Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 128300 | | Number of Logic Elements/Cells | 340000 | | Total RAM Bits | 19456000 | | Number of I/O | 432 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1152-BBGA, FCBGA | | Supplier Device Package | 1152-FBGA (35x35) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxea3k1f35c2l | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Page 6 Electrical Characteristics Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2) | Symbol | Description | Condition | Min ⁽⁴⁾ | Тур | Max ⁽⁴⁾ | Unit | |--------|-------------------------|--------------|--------------------|-----|--------------------|------| | t | Power supply ramp time | Standard POR | 200 μs | _ | 100 ms | _ | | LRAMP | Fower supply rainp line | Fast POR | 200 μs | _ | 4 ms | _ | #### Notes to Table 6: - (1) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. - (2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low. - (3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades. - (4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices. Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | |-----------------------|---|------------|------------------------|---------|------------------------|------| | V _{CCA_GXBL} | Transceiver channel PLL power supply (left | GX, GS, GT | 2.85 | 3.0 | 3.15 | V | | (1), (3) | side) | ७४, ७७, ७१ | 2.375 | 2.5 | 2.625 | V | | V _{CCA_GXBR} | Transceiver channel PLL power supply (right | GX, GS | 2.85 | 3.0 | 3.15 | V | | $(1), (\overline{3})$ | side) | রম, রহ | 2.375 | 2.5 | 2.625 | V | | V _{CCA_GTBR} | Transceiver channel PLL power supply (right side) | GT | 2.85 | 3.0 | 3.15 | V | | | Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | V _{CCHIP_L} | Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | V_{CCHIP_R} | Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | V _{CCHSSI_L} | Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | V _{CCHSSI_R} | Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCR_GXBL} | Receiver analog power supply (left side) | CV CC CT | 0.87 | 0.90 | 0.93 | V | | (2) | Treceiver arialog power supply (left side) | GX, GS, GT | 0.97 | 1.0 | 1.03 | V | | | | | 1.03 | 1.05 | 1.07 | | Electrical Characteristics Page 7 Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | |-----------------------|--|------------|------------------------|---------|------------------------|------| | | | | 0.82 | 0.85 | 0.88 | | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Treceiver analog power supply (right slue) | ux, us, u1 | 0.97 | 1.0 | 1.03 | v | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBL} | Transmitter analog newer cupply (left side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Transmitter analog power supply (left side) | ux, us, u1 | 0.97 | 1.0 | 1.03 | V | | | | | 1.03 | 1.05 | 1.07 | | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBR} | Transmitter analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Transmitter analog power supply (right side) | ux, us, u1 | 0.97 | 1.0 | 1.03 | v | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCL_GTBR} | Transmitter clock network power supply | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | #### Notes to Table 7: ⁽¹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V. ⁽²⁾ Refer to Table 8 to select the correct power supply level for your design. ⁽³⁾ When using ATX PLLs, the supply must be 3.0 V. ⁽⁴⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Electrical Characteristics Page 9 #### I/O Pin Leakage Current Table 9 lists the Stratix V I/O pin leakage current specifications. Table 9. I/O Pin Leakage Current for Stratix V Devices (1) | Symbol | Description | Conditions | Min | Тур | Max | Unit | |-----------------|--------------------|--|-----|-----|-----|------| | I _I | Input pin | $V_I = 0 V to V_{CCIOMAX}$ | -30 | _ | 30 | μΑ | | I _{OZ} | Tri-stated I/O pin | $V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$ | -30 | | 30 | μΑ | #### Note to Table 9: (1) If $V_0 = V_{CCIO}$ to $V_{CCIOMax}$, 100 μA of leakage current per I/O is expected. #### **Bus Hold Specifications** Table 10 lists the Stratix V device family bus hold specifications. Table 10. Bus Hold Parameters for Stratix V Devices | | | | | | | | V | CIO | | | | | | |-------------------------------|-------------------|--|-------|------|-------|------|-------|------|-------|------|-------|------|------| | Parameter | Symbol | Conditions | 1.2 | 2 V | 1.9 | 5 V | 1.8 | B V | 2. | 5 V | 3.0 | V | Unit | | | | | Min | Max | | | Low
sustaining
current | I _{SUSL} | V _{IN} > V _{IL}
(maximum) | 22.5 | _ | 25.0 | _ | 30.0 | _ | 50.0 | _ | 70.0 | _ | μА | | High
sustaining
current | I _{SUSH} | V _{IN} < V _{IH}
(minimum) | -22.5 | _ | -25.0 | _ | -30.0 | _ | -50.0 | | -70.0 | | μА | | Low
overdrive
current | I _{ODL} | 0V < V _{IN} < V _{CCIO} | _ | 120 | _ | 160 | _ | 200 | _ | 300 | _ | 500 | μА | | High
overdrive
current | I _{ODH} | 0V < V _{IN} < V _{CCIO} | _ | -120 | _ | -160 | _ | -200 | _ | -300 | _ | -500 | μА | | Bus-hold
trip point | V_{TRIP} | _ | 0.45 | 0.95 | 0.50 | 1.00 | 0.68 | 1.07 | 0.70 | 1.70 | 0.80 | 2.00 | V | #### **On-Chip Termination (OCT) Specifications** If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block. Table 11 lists the Stratix V OCT termination calibration accuracy specifications. Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 1 of 2) | | | | Calibration Accuracy | | | | | |---------------------|---|--|----------------------|-------|----------------|-------|------| | Symbol | Description | Conditions | C 1 | C2,I2 | C3,I3,
I3YY | C4,I4 | Unit | | 25-Ω R _S | Internal series termination with calibration (25- Ω setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | Page 10 Electrical Characteristics Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 2 of 2) | | | | | Calibratio | n Accuracy | | | |--|--|--|------------|------------|----------------|------------|------| | Symbol | Description | Conditions | C1 | C2,I2 | C3,I3,
I3YY | C4,I4 | Unit | | 50-Ω R _S | Internal series termination with calibration (50- Ω setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | $34\text{-}\Omega$ and $40\text{-}\Omega$ R_S | Internal series termination with calibration (34- Ω and 40- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | 48 - Ω , 60 - Ω , 80 - Ω , and 240 - Ω R _S | Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting) | V _{CCIO} = 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | 50-Ω R _T | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 2.5, 1.8,
1.5, 1.2 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | $\begin{array}{c} 20\text{-}\Omega,30\text{-}\Omega,\\ 40\text{-}\Omega,60\text{-}\Omega,\\ \text{and}\\ 120\text{-}\OmegaR_T \end{array}$ | Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | 60- Ω and 120- Ω R _T | Internal parallel termination with calibration (60- Ω and 120- Ω setting) | V _{CCIO} = 1.2 | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | $\begin{array}{c} \textbf{25-}\Omega \\ \textbf{R}_{S_left_shift} \end{array}$ | Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | #### Note to Table 11: Table 12 lists the Stratix V OCT without calibration resistance tolerance to PVT changes. Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 1 of 2) | | | | Resistance Tolerance | | | | | |-----------------------------|--|-----------------------------------|----------------------|-------|-----------------|--------|------| | Symbol | Description | Conditions | C 1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | 25-Ω R, 50-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 3.0 and 2.5 V | ±30 | ±30 | ±40 | ±40 | % | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | ⁽¹⁾ OCT calibration accuracy is valid at the time of calibration only. Page 12 Electrical Characteristics Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | |--------|--|-----------------------|---------|------| | | | 3.0 | 0.189 | | | | OCT variation with temperature without recalibration | 2.5 | 0.208 | %/°C | | dR/dT | | 1.8 | 0.266 | | | | | 1.5 | 0.273 | 1 | | | | 1.2 | 0.317 | | #### Note to Table 13: (1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$ #### **Pin Capacitance** Table 14 lists the Stratix V device family pin capacitance. **Table 14. Pin Capacitance for Stratix V Devices** | Symbol | Symbol Description | | Unit | |--------------------|--|---|------| | C _{IOTB} | Input capacitance on the top and bottom I/O pins | 6 | pF | | C _{IOLR} | Input capacitance on the left and right I/O pins | 6 | pF | | C _{OUTFB} | Input capacitance on dual-purpose clock output and feedback pins | 6 | pF | #### **Hot Socketing** Table 15 lists the hot socketing specifications for Stratix V devices. Table 15. Hot Socketing Specifications for Stratix V Devices | Symbol | Description | Maximum | |---------------------------|--|---------------------| | I _{IOPIN (DC)} | DC current per I/O pin | 300 μΑ | | I _{IOPIN (AC)} | AC current per I/O pin | 8 mA ⁽¹⁾ | | I _{XCVR-TX (DC)} | DC current per transceiver transmitter pin | 100 mA | | I _{XCVR-RX (DC)} | DC current per transceiver receiver pin | 50 mA | #### Note to Table 15: (1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate. Page 18 Switching Characteristics ## **Switching Characteristics** This section provides performance characteristics of the Stratix V core and periphery blocks. These characteristics can be designated as Preliminary or Final. - Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary." - Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables. ## **Transceiver Performance Specifications** This section describes transceiver performance specifications. Table 23 lists the Stratix V GX and GS transceiver specifications. Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 1 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Transceiver Speed
Grade 2 | | | Transceiver Speed
Grade 3 | | | Unit | |---|---|-------|--|--------------|------------------------------|-------|---------------------|------------------------------|---------|------------|----------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Reference Clock | | | | | | | | | | | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V | PCML, | 1.4-V PCM | L, 1.5-V | PCML, | , 2.5-V PCN
HCSL | 1L, Diffe | rential | LVPECL, L\ | /DS, and | | Statiuatus | RX reference clock pin | | 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS | | | | | | | | | | Input Reference
Clock Frequency
(CMU PLL) (8) | _ | 40 | _ | 710 | 40 | _ | 710 | 40 | _ | 710 | MHz | | Input Reference
Clock Frequency
(ATX PLL) (8) | _ | 100 | _ | 710 | 100 | _ | 710 | 100 | _ | 710 | MHz | | Rise time | Measure at
±60 mV of
differential
signal ⁽²⁶⁾ | _ | _ | 400 | _ | _ | 400 | _ | _ | 400 | ne | | Fall time | Measure at
±60 mV of
differential
signal ⁽²⁶⁾ | _ | _ | 400 | _ | _ | 400 | _ | _ | 400 | ps | | Duty cycle | _ | 45 | | 55 | 45 | _ | 55 | 45 | | 55 | % | | Spread-spectrum
modulating clock
frequency | PCI Express®
(PCIe®) | 30 | _ | 33 | 30 | _ | 33 | 30 | _ | 33 | kHz | Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 2 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Transceiver Speed
Grade 3 | | | Unit | | |---|--|-----------------------|------------------|--------------------|-------|-----------------------|--------------------|------------------------------|-----------------------|--------------------|-------------|--| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | Spread-spectrum
downspread | PCle | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | % | | | On-chip
termination
resistors (21) | _ | _ | 100 | _ | _ | 100 | _ | _ | 100 | _ | Ω | | | Absolute V _{MAX} ⁽⁵⁾ | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | | | RX reference clock pin | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | | | | Absolute V _{MIN} | _ | -0.4 | | _ | -0.4 | _ | | -0.4 | _ | 1 | V | | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | | 1600 | 200 | _ | 1600 | mV | | | V _{ICM} (AC coupled) (3) | Dedicated
reference
clock pin | 1050/1000/900/850 (2) | | | 1050/ | 1050/1000/900/850 (2) | | | 1050/1000/900/850 (2) | | | | | coupled) (9 | RX reference clock pin | 1. | .0/0.9/0 | .85 ⁽⁴⁾ | 1. | 0/0.9/0 | .85 ⁽⁴⁾ | 1. | 0/0.9/0 | .85 ⁽⁴⁾ | V | | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | 250 | _ | 550 | mV | | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | _ | _ | -70 | dBc/Hz | | | Transmitter | 1 kHz | _ | _ | -90 | _ | _ | -90 | _ | _ | -90 | dBc/Hz | | | REFCLK Phase
Noise | 10 kHz | | _ | -100 | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | | (622 MHz) ⁽²⁰⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | _ | _ | -110 | dBc/Hz | | | | ≥1 MHz | _ | _ | -120 | _ | _ | -120 | _ | _ | -120 | dBc/Hz | | | Transmitter
REFCLK Phase
Jitter
(100 MHz) (17) | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | _ | _ | 3 | ps
(rms) | | | R _{REF} (19) | _ | _ | 1800
±1% | _ | _ | 1800
±1% | _ | _ | 180
0
±1% | _ | Ω | | | Transceiver Clock | <u> </u> | | | _ | | | _ | | | _ | | | | fixedclk clock frequency | PCIe
Receiver
Detect | _ | 100
or
125 | _ | _ | 100
or
125 | _ | _ | 100
or
125 | _ | MHz | | Page 20 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 3 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | sceive
Grade | r Speed
2 | Trar | er Speed
e 3 | Unit | | |--|---|------|------------------|--------------|----------|-----------------|--------------|---------|-----------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Reconfiguration
clock
(mgmt_clk_clk)
frequency | _ | 100 | _ | 125 | 100 | _ | 125 | 100 | _ | 125 | MHz | | Receiver | | | | | | | | | | | | | Supported I/O
Standards | _ | | | 1.4-V PCMI | _, 1.5-V | PCML, | 2.5-V PCM | L, LVPE | CL, and | d LVDS | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) (9), (23) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Absolute V _{MAX} for a receiver pin ⁽⁵⁾ | _ | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | V | | Absolute V _{MIN} for a receiver pin | _ | -0.4 | _ | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | Maximum peak-
to-peak
differential input
voltage V _{ID} (diff p-
p) before device
configuration (22) | _ | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | Maximum peak-
to-peak | $V_{CCR_GXB} = 1.0 \text{ V}/1.05 \text{ V} $ $(V_{ICM} = 0.70 \text{ V})$ | _ | _ | 2.0 | _ | _ | 2.0 | _ | _ | 2.0 | V | | differential input
voltage V _{ID} (diff p-
p) after device
configuration (18) | $V_{\text{CCR_GXB}} = 0.90 \text{ V}$ $(V_{\text{ICM}} = 0.6 \text{ V})$ | | | 2.4 | _ | | 2.4 | _ | _ | 2.4 | V | | configuration ⁽¹⁸⁾ , (22) | $V_{CCR_GXB} = 0.85 \text{ V}$ $(V_{ICM} = 0.6 \text{ V})$ | _ | _ | 2.4 | _ | _ | 2.4 | _ | _ | 2.4 | V | | Minimum differential eye opening at receiver serial input pins (6), (22), (27) | _ | 85 | _ | _ | 85 | _ | _ | 85 | _ | _ | mV | Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 6 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
e 1 | Trar | sceive
Grade | r Speed
2 | Tran | sceive
Grade | er Speed
e 3 | Unit | |---|--|------|------------------|-------------------------------|------|-----------------|-------------------------------|------|-----------------|-------------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Inter-transceiver
block transmitter
channel-to-
channel skew | xN PMA
bonded mode | ı | ı | 500 | _ | ı | 500 | _ | _ | 500 | ps | | CMU PLL | | | | | | | | | | | | | Supported Data
Range | _ | 600 | _ | 12500 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (16) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | ATX PLL | | | | | | | | | | | | | | VCO
post-divider
L=2 | 8000 | | 14100 | 8000 | | 12500 | 8000 | _ | 8500/
10312.5
(24) | Mbps | | Currented Date | L=4 | 4000 | _ | 7050 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | Supported Data
Rate Range | L=8 | 2000 | _ | 3525 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | G | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (16) | _ | | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | fPLL | | | | | | | | | | | | | Supported Data
Range | _ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | | 1 | _ | | 1 | | | μs | Table 26 shows the approximate maximum data rate using the 10G PCS. Table 26. Stratix V 10G PCS Approximate Maximum Data Rate (1) | Mode (2) | Transceiver | PMA Width | 64 | 40 | 40 | 40 | 32 | 32 | | | | |---------------------|-------------|--|--------------|-------|-------|------|----------|-------|--|--|--| | Widue (2) | Speed Grade | PCS Width | 64 | 66/67 | 50 | 40 | 64/66/67 | 32 | | | | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 14.1 | 14.1 | 10.69 | 14.1 | 13.6 | 13.6 | | | | | | 2 | C1, C2, C2L, I2, I2L
core speed grade | 12.5 | 12.5 | 10.69 | 12.5 | 12.5 | 12.5 | | | | | | 2 | C3, I3, I3L
core speed grade | 12.5 | 12.5 | 10.69 | 12.5 | 10.88 | 10.88 | | | | | FIFO or
Register | | C1, C2, C2L, I2, I2L
core speed grade | | | | | | | | | | | | 3 | C3, I3, I3L
core speed grade | 8.5 Gbps | | | | | | | | | | | 3 | C4, I4
core speed grade | | | | | | | | | | | | | I3YY
core speed grade | 10.3125 Gbps | | | | | | | | | #### Notes to Table 26: ⁽¹⁾ The maximum data rate is in Gbps. ⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency. Page 28 Switching Characteristics Table 27 shows the $\ensuremath{V_{OD}}$ settings for the GX channel. Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$ | Symbol | V _{OD} Setting | V _{op} Value
(mV) | V _{op} Setting | V _{op} Value
(mV) | |---------------------------------------|-------------------------|-------------------------------|-------------------------|-------------------------------| | | 0 (1) | 0 | 32 | 640 | | | 1 (1) | 20 | 33 | 660 | | | 2 (1) | 40 | 34 | 680 | | | 3 (1) | 60 | 35 | 700 | | | 4 (1) | 80 | 36 | 720 | | | 5 ⁽¹⁾ | 100 | 37 | 740 | | | 6 | 120 | 38 | 760 | | | 7 | 140 | 39 | 780 | | | 8 | 160 | 40 | 800 | | | 9 | 180 | 41 | 820 | | | 10 | 200 | 42 | 840 | | | 11 | 220 | 43 | 860 | | | 12 | 240 | 44 | 880 | | | 13 | 260 | 45 | 900 | | | 14 | 280 | 46 | 920 | | V op differential peak to peak | 15 | 300 | 47 | 940 | | typical ⁽³⁾ | 16 | 320 | 48 | 960 | | | 17 | 340 | 49 | 980 | | | 18 | 360 | 50 | 1000 | | | 19 | 380 | 51 | 1020 | | | 20 | 400 | 52 | 1040 | | | 21 | 420 | 53 | 1060 | | | 22 | 440 | 54 | 1080 | | | 23 | 460 | 55 | 1100 | | | 24 | 480 | 56 | 1120 | | | 25 | 500 | 57 | 1140 | | | 26 | 520 | 58 | 1160 | | | 27 | 540 | 59 | 1180 | | | 28 | 560 | 60 | 1200 | | | 29 | 580 | 61 | 1220 | | | 30 | 600 | 62 | 1240 | | | 31 | 620 | 63 | 1260 | #### Note to Table 27: - (1) If TX termination resistance = 100Ω , this VOD setting is illegal. - (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below. - (3) Refer to Figure 2. Page 36 Switching Characteristics Figure 4 shows the differential transmitter output waveform. Figure 4. Differential Transmitter/Receiver Output/Input Waveform Figure 5 shows the Stratix V AC gain curves for GT channels. Figure 5. AC Gain Curves for GT Channels Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 2 of 4) | Cumbal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | I3, I3I | ., I3YY | | C4,I4 | 4 | II.a.i.k | |---|--|-----|-----|------|-----|--------|--------|-----|---------|---------|-----|-------|------|----------| | Symbol | Conditions | Min | Тур | Max | Unit | | Transmitter | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (9), (11),
(12), (13), (14), (15),
(16) | (6) | _ | 1600 | (6) | _ | 1434 | (6) | _ | 1250 | (6) | _ | 1050 | Mbps | | True
Differential
I/O Standards
- f _{HSDR} (data
rate) | SERDES factor J ≥ 4 LVDS TX with DPA (12), (14), (15), (16) | (6) | _ | 1600 | (6) | _ | 1600 | (6) | _ | 1600 | (6) | | 1250 | Mbps | | | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (10) | SERDES factor J
= 4 to 10 (17) | (6) | _ | 1100 | (6) | _ | 1100 | (6) | _ | 840 | (6) | | 840 | Mbps | | t _{x Jitter} - True
Differential | Total Jitter for
Data Rate
600 Mbps -
1.25 Gbps | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | ps | | I/O Standards | Total Jitter for
Data Rate
< 600 Mbps | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | UI | | t _{x Jitter} -
Emulated
Differential
I/O Standards | Total Jitter for
Data Rate
600 Mbps - 1.25
Gbps | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | _ | _ | 325 | ps | | with Three
External
Output
Resistor
Network | Total Jitter for
Data Rate
< 600 Mbps | _ | _ | 0.2 | _ | _ | 0.2 | _ | _ | 0.2 | _ | _ | 0.25 | UI | Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3) | Clock
Network | Parameter | Symbol | C1 | | C2, C2L, I2, I2L | | C3, I3, I3L,
I3YY | | C4,I4 | | Unit | |------------------|------------------------------|------------------------|-------|------|------------------|------|----------------------|-----|-------|-----|------| | | | | Min | Max | Min | Max | Min | Max | Min | Max | ı | | | Clock period jitter | t _{JIT(per)} | -25 | 25 | -25 | 25 | -30 | 30 | -35 | 35 | ps | | PHY
Clock | Cycle-to-cycle period jitter | t _{JIT(cc)} | -50 | 50 | -50 | 50 | -60 | 60 | -70 | 70 | ps | | | Duty cycle jitter | t _{JIT(duty)} | -37.5 | 37.5 | -37.5 | 37.5 | -45 | 45 | -56 | 56 | ps | #### Notes to Table 42: - (1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible. - (2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL. - (3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma. ### **OCT Calibration Block Specifications** Table 43 lists the OCT calibration block specifications for Stratix V devices. Table 43. OCT Calibration Block Specifications for Stratix V Devices | Symbol | Description | Min | Тур | Max | Unit | |-----------------------|--|-----|------|-----|--------| | OCTUSRCLK | Clock required by the OCT calibration blocks | | _ | 20 | MHz | | T _{OCTCAL} | Number of OCTUSRCLK clock cycles required for OCT $\ensuremath{R}_{\ensuremath{S}}/\ensuremath{R}_{\ensuremath{T}}$ calibration | _ | 1000 | _ | Cycles | | T _{OCTSHIFT} | Number of OCTUSRCLK clock cycles required for the OCT code to shift out | _ | 32 | _ | Cycles | | T _{RS_RT} | Time required between the $\mathtt{dyn_term_ctrl}$ and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10) | _ | 2.5 | _ | ns | Figure 10 shows the timing diagram for the oe and dyn term ctrl signals. Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals Page 54 Configuration Specification Table 47. Uncompressed .rbf Sizes for Stratix V Devices | Family | Device | Package | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) (4), (5) | |-----------------|--------|---------|--------------------------------|---------------------------------| | Stratix V E (1) | 5SEE9 | _ | 342,742,976 | 700,888 | | Stratix V L 17 | 5SEEB | _ | 342,742,976 | 700,888 | #### Notes to Table 47: - (1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme. - (2) 36-transceiver devices. - (3) 24-transceiver devices. - (4) File size for the periphery image. - (5) The IOCSR .rbf size is specifically for the CvP feature. Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design. For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help*. Table 48 lists the minimum configuration time estimates for Stratix V devices. Table 48. Minimum Configuration Time Estimation for Stratix V Devices | | Banker | | Active Serial (1) |) | Fast Passive Parallel ⁽²⁾ | | | | | | |---------|----------------|-------|-------------------|------------------------|--------------------------------------|------------|------------------------|--|--|--| | Variant | Member
Code | Width | DCLK (MHz) | Min Config
Time (s) | Width | DCLK (MHz) | Min Config
Time (s) | | | | | | A3 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | | | AS | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | | | | A4 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | | | A5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | | | | A7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | | | GX | A9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | | | AB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | | | B5 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | | | | B6 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | | | | В9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | | | BB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | | GT | C5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | | | G1 | C7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | | Page 60 Configuration Specification Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA [] ratio is more than 1. Table 51. FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1 $^{(1)}$ | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nconfig low to conf_done low | _ | 600 | ns | | t _{CF2ST0} | nconfig low to nstatus low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | _ | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽²⁾ | μS | | t _{CF2ST1} | nconfig high to nstatus high | _ | 1,506 ⁽²⁾ | μS | | t _{CF2CK} (5) | nconfig high to first rising edge on DCLK | 1,506 | _ | μS | | t _{ST2CK} (5) | nstatus high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | N-1/f _{DCLK} ⁽⁵⁾ | _ | S | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f | DCLK frequency (FPP ×8/×16) | _ | 125 | MHz | | f _{MAX} | DCLK frequency (FPP ×32) | _ | 100 | MHz | | t _R | Input rise time | _ | 40 | ns | | t _F | Input fall time | _ | 40 | ns | | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t _{CD2CU} +
(8576 × CLKUSR
period) ⁽⁴⁾ | _ | _ | #### Notes to Table 51: - (1) Use these timing parameters when you use the decompression and design security features. - (2) You can obtain this value if you do not delay configuration by extending the nconfig or nstatus low pulse width. - (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device. - (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (5) N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating. - (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. Page 64 I/O Timing ## **Remote System Upgrades** Table 56 lists the timing parameter specifications for the remote system upgrade circuitry. **Table 56. Remote System Upgrade Circuitry Timing Specifications** | Parameter | Minimum | Maximum | Unit | | |------------------------------|---------|---------|------|--| | t _{RU_nCONFIG} (1) | 250 | _ | ns | | | t _{RU_nRSTIMER} (2) | 250 | _ | ns | | #### Notes to Table 56: - (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ### **User Watchdog Internal Circuitry Timing Specification** Table 57 lists the operating range of the 12.5-MHz internal oscillator. Table 57. 12.5-MHz Internal Oscillator Specifications | Minimum | Typical | Maximum | Units | | |---------|---------|---------|-------|--| | 5.3 | 7.9 | 12.5 | MHz | | ## I/O Timing Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer. Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route. You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page. ## **Programmable IOE Delay** Table 58 lists the Stratix V IOE programmable delay settings. Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2) | Doromotor | Aveilable Min | | Min Fast Model | | Slow Model | | | | | | | | |---------------|---------------|--------|----------------|------------|------------|-------|-------|-------|-------|-------------|-------|------| | Parameter (1) | | Offset | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | D1 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D2 | 32 | 0 | 0.230 | 0.244 | 0.415 | 0.415 | 0.459 | 0.503 | 0.417 | 0.456 | 0.500 | ns | Page 68 Glossary ### Table 60. Glossary (Part 4 of 4) | Letter | Subject | Definitions | | | | | |--------|------------------------|--|--|--|--|--| | | V _{CM(DC)} | DC common mode input voltage. | | | | | | | V _{ICM} | Input common mode voltage—The common mode of the differential signal at the receiver. | | | | | | | V _{ID} | Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver. | | | | | | | V _{DIF(AC)} | AC differential input voltage—Minimum AC input differential voltage required for switching. | | | | | | | V _{DIF(DC)} | DC differential input voltage— Minimum DC input differential voltage required for switching. | | | | | | | V _{IH} | Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high. | | | | | | | V _{IH(AC)} | High-level AC input voltage | | | | | | | V _{IH(DC)} | High-level DC input voltage | | | | | | V | V _{IL} | Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low. | | | | | | | V _{IL(AC)} | Low-level AC input voltage | | | | | | | V _{IL(DC)} | Low-level DC input voltage | | | | | | | V _{OCM} | Output common mode voltage—The common mode of the differential signal at the transmitter. | | | | | | | V _{OD} | Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. | | | | | | | V _{SWING} | Differential input voltage | | | | | | | V _X | Input differential cross point voltage | | | | | | | V _{OX} | Output differential cross point voltage | | | | | | W | W | High-speed I/O block—clock boost factor | | | | | | Χ | | | | | | | | Υ | | _ | | | | | | Z | | | | | | | Document Revision History Page 69 # **Document Revision History** Table 61 lists the revision history for this chapter. Table 61. Document Revision History (Part 1 of 3) | Date | Version | Changes | | | | | |---------------|---------|---|--|--|--|--| | June 2018 | 3.9 | ■ Added the "Stratix V Device Overshoot Duration" figure. | | | | | | April 2017 | 3.8 | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. | | | | | | | | ■ Changed the condition for 100-Ω R _D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. | | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table | | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | | | | | ■ Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. | | | | | | June 2016 | 3.7 | ■ Added the V _{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table | | | | | | | | ■ Added the I _{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. | | | | | | December 2015 | 3.6 | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | | | | | December 2015 | 3.5 | ■ Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | | ■ Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. | | | | | | | 3.4 | ■ Changed the data rate specification for transceiver speed grade 3 in the following tables: | | | | | | | | "Transceiver Specifications for Stratix V GX and GS Devices" | | | | | | | | ■ "Stratix V Standard PCS Approximate Maximum Date Rate" | | | | | | | | ■ "Stratix V 10G PCS Approximate Maximum Data Rate" | | | | | | July 2015 | | ■ Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | | ■ Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | | ■ Changed the t _{CO} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. | | | | | | | | ■ Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | Page 72 Document Revision History