f _{out_ext}	Output frequency for an external clock output (C3, I3, I3L speed grades)	_	_	667 (2)	MHz
	Output frequency for an external clock output (C4, I4 speed grades)	_	_	553 ⁽²⁾	MHz
t _{оитриту}	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
FCOMP	External feedback clock compensation time	_		10	ns
DYCONFIGCLK	Dynamic Configuration Clock used for mgmt_clk and scanclk	_	_	100	MHz
Lock	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
DLOCK	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth		0.3		MHz
: CLBW	PLL closed-loop medium bandwidth		1.5		MHz
	PLL closed-loop high bandwidth (7)	_	4	_	MHz
PLL_PSERR	Accuracy of PLL phase shift		_	±50	ps
ARESET	Minimum pulse width on the areset signal	10	_	_	ns

Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 2 of 2)

		Resour	ces Used			Pe	erforman	ce			
Memory	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, 12L	13, 13L, 13YY	14	Unit
	Single-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	525	525	455	400	525	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512 × 32	0	1	450	450	400	350	450	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	600	600	500	450	600	500	450	MHz
	True dual port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	ROM, all supported widths	0	1	700	700	650	550	700	500	450	MHz

Notes to Table 33:

Temperature Sensing Diode Specifications

Table 34 lists the internal TSD specification.

Table 34. Internal Temperature Sensing Diode Specification

Tei	mperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°	°C to 100°C	±8°C	No	1 MHz, 500 KHz	< 100 ms	8 bits	8 bits

Table 35 lists the specifications for the Stratix V external temperature sensing diode.

Table 35. External Temperature Sensing Diode Specifications for Stratix V Devices

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	_	200	μΑ
V _{bias,} voltage across diode	0.3	_	0.9	V
Series resistance	_	_	<1	Ω
Diode ideality factor	1.006	1.008	1.010	_

⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

⁽³⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled.

Page 50 Switching Characteristics

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 2 of 2)

Speed Grade	Min	Max	Unit
C4,I4	8	16	ps

Notes to Table 40:

- (1) The typical value equals the average of the minimum and maximum values.
- (2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps.

Table 41 lists the DQS phase shift error for Stratix V devices.

Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices (1)

Number of DQS Delay Buffers	C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,I4	Unit
1	28	28	30	32	ps
2	56	56	60	64	ps
3	84	84	90	96	ps
4	112	112	120	128	ps

Notes to Table 41:

Table 42 lists the memory output clock jitter specifications for Stratix V devices.

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 1 of 2) (2), (3)

Clock	Parameter	Symbol	C	1	C2, C2L	., I2, I2L C3, I3, I3L, I3YY			C4,14		Unit
Network			Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	t _{JIT(per)}	-50	50	-50	50	-55	55	-55	55	ps
Regional	Cycle-to-cycle period jitter	t _{JIT(cc)}	-100	100	-100	100	-110	110	-110	110	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-50	50	-50	50	-82.5	82.5	-82.5	82.5	ps
	Clock period jitter	t _{JIT(per)}	-75	75	- 75	75	-82.5	82.5	-82.5	82.5	ps
Global	Cycle-to-cycle period jitter	t _{JIT(cc)}	-150	150	-150	150	-165	165	-165	165	ps
	Duty cycle jitter	t _{JIT(duty)}	- 75	75	-75	75	-90	90	-90	90	ps

⁽¹⁾ This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a −2 speed grade is ±78 ps or ±39 ps.

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3)

Clock Network	Parameter	Symbol	C	1	C2, C2L	, I2 , I2L	C3, I3	3, I3L, YY	C4	,14	Unit
NEIWUIK			Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	$t_{\text{JIT(per)}}$	-25	25	-25	25	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	t _{JIT(cc)}	-50	50	-50	50	-60	60	-70	70	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-37.5	37.5	-37.5	37.5	-45	45	-56	56	ps

Notes to Table 42:

- (1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.
- (2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.
- (3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

OCT Calibration Block Specifications

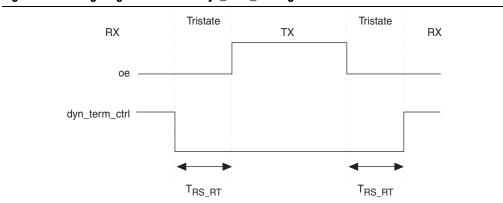

Table 43 lists the OCT calibration block specifications for Stratix V devices.

Table 43. OCT Calibration Block Specifications for Stratix V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	_	_	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT $\ensuremath{R}_{\ensuremath{S}}/\ensuremath{R}_{\ensuremath{T}}$ calibration		1000	_	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out		32	_	Cycles
T _{RS_RT}	Time required between the $\mathtt{dyn_term_ctrl}$ and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10)	_	2.5	_	ns

Figure 10 shows the timing diagram for the oe and dyn term ctrl signals.

Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals

Configuration Specification Page 53

Table 46.	JTAG Timino	Parameters ar	nd Values	for Stratix V Devices
-----------	-------------	---------------	-----------	-----------------------

Symbol	Description	Min	Max	Unit
t _{JPH}	JTAG port hold time	5	_	ns
t _{JPCO}	JTAG port clock to output	_	11 ⁽¹⁾	ns
t _{JPZX}	JTAG port high impedance to valid output	_	14 ⁽¹⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽¹⁾	ns

Notes to Table 46:

- (1) A 1 ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, t_{JPCO} = 12 ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.
- (2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

Raw Binary File Size

For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices".

Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices.

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) (4), (5)
	ECCVAO	H35, F40, F35 ⁽²⁾	213,798,880	562,392
	5SGXA3	H29, F35 ⁽³⁾	137,598,880	564,504
	5SGXA4	_	213,798,880	563,672
	5SGXA5	_	269,979,008	562,392
	5SGXA7	_	269,979,008	562,392
Stratix V GX	5SGXA9	_	342,742,976	700,888
	5SGXAB	_	342,742,976	700,888
	5SGXB5	_	270,528,640	584,344
	5SGXB6	_	270,528,640	584,344
	5SGXB9	_	342,742,976	700,888
	5SGXBB	_	342,742,976	700,888
Chrotin V CT	5SGTC5	_	269,979,008	562,392
Stratix V GT	5SGTC7	_	269,979,008	562,392
	5SGSD3	_	137,598,880	564,504
	FCCCD4	F1517	213,798,880	563,672
Ctrativ V CC	5SGSD4	_	137,598,880	564,504
Stratix V GS	5SGSD5	_	213,798,880	563,672
	5SGSD6	_	293,441,888	565,528
	5SGSD8	_	293,441,888	565,528

Configuration Specification Page 55

Table 48. Minimum Configuration Time Estimation for Stratix V Devices

	Mombou		Active Serial (1)	1	Fast Passive Parallel ⁽²⁾			
Variant	Member Code	Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)	
	D3	4	100	0.344	32	100	0.043	
	D4	4	100	0.534	32	100	0.067	
GS		4	100	0.344	32	100	0.043	
us	D5	4	100	0.534	32	100	0.067	
	D6	4	100	0.741	32	100	0.093	
	D8	4	100	0.741	32	100	0.093	
E	E9	4	100	0.857	32	100	0.107	
_	EB	4	100	0.857	32	100	0.107	

Notes to Table 48:

Fast Passive Parallel Configuration Timing

This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices.

DCLK-to-DATA[] Ratio for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[] ratio for each combination.

Table 49. DCLK-to-DATA[] Ratio (1) (Part 1 of 2)

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FPP ×8	Disabled	Enabled	1
IFF X0	Enabled	Disabled	2
	Enabled	Enabled	2
	Disabled	Disabled	1
FPP ×16	Disabled	Enabled	2
IFF XIO	Enabled	Disabled	4
	Enabled	Enabled	4

⁽¹⁾ DCLK frequency of 100 MHz using external CLKUSR.

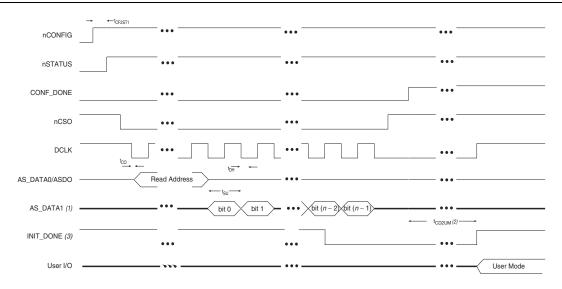
⁽²⁾ Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Configuration Specification Page 61

Active Serial Configuration Timing

Table 52 lists the DCLK frequency specification in the AS configuration scheme.

Table 52. DCLK Frequency Specification in the AS Configuration Scheme (1), (2)


Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Notes to Table 52:

- This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.
- (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Figure 14 shows the single-device configuration setup for an AS ×1 mode.

Figure 14. AS Configuration Timing

Notes to Figure 14:

- (1) If you are using AS ×4 mode, this signal represents the AS_DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle.
- (2) The initialization clock can be from internal oscillator or ${\tt CLKUSR}$ pin.
- (3) After the option bit to enable the $INIT_DONE$ pin is configured into the device, the $INIT_DONE$ goes low.

Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices.

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units
t _{CO}	DCLK falling edge to AS_DATAO/ASDO output	_	2	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	_	ns
t _H	Data hold time after falling edge on DCLK	0	_	ns

Glossary Page 67

Table 60. Glossary (Part 3 of 4)

Letter	Subject	Definitions		
	SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window (SW) 0.5 x TCCS		
S	Single-ended voltage referenced I/O standard	The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard Voh Vih(DC) Voh Vih(DC) Voh Vih(DC) Voh Vik(AC) Voh Vik(AC)		
	t _C	High-speed receiver and transmitter input and output clock period.		
	TCCS (channel- to-channel-skew)	The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table).		
	t _{DUTY}	High-speed I/O block—Duty cycle on the high-speed transmitter output clock.		
T		Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window. $(TUI = 1/(receiver input clock frequency multiplication factor) = t_c/w)$		
	t _{FALL}	Signal high-to-low transition time (80-20%)		
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.		
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.		
	t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.		
	t _{RISE}	Signal low-to-high transition time (20-80%)		
U	_	_		

Document Revision History Page 69

Document Revision History

Table 61 lists the revision history for this chapter.

Table 61. Document Revision History (Part 1 of 3)

Date	Version	Changes	
June 2018	3.9	■ Added the "Stratix V Device Overshoot Duration" figure.	
April 2017		■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.	
	3.8	■ Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table.	
		■ Changed the condition for 100-Ω R _D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table.	
		■ Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table	
		■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.	
		■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.	
		■ Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table.	
June 2016	3.7	■ Added the V _{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table	
		■ Added the I _{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table.	
December 2015	3.6	Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.	
December 2015	3.5	■ Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table.	
		■ Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table.	
	3.4	■ Changed the data rate specification for transceiver speed grade 3 in the following tables:	
		"Transceiver Specifications for Stratix V GX and GS Devices"	
		■ "Stratix V Standard PCS Approximate Maximum Date Rate"	
		■ "Stratix V 10G PCS Approximate Maximum Data Rate"	
July 2015		■ Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table.	
		■ Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table.	
		■ Changed the t _{CO} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table.	
		■ Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table.	

Page 70 Document Revision History

Table 61. Document Revision History (Part 2 of 3)

Date	Date Version Changes	
		■ Added the I3YY speed grade and changed the data rates for the GX channel in Table 1.
		■ Added the I3YY speed grade to the V _{CC} description in Table 6.
		■ Added the I3YY speed grade to V _{CCHIP_L} , V _{CCHIP_R} , V _{CCHSSI_L} , and V _{CCHSSI_R} descriptions in Table 7.
		■ Added 240-Ω to Table 11.
		■ Changed CDR PPM tolerance in Table 23.
		■ Added additional max data rate for fPLL in Table 23.
		■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25.
		■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26.
		■ Changed CDR PPM tolerance in Table 28.
		■ Added additional max data rate for fPLL in Table 28.
		■ Changed the mode descriptions for MLAB and M20K in Table 33.
		■ Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36.
November 2014	3.3	■ Changed the frequency ranges for C1 and C2 in Table 39.
		■ Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47.
		■ Added note about nSTATUS to Table 50, Table 51, Table 54.
		■ Changed the available settings in Table 58.
		■ Changed the note in "Periphery Performance".
		■ Updated the "I/O Standard Specifications" section.
		■ Updated the "Raw Binary File Size" section.
		■ Updated the receiver voltage input range in Table 22.
		■ Updated the max frequency for the LVDS clock network in Table 36.
		■ Updated the DCLK note to Figure 11.
		■ Updated Table 23 VO _{CM} (DC Coupled) condition.
		■ Updated Table 6 and Table 7.
		■ Added the DCLK specification to Table 55.
		■ Updated the notes for Table 47.
		■ Updated the list of parameters for Table 56.
November 2013	3.2	■ Updated Table 28
November 2013	3.1	■ Updated Table 33
November 2013	3.0	■ Updated Table 23 and Table 28
October 2013	2.9	■ Updated the "Transceiver Characterization" section
		■ Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59
October 2013	2.8	■ Added Figure 1 and Figure 3
		■ Added the "Transceiver Characterization" section
		■ Removed all "Preliminary" designations.

Page 72 Document Revision History