E·XFL

Intel - 5SGSMD8K2F40I2N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	262400
Number of Logic Elements/Cells	695000
Total RAM Bits	51200000
Number of I/O	696
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgsmd8k2f40i2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

								·		
Transceiver Speed	Core Speed Grade									
Grade	C1	C2, C2L	C3	C4	12, 12L	13, 13L	I 3YY	14		
3 GX channel—8.5 Gbps	_	Yes	Yes	Yes	_	Yes	Yes ⁽⁴⁾	Yes		

Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering ^{(1), (2), (3)} (Part 2 of 2)

Notes to Table 1:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

(3) C2L, I2L, and I3L speed grades are for low-power devices.

(4) I3YY speed grades can achieve up to 10.3125 Gbps.

Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices. **Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering** ⁽¹⁾, ⁽²⁾

Transseiver Speed Grade	Core Speed Grade							
Transceiver Speeu draue	C1	C2	12	13				
2 GX channel—12.5 Gbps GT channel—28.05 Gbps	Yes	Yes	_	_				
3 GX channel—12.5 Gbps GT channel—25.78 Gbps	Yes	Yes	Yes	Yes				

Notes to Table 2:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

TANIC J. ANSULULC MAXIMUM NALINYS IVI SUALIX V DEVICES (FAIL I UI Z)	Table 3.	Absolute Maximum	Ratings	for Stratix \	/ Devices	(Part 1 of 2)
--	----------	-------------------------	---------	---------------	-----------	---------------

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

		saring transitions		
Symbol	Description	Condition (V)	Overshoot Duration as % @ T _J = 100°C	Unit
		3.8	100	%
		3.85	64	%
		3.9	36	%
Vi (AC)		3.95	21	%
	AC input voltage	4	12	%
		4.05	7	%
		4.1	4	%
		4.15	2	%
		4.2	1	%

Table 5. Maximum Allowed Overshoot During Transitions

Figure 1. Stratix V Device Overshoot Duration

This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
	Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades)	_	0.87	0.9	0.93	V
V _{CC}	Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) ⁽³⁾		0.82	0.85	0.88	V
V _{CCPT}	Power supply for programmable power technology	_	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology		2.375	2.5	2.625	V
VI (1)	I/O pre-driver (3.0 V) power supply	_	2.85	3.0	3.15	V
VCCPD	I/O pre-driver (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply		2.375	2.5	2.625	V
V _{CCIO}	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply		1.283	1.35	1.45	V
	I/O buffers (1.25 V) power supply	_	1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply		2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	-	1.71	1.8	1.89	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply		2.375	2.5	2.625	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply	-	1.45	1.5	1.55	V
V _{CCBAT} (2)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.0	V
VI	DC input voltage	_	-0.5	—	3.6	V
V ₀	Output voltage		0	_	V _{CCIO}	V
т	Operating junction temperature	Commercial	0	—	85	°C
IJ		Industrial	-40	_	100	°C

		0		Calibratio	n Accuracy		
Symbol	Description	Conditions	C1	C2,I2	C3,I3, I3YY	C4,14	Unit
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%
34- Ω and 40- Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	±15	±15	%
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	V _{CCI0} = 1.2 V	±15	±15	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCI0} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
20-Ω, 30-Ω, 40-Ω,60-Ω, and 120-Ω R _T	Internal parallel termination with calibration ($20 - \Omega$, $30 - \Omega$, $40 - \Omega$, $60 - \Omega$, and $120 - \Omega$ setting)	V _{CCI0} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
60- $Ω$ and 120- $Ω$ R _T	Internal parallel termination with calibration (60-Ω and 120-Ω setting)	V _{CCI0} = 1.2	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
$25-\Omega \\ R_{S_left_shift}$	Internal left shift series termination with calibration ($25-\Omega$ R _{S_left_shift} setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%

Table II. OUI Valiblation Accuracy specifications for Stratix V Devices' / (I all 2 of	Table 11.	OCT Calibration A	ccuracy Specificati	ons for Stratix V D	Devices ⁽¹⁾ (Part 2 of
--	-----------	--------------------------	---------------------	---------------------	--------------------------	-----------

Note to Table 11:

(1) OCT calibration accuracy is valid at the time of calibration only.

Table 12 lists the Stratix V OCT without calibration resistance to PVT changes.

Table 12.	OCT Without Calibration	Resistance 1	Folerance	Specifications	for Stratix	V Devices	(Part 1	of 2)
-----------	-------------------------	---------------------	------------------	-----------------------	-------------	-----------	---------	-------

			Re	!			
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25-Ω setting)	$V_{CCIO} = 3.0$ and 2.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.8 and 1.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%

I/O		V _{ccio} (V)		V _{DIF(}	_{DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)	V _{DIF(/}	_{AC)} (V)
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCI0} + 0.3	_	0.5* V _{CCI0}	_	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCI0}	0.3	V _{CCI0} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5*V _{CCI0} - 0.12	0.5* V _{CCI0}	0.5*V _{CCI0} + 0.12	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.44	0.44

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2)

Table 22. Differential I/O Standard Specifications for Stratix V Devices (7)

I/O	Vc	_{cio} (V)	(10)		V _{ID} (mV) ⁽⁸⁾			V _{ICM(DC)} (V)		Vo	_D (V) (6)	v	_{осм} (V)	(6)
Standard	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Trar	nsmitte	er, receiv transmi	ver, and itter, rec	input referer ceiver, and re	nce cloo eference	ck pins e clock	of the high-s I/O pin speci	peed tra fications	nsceiver , refer to	rs use o Table	the PC e 23 on	ML I/O s page 18	standard 3.	. For
2.5 V	2 375	25	2 625	100	V _{CM} =	_	0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	_	0.6	1.125	1.25	1.375
LVDS ⁽¹⁾	2.575	2.0	2.025	100	1.25 V	_	1.05	D _{MAX} > 700 Mbps	1.55	0.247	_	0.6	1.125	1.25	1.375
BLVDS (5)	2.375	2.5	2.625	100	_	_	_	_	_	_	_	—	_	—	
RSDS (HIO) ⁽²⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	_	1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini- LVDS (HIO) ⁽³⁾	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25	_	0.6	1	1.2	1.4
LVPECL (4	_	_	_	300	_		0.6	D _{MAX} ≤ 700 Mbps	1.8	_	_	_	_	_	_
), (9)				300			1	D _{MAX} > 700 Mbps	1.6						

Notes to Table 22:

(1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.

(2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.

(3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.

- (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.
- (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology.
- (6) RL range: $90 \le RL \le 110 \Omega$.
- (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18.
- (8) The minimum VID value is applicable over the entire common mode range, VCM.
- (9) LVPECL is only supported on dedicated clock input pins.
- (10) Differential inputs are powered by VCCPD which requires 2.5 V.

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature.

Switching Characteristics

This section provides performance characteristics of the Stratix V core and periphery blocks.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary."
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Transceiver Performance Specifications

This section describes transceiver performance specifications.

Table 23 lists the Stratix V GX and GS transceiver specifications.

Table 23.	Transceiver 3	Specifications	for Stratix	V GX	and GS	Devices	(1)	(Part 1	nf 7	۱
Table 20.	TIANSUCIACI	opeonitionationa	IUI UIIAIIA	I UA	anu uu	DEVICES	• •	(1 61 6 1		

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	isceive Grade	er Speed e 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reference Clock											
Supported I/O	Dedicated reference clock pin	1.2-V	PCML,	1.4-V PCM	IL, 1.5-∖	/ PCML	, 2.5-V PCN HCSL	1L, Diffe	rential	LVPECL, L\	/DS, and
Standards	RX reference clock pin			1.4-V PCMI	L, 1.5-V	PCML,	2.5-V PCM	l, lvpe	CL, and	d LVDS	
Input Reference Clock Frequency (CMU PLL) ⁽⁸⁾	_	40		710	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽⁸⁾		100		710	100		710	100		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽²⁶⁾			400	_		400			400	ns
Fall time	Measure at ±60 mV of differential signal ⁽²⁶⁾		_	400	_		400			400	μσ
Duty cycle		45		55	45		55	45	—	55	%
Spread-spectrum modulating clock frequency	PCI Express® (PCIe [®])	30		33	30		33	30	_	33	kHz

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trar	nsceive Grade	er Speed e 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reconfiguration clock (mgmt_clk_clk) frequency	_	100		125	100		125	100	_	125	MHz
Receiver											
Supported I/O Standards	_			1.4-V PCMI	L, 1.5-V	PCML,	2.5-V PCM	L, LVPE	CL, and	d LVDS	
Data rate (Standard PCS) (9), (23)	_	600	_	12200	600	_	12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS) ^{(9),} ⁽²³⁾	_	600	_	14100	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
Absolute V _{MAX} for a receiver pin ⁽⁵⁾	_	_	_	1.2	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V
Maximum peak- to-peak differential input voltage V _{ID} (diff p- p) before device configuration ⁽²²⁾	_	_	_	1.6	_	_	1.6	_		1.6	V
Maximum peak- to-peak	V _{CCR_GXB} = 1.0 V/1.05 V (V _{ICM} = 0.70 V)	_	_	2.0	_	_	2.0	_	_	2.0	V
voltage V_{ID} (diff p- p) after device configuration ⁽¹⁸⁾ .	$V_{CCR_GXB} = 0.90 V$ (V _{ICM} = 0.6 V)			2.4			2.4			2.4	V
(22)	$V_{CCR_GXB} = 0.85 V$ (V _{ICM} = 0.6 V)			2.4			2.4		_	2.4	V
Minimum differential eye opening at receiver serial input pins ^{(6), (22),} (27)	_	85			85			85	_	_	mV

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 3 of 7)

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 6 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trar	isceive Grade	r Speed 2	Tran	isceive Grade	er Speed e 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Inter-transceiver block transmitter channel-to- channel skew	xN PMA bonded mode	_	_	500	_	_	500	_	_	500	ps
CMU PLL	•										
Supported Data Range	_	600	_	12500	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
t _{pll_powerdown} ⁽¹⁵⁾	—	1			1			1			μs
t _{pll_lock} ⁽¹⁶⁾		—		10	—	_	10	—	_	10	μs
ATX PLL											
	VCO post-divider L=2	8000	_	14100	8000	_	12500	8000	_	8500/ 10312.5 (24)	Mbps
Supported Data	L=4	4000	_	7050	4000	_	6600	4000	—	6600	Mbps
Rate Range	L=8	2000		3525	2000		3300	2000		3300	Mbps
	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	1000	_	1762.5	Mbps
t _{pll_powerdown} (15)	—	1	_	—	1	_	—	1	_	—	μs
t _{pll_lock} (16)	—		—	10		—	10	—		10	μs
fPLL	•										
Supported Data Range	_	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	Mbps
t _{pll_powerdown} ⁽¹⁵⁾	_	1	—		1	—		1			μs

Symbol/	Conditions	s	Transceive peed Grade	r 2	S	Transceive peed Grade	r 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	
Reference Clock								1
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCN	IL, 1.4-V PC	ML, 1.5-V P(CML, 2.5-V I and HCSL	PCML, Diffe	rential LVPE	ECL, LVDS,
otanuarus	RX reference clock pin		1.4-V PCML	., 1.5-V PCM	IL, 2.5-V PC	ML, LVPEC	L, and LVDS	6
Input Reference Clock Frequency (CMU PLL) ⁽⁶⁾		40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽⁶⁾	_	100	_	710	100	_	710	MHz
Rise time	20% to 80%	_		400	_	_	400	
Fall time	80% to 20%			400	—	_	400	ps
Duty cycle	—	45	_	55	45	_	55	%
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCle	_	0 to -0.5	_	_	0 to -0.5	_	%
On-chip termination resistors ⁽¹⁹⁾	_	_	100	_	_	100	_	Ω
Absolute V _{MAX} ⁽³⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_	_	1.2	_	_	1.2	
Absolute V _{MIN}	—	-0.4		—	-0.4	—		V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV
V _{ICM} (AC coupled)	Dedicated reference clock pin		1050/1000 ^{(,}	2)	1	050/1000 (2)	mV
	RX reference clock pin	1	.0/0.9/0.85 (22)	1.	0/0.9/0.85 ((22)	V
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250		550	mV

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5)⁽¹⁾

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5)⁽¹⁾

Symbol/	Conditions	S	Transceive peed Grade	er Transceiver e 2 Speed Grade 3		Unit		
Description		Min	Тур	Max	Min	Тур	Max	
	100 Hz	—	—	-70			-70	
Transmitter REFCLK	1 kHz		_	-90	_	_	-90	
Phase Noise (622	10 kHz		—	-100	_		-100	dBc/Hz
MHz) ⁽¹⁸⁾	100 kHz			-110			-110	
	\geq 1 MHz	—	—	-120	_	_	-120	
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁵⁾	10 kHz to 1.5 MHz (PCle)	_	_	3		_	3	ps (rms)
RREF ⁽¹⁷⁾	_	_	1800 ± 1%	—	_	1800 ± 1%	_	Ω
Transceiver Clocks								
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_clk) frequency	_	100	_	125	100	_	125	MHz
Receiver	•							
Supported I/O Standards	_		1.4-V PCML	., 1.5-V PCMI	L, 2.5-V PCI	VIL, LVPEC	L, and LVDS	6
Data rate (Standard PCS) ⁽²¹⁾	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS) ⁽²¹⁾	GX channels	600	_	12,500	600	_	12,500	Mbps
Data rate	GT channels	19,600	—	28,050	19,600		25,780	Mbps
Absolute V _{MAX} for a receiver pin ⁽³⁾	GT channels	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	GT channels	-0.4	_	—	-0.4	_	_	V
Maximum peak-to-peak	GT channels	_		1.6	—	_	1.6	V
differential input voltage V _{ID} (diff p-p) before device configuration ⁽²⁰⁾	GX channels				(8)			
	GT channels							
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) after device	V _{CCR_GTB} = 1.05 V (V _{ICM} = 0.65 V)	_	_	2.2	_	—	2.2	V
	GX channels		1	1 1	(8)			1
Minimum differential	GT channels	200	_	—	200		_	mV
eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾	GX channels			·	(8)			

Table 29 shows the V_{OD} settings for the GT channel.

Symbol	V _{OD} Setting	V _{od} Value (mV)
	0	0
	1	200
V., differential neak to neak typical (1)	2	400
The fine contrar hear to hear the field to	3	600
	4	800
	5	1000

Note:

(1) Refer to Figure 4.

- XFI
- ASI
- HiGig/HiGig+
- HiGig2/HiGig2+
- Serial Data Converter (SDC)
- GPON
- SDI
- SONET
- Fibre Channel (FC)
- PCIe
- QPI
- SFF-8431

Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols.

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications.

Clock Tree Specifications

Table 30 lists the clock tree specifications for Stratix V devices.

Table 30. Clock Tree Performance for Stratix V Devices (1)

	Performance							
Symbol	C1, C2, C2L, I2, and I2L	C3, I3, I3L, and I3YY	C4, I4	Unit				
Global and Regional Clock	717	650	580	MHz				
Periphery Clock	550	500	500	MHz				

Note to Table 30:

(1) The Stratix V ES devices are limited to 600 MHz core clock tree performance.

PLL Specifications

Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (-40° to 100° C).

Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (C1, C2, C2L, I2, and I2L speed grades)	5		800 (1)	MHz
f _{IN}	Input clock frequency (C3, I3, I3L, and I3YY speed grades)	5		800 (1)	MHz
	Input clock frequency (C4, I4 speed grades)	5	—	650 ⁽¹⁾	MHz
f _{INPFD}	Input frequency to the PFD	5	—	325	MHz
f _{FINPFD}	Fractional Input clock frequency to the PFD	50	—	160	MHz
	PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades)	600	_	1600	MHz
f _{VCO} (9)	PLL VCO operating range (C3, I3, I3L, I3YY speed grades)	600		1600	MHz
	PLL VCO operating range (C4, I4 speed grades)	600	—	1300	MHz
t _{einduty}	Input clock or external feedback clock input duty cycle	40	—	60	%
	Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades)	_	_	717 ⁽²⁾	MHz
f _{OUT}	Output frequency for an internal global or regional clock (C3, I3, I3L speed grades)			650 ⁽²⁾	MHz
	Output frequency for an internal global or regional clock (C4, I4 speed grades)			580 ⁽²⁾	MHz
	Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades)			800 ⁽²⁾	MHz
f _{OUT_EXT}	Output frequency for an external clock output (C3, I3, I3L speed grades)			667 ⁽²⁾	MHz
	Output frequency for an external clock output (C4, I4 speed grades)			553 ⁽²⁾	MHz
t _{outduty}	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_		10	ns
f _{dyconfigclk}	Dynamic Configuration Clock used for mgmt_clk and scanclk		_	100	MHz
t _{LOCK}	Time required to lock from the end-of-device configuration or deassertion of areset			1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)			1	ms
	PLL closed-loop low bandwidth	—	0.3	—	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	—	1.5	—	MHz
	PLL closed-loop high bandwidth (7)	—	4	-	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	10	—	_	ns

Table 31. PLL Specifications for Stratix V Devices (Part 3 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
f _{RES}	Resolution of VCO frequency ($f_{INPFD} = 100 \text{ MHz}$)	390625	5.96	0.023	Hz

Notes to Table 31:

(1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

(2) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.

- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps.
- (4) f_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 44 on page 52.
- (6) The cascaded PLL specification is only applicable with the following condition: a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) The external memory interface clock output jitter specifications use a different measurement method, which is available in Table 42 on page 50.
- (9) The VCO frequency reported by the Quartus II software in the PLL Usage Summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (10) This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05 0.95 must be \geq 1000 MHz, while f_{VCO} for fractional value range 0.20 0.80 must be \geq 1200 MHz.
- (11) This specification only covered fractional PLL for low bandwidth. The f_{VC0} for fractional value range 0.05-0.95 must be \geq 1000 MHz.
- (12) This specification only covered fractional PLL for low bandwidth. The f_{VC0} for fractional value range 0.20-0.80 must be \geq 1200 MHz.

DSP Block Specifications

Table 32 lists the Stratix V DSP block performance specifications.

	Peformance							
Mode	C1	C2, C2L	12, 12L	C3	13, 13L, 13YY	C4	14	Unit
		Modes ı	using one	DSP				
Three 9 x 9	600	600	600	480	480	420	420	MHz
One 18 x 18	600	600	600	480	480	420	400	MHz
Two partial 18 x 18 (or 16 x 16)	600	600	600	480	480	420	400	MHz
One 27 x 27	500	500	500	400	400	350	350	MHz
One 36 x 18	500	500	500	400	400	350	350	MHz
One sum of two 18 x 18(One sum of 2 16 x 16)	500	500	500	400	400	350	350	MHz
One sum of square	500	500	500	400	400	350	350	MHz
One 18 x 18 plus 36 (a x b) + c	500	500	500	400	400	350	350	MHz
		Modes u	sing two l	DSPs				
Three 18 x 18	500	500	500	400	400	350	350	MHz
One sum of four 18 x 18	475	475	475	380	380	300	300	MHz
One sum of two 27 x 27	465	465	450	380	380	300	290	MHz
One sum of two 36 x 18	475	475	475	380	380	300	300	MHz
One complex 18 x 18	500	500	500	400	400	350	350	MHz
One 36 x 36	475	475	475	380	380	300	300	MHz

Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 1 of 2)

	Peformance							
Mode	C1	C2, C2L	12, 12L	C3	13, 13L, 13YY	C4	14	Unit
Modes using Three DSPs								
One complex 18 x 25	425	425	415	340	340	275	265	MHz
Modes using Four DSPs								
One complex 27 x 27	465	465	465	380	380	300	290	MHz

Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 2 of 2)

Memory Block Specifications

Table 33 lists the Stratix V memory block specifications.

Table 33. Memory Block Performance Specifications for Stratix V Devices ^{(1), (2)} (Part 1 of 2)

		Resour	ces Used			Pe	erforman	ce			
Memory	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, 12L	13, 13L, 13YY	14	Unit
	Single port, all supported widths	0	1	450	450	400	315	450	400	315	MHz
	Simple dual-port, x32/x64 depth	0	1	450	450	400	315	450	400	315	MHz
WILAD	Simple dual-port, x16 depth ⁽³⁾	0	1	675	675	533	400	675	533	400	MHz
	ROM, all supported widths	0	1	600	600	500	450	600	500	450	MHz

Symbol	Sumbol Conditions		C1		C2,	C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,14		Unit		
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
Transmitter														
	SERDES factor J = 3 to 10 ⁽⁹⁾ , ⁽¹¹⁾ , ⁽¹²⁾ , ⁽¹³⁾ , ⁽¹⁴⁾ , ⁽¹⁵⁾ , ⁽¹⁶⁾	(6)	_	1600	(6)	_	1434	(6)	_	1250	(6)	_	1050	Mbps
True Differential I/O Standards	SERDES factor J ≥ 4 LVDS TX with DPA (12), (14), (15), (16)	(6)		1600	(6)		1600	(6)		1600	(6)	_	1250	Mbps
- f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)		(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) ⁽¹⁰⁾	SERDES factor J = 4 to 10 $(^{17})$	(6)		1100	(6)		1100	(6)		840	(6)		840	Mbps
t _{x Jitter} - True Differential	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps		_	160		_	160		_	160			160	ps
I/O Standards	Total Jitter for Data Rate < 600 Mbps		_	0.1			0.1			0.1		_	0.1	UI
t _{x Jitter} - Emulated Differential I/O Standards	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	300	_		300	_	_	300	_		325	ps
with Three External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_	_	0.2	_	_	0.2	_	_	0.2	_	_	0.25	UI

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 2 of 4)

Symbol	Description	Min	Max	Unit
t _{JPH}	JTAG port hold time	5	—	ns
t _{JPCO}	JTAG port clock to output	—	11 ⁽¹⁾	ns
t _{JPZX}	JTAG port high impedance to valid output	—	14 ⁽¹⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	14 ⁽¹⁾	ns

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Notes to Table 46:

(1) A 1 ns adder is required for each V_{CCI0} voltage step down from 3.0 V. For example, $t_{JPC0} = 12$ ns if V_{CCI0} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

(2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

Raw Binary File Size

For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices".

Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices.

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) ^{(4), (5)}
	500742	H35, F40, F35 ⁽²⁾	213,798,880	562,392
	JOUNAS	H29, F35 ⁽³⁾	137,598,880	564,504
	5SGXA4	—	213,798,880	563,672
	5SGXA5	—	269,979,008	562,392
Stratix V GX	5SGXA7	—	269,979,008	562,392
	5SGXA9	—	342,742,976	700,888
	5SGXAB	—	342,742,976	700,888
	5SGXB5	—	270,528,640	584,344
	5SGXB6	—	270,528,640	584,344
	5SGXB9	_	342,742,976	700,888
	5SGXBB	—	342,742,976	700,888
Stratix V CT	5SGTC5	—	269,979,008	562,392
	5SGTC7	_	269,979,008	562,392
	5SGSD3	—	137,598,880	564,504
	590904	F1517	213,798,880	563,672
Stratix V GS	J303D4		137,598,880	564,504
	5SGSD5		213,798,880	563,672
	5SGSD6		293,441,888	565,528
	5SGSD8	—	293,441,888	565,528

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
	Disabled	Enabled	4
IFF XJZ	Enabled	Disabled	8
	Enabled	Enabled	8

Table 49.	DCLK-to-DATA[]	Ratio ⁽¹⁾	(Part 2 of 2)
-----------	----------------	----------------------	---------------

Note to Table 49:

(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.

Figure 11. Single Device FPP Configuration Using an External Host

Notes to Figure 11:

- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM} .
- (2) You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device's nCE pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP ×8, use DATA [7..0]. If you use FPP ×16, use DATA [15..0].

IF the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio – 1) clock cycles after the last data is latched into the Stratix V device.

Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA [] ratio is more than 1.

Table 51.	FPP Timing	Parameters f	or Stratix V	Devices When	the DCLK-te	o-DATA[] Ratio	is >1 (1)
			•••••••••••••••••••••••••••••••••••••••			• • • • • • • • • • • • • • • • • • •		

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2		μS
t _{STATUS}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μS
t _{CF2CK} (5)	nCONFIG high to first rising edge on DCLK	1,506		μS
t _{ST2CK} (5)	nSTATUS high to first rising edge of DCLK	2		μS
t _{DSU}	DATA [] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA [] hold time after rising edge on DCLK	N-1/f _{DCLK} (5)		S
t _{CH}	DCLK high time	$0.45\times 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45\times 1/f_{MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}		S
f	DCLK frequency (FPP ×8/×16)	—	125	MHz
IMAX	DCLK frequency (FPP ×32)	—	100	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	—	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽³⁾	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) ⁽⁴⁾	_	_

Notes to Table 51:

- (1) Use these timing parameters when you use the decompression and design security features.
- (2) You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.
- (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (5) N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specificatio

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} ⁽¹⁾	250	—	ns
t _{RU_nRSTIMER} ⁽²⁾	250	_	ns

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum	Typical	Maximum	Units		
5.3	7.9	12.5	MHz		

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

 You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Deremeter	Available Settings	Min Offset (2)	Fast Model		Slow Model							
(1)			Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns