

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	128300
Number of Logic Elements/Cells	340000
Total RAM Bits	19456000
Number of I/O	432
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxea3k3f35i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Page 2 Electrical Characteristics

Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering (1), (2), (3) (Part 2 of 2)

Transceiver Speed	Core Speed Grade											
Grade	C1	C2, C2L	C3	C4	12, 12L	13, 13L	I3YY	14				
3 GX channel—8.5 Gbps	_	Yes	Yes	Yes	_	Yes	Yes ⁽⁴⁾	Yes				

Notes to Table 1:

- (1) C = Commercial temperature grade; I = Industrial temperature grade.
- (2) Lower number refers to faster speed grade.
- (3) C2L, I2L, and I3L speed grades are for low-power devices.
- (4) I3YY speed grades can achieve up to 10.3125 Gbps.

Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices.

Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering (1), (2)

Transacius Snood Crada	Core Speed Grade						
Transceiver Speed Grade	C1	C2	12	13			
2 GX channel—12.5 Gbps GT channel—28.05 Gbps	Yes	Yes	_	_			
3 GX channel—12.5 Gbps GT channel—25.78 Gbps	Yes	Yes	Yes	Yes			

Notes to Table 2:

- (1) C = Commercial temperature grade; I = Industrial temperature grade.
- (2) Lower number refers to faster speed grade.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 1 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V

Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V
V _I	DC input voltage	-0.5	3.8	V
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices.

Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices

Symbol	Description	Devices	Minimum	Maximum	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	GX, GS, GT	-0.5	3.75	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	GX, GS	-0.5	3.75	V
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHIP_R}	Transceiver hard IP power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCL_GTBR}	Transmitter clock network power supply (right side)	GT	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

Recommended Operating Conditions

This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
	Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades)	_	0.87	0.9	0.93	V
V _{CC}	Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) (3)	_	0.82	0.85	0.88	V
V _{CCPT}	Power supply for programmable power technology	_	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	_	2.375	2.5	2.625	V
V (1)	I/O pre-driver (3.0 V) power supply		2.85	3.0	3.15	V
V _{CCPD} (''	I/O pre-driver (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	٧
	I/O buffers (2.5 V) power supply	_	2.375	2.5	2.625	V
	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	٧
V_{CCIO}	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply		1.283	1.35	1.45	V
V _{CCPT} V _{CC_AUX} V _{CCPD} (1) V _{CCPO} V _{CCPGM} V _{CCA_FPLL} V _{CCD_FPLL} V _{CCBAT} (2) V _I V _O	I/O buffers (1.25 V) power supply		1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply		2.85	3.0	3.15	V
V_{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply		2.375	2.5	2.625	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply		1.45	1.5	1.55	V
V _{CCBAT} (2)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.0	V
V _I	DC input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
т.	Operating junction temperature	Commercial	0	_	85	°C
T _J	Operating junction temperature	Industrial	-40	_	100	°C

Internal Weak Pull-Up Resistor

Table 16 lists the weak pull-up resistor values for Stratix V devices.

Table 16. Internal Weak Pull-Up Resistor for Stratix V Devices (1), (2)

Symbol	Description	V _{CC10} Conditions (V) ⁽³⁾	Value ⁽⁴⁾	Unit
		3.0 ±5%	25	kΩ
		2.5 ±5%	25	kΩ
	Value of the I/O pin pull-up resistor before	1.8 ±5%	25	kΩ
R _{PU}	and during configuration, as well as user mode if you enable the programmable	1.5 ±5%	25	kΩ
	pull-up resistor option.	1.35 ±5%	25	kΩ
		1.25 ±5%	25	kΩ
		1.2 ±5%	25	kΩ

Notes to Table 16:

- (1) All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins.
- (2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .
- (3) The pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .
- (4) These specifications are valid with a ±10% tolerance to cover changes over PVT.

I/O Standard Specifications

Table 17 through Table 22 list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Stratix V devices. These tables also show the Stratix V device family I/O standard specifications. The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively.

For an explanation of the terms used in Table 17 through Table 22, refer to "Glossary" on page 65. For tolerance calculations across all SSTL and HSTL I/O standards, refer to Altera knowledge base solution rd07262012_486.

Table 17. Single-Ended I/O Standards for Stratix V Devices

1/0	V _{CCIO} (V)			V _{IL} (V)		V _{IH} (V)		V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mA)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.25 * V _{CCIO}	0.75 * V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.25 * V _{CCIO}	0.75 * V _{CCIO}	2	-2

Page 14 Electrical Characteristics

Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Devices

I/O Standard		V _{CCIO} (V)			V _{REF} (V)		V _{TT} (V)			
I/O Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	
SSTL-2 Class I, II	2.375	2.5	2.625	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-15 Class I, II	1.425	1.5	1.575	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}	
SSTL-135 Class I, II	1.283	1.35	1.418	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	
SSTL-125 Class I, II	1.19	1.25	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}	
SSTL-12 Class I, II	1.14	1.20	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCIO} /2	_	
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCIO} /2	_	
HSTL-12 Class I, II	1.14	1.2	1.26	0.47 * V _{CCIO}	0.5 * V _{CCIO}	0.53 * V _{CCIO}	_	V _{CCIO} /2	_	
HSUL-12	1.14	1.2	1.3	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	_	_	_	

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 1 of 2)

I/O Standard	V _{IL(DC)} (V)		V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I (mA)	I _{oh}
i/U Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	I _{ol} (mA)	(mA)
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCIO} - 0.28	13.4	-13.4
SSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCIO}	0.8 * V _{CCIO}	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCIO}	0.8 * V _{CCIO}	16	-16
SSTL-135 Class I, II	_	V _{REF} – 0.09	V _{REF} + 0.09	_	V _{REF} – 0.16	V _{REF} + 0.16	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_
SSTL-125 Class I, II	_	V _{REF} – 0.85	V _{REF} + 0.85	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_
SSTL-12 Class I, II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 2 of 2)

I/O Standard	V _{IL(D(}	$\mathbf{V}_{IL(DC)}(\mathbf{V})$		_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I _{ol} (mA)	l _{oh}
i/O Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	I _{OI} (IIIA)	(mA)
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCIO}	16	-16
HSUL-12	_	V _{REF} – 0.13	V _{REF} + 0.13	_	V _{REF} – 0.22	V _{REF} + 0.22	0.1* V _{CCIO}	0.9* V _{CCIO}	_	

Table 20. Differential SSTL I/O Standards for Stratix V Devices

I/O Standard		V _{CCIO} (V)		V _{SWING(DC)} (V)			V _{X(AC)} (V)		V _{SWING(AC)} (V)		
I/O Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.2	_	V _{CCIO} /2 + 0.2	0.62	V _{CCIO} + 0.6	
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.175	_	V _{CCIO} /2 + 0.175	0.5	V _{CCIO} + 0.6	
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(1)	V _{CCIO} /2 – 0.15	_	V _{CCIO} /2 + 0.15	0.35	_	
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(1)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	2(V _{IL(AC)} - V _{REF})	
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(1)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_	
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	_	V _{REF} -0.15	V _{CCIO} /2	V _{REF} + 0.15	-0.30	0.30	

Note to Table 20:

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 1 of 2)

I/O		V _{CCIO} (V)		V _{DIF(}	_{DC)} (V)	V _{X(AC)} (V)		V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78	_	1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2		0.68	_	0.9	0.68		0.9	0.4	_

⁽¹⁾ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits $(V_{IH(DC)})$ and $V_{IL(DC)})$.

Page 16 Electrical Characteristics

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2)

I/O				V _{DIF(DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)			V _{DIF(AC)} (V)	
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3	_	0.5* V _{CCIO}	_	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.3	V _{CCIO} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5*V _{CCIO} - 0.12	0.5* V _{CCIO}	0.5*V _{CCIO} + 0.12	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.44	0.44

Table 22. Differential I/O Standard Specifications for Stratix V Devices (7)

I/O	Vc	_{CIO} (V)	(10)	V _{ID} (mV) ⁽⁸⁾			$V_{ICM(DC)}$ (V)		V _{OD} (V) ⁽⁶⁾			V _{OCM} (V) ⁽⁶⁾			
Standard	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Trar	nsmitte						of the high-s I/O pin speci							. For
2.5 V	2.375	2.5	2.625	100	V _{CM} =	_	0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	_	0.6	1.125	1.25	1.375
LVDS (1)	2.373	2.3	2.023	100	1.25 V		1.05	D _{MAX} > 700 Mbps	1.55	0.247	_	0.6	1.125	1.25	1.375
BLVDS (5)	2.375	2.5	2.625	100	_	_	_	_	_	_	_	_	_	_	_
RSDS (HIO) ⁽²⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	_	1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini- LVDS (HIO) (3)	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25	_	0.6	1	1.2	1.4
LVPECL (4	_	_	_	300	_	_	0.6	D _{MAX} ≤ 700 Mbps	1.8	_	_	_	_	_	_
), (9)	_	_	_	300	_	_	1	D _{MAX} > 700 Mbps	1.6	_	_	_	_	_	_

Notes to Table 22:

- (1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.
- (2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.
- (3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.
- (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.
- (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology.
- (6) RL range: $90 \le RL \le 110 \Omega$.
- (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18.
- (8) The minimum VID value is applicable over the entire common mode range, VCM.
- (9) LVPECL is only supported on dedicated clock input pins.
- (10) Differential inputs are powered by VCCPD which requires 2.5 $\rm V.$

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature.

You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Page 24 Switching Characteristics

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 7 of 7)

Symbol/ Description	Conditions	Transceiver Speed Grade 1			Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{pll_lock} (16)	_	_	_	10	_	_	10	_	_	10	μs

Notes to Table 23:

- (1) Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*.
- (2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
- (3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V.
- (4) This supply follows VCCR_GXB.
- (5) The device cannot tolerate prolonged operation at this absolute maximum.
- (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (8) The input reference clock frequency options depend on the data rate and the device speed grade.
- (9) The line data rate may be limited by PCS-FPGA interface speed grade.
- (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (12) t_{I TD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (14) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (15) $t_{pll\ powerdown}$ is the PLL powerdown minimum pulse width.
- (16) t_{nll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (17) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (19) For ES devices, R_{REF} is 2000 Ω ±1%.
- (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (22) Refer to Figure 2.
- (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (24) I3YY devices can achieve data rates up to 10.3125 Gbps.
- (25) When you use fPLL as a TXPLL of the transceiver.
- (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification.
- (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Switching Characteristics Page 25

Table 24 shows the maximum transmitter data rate for the clock network.

Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1)

		ATX PLL			CMU PLL (2))		fPLL	
Clock Network	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span
x1 ⁽³⁾	14.1	_	6	12.5	_	6	3.125	_	3
x6 ⁽³⁾	_	14.1	6	_	12.5	6	_	3.125	6
x6 PLL Feedback ⁽⁴⁾	_	14.1	Side- wide	_	12.5	Side- wide	_	_	_
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_
xN (Native PHY IP)	8.0	8.0	Up to 13 channels above and below PLL	7.99	7.99	Up to 13 channels above	3.125	3.125	Up to 13 channels above
XIV (IVALIVE PRY IP)	_	8.01 to 9.8304	Up to 7 channels above and below PLL	7.99	7.99	and below PLL	J. 125	3.123	and below PLL

Notes to Table 24:

⁽¹⁾ Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation.

⁽²⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽³⁾ Channel span is within a transceiver bank.

⁽⁴⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP.

Switching Characteristics Page 27

Table 26 shows the approximate maximum data rate using the 10G PCS.

Table 26. Stratix V 10G PCS Approximate Maximum Data Rate (1)

Mode ⁽²⁾	Transceiver	PMA Width	64	40	40	40	32	32
Widue (2)	Speed Grade	PCS Width	64	66/67	50	40	64/66/67	32
	1	C1, C2, C2L, I2, I2L core speed grade	14.1	14.1	10.69	14.1	13.6	13.6
	2	C1, C2, C2L, I2, I2L core speed grade	12.5	12.5	10.69	12.5	12.5	12.5
	۷	C3, I3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
FIFO or Register		C1, C2, C2L, I2, I2L core speed grade						
	3	C3, I3, I3L core speed grade			8.5	Gbps		
	3	C4, I4 core speed grade						
		I3YY core speed grade			10.312	25 Gbps		

Notes to Table 26:

⁽¹⁾ The maximum data rate is in Gbps.

⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Page 28 Switching Characteristics

Table 27 shows the $\ensuremath{V_{OD}}$ settings for the GX channel.

Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$

Symbol	V _{OD} Setting	V _{op} Value (mV)	V _{op} Setting	V _{op} Value (mV)
	0 (1)	0	32	640
	1 (1)	20	33	660
	2 (1)	40	34	680
	3 (1)	60	35	700
	4 (1)	80	36	720
	5 ⁽¹⁾	100	37	740
	6	120	38	760
	7	140	39	780
	8	160	40	800
	9	180	41	820
	10	200	42	840
	11	220	43	860
	12	240	44	880
	13	260	45	900
	14	280	46	920
V op differential peak to peak	15	300	47	940
typical ⁽³⁾	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

Note to Table 27:

- (1) If TX termination resistance = 100Ω , this VOD setting is illegal.
- (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below.
- (3) Refer to Figure 2.

Page 30 Switching Characteristics

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$

Symbol/	Conditions	S	Transceive Speed Grade			Transceive peed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	5
Reference Clock	l		<u>I</u>	U.			<u>I</u>	<u>I</u>
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCN	1L, 1.4-V PC	ML, 1.5-V P(CML, 2.5-V I and HCSL	PCML, Diffe	rential LVPE	ECL, LVDS
otandardo	RX reference clock pin		1.4-V PCML	., 1.5-V PCN	IL, 2.5-V PC	ML, LVPEC	L, and LVDS	3
Input Reference Clock Frequency (CMU PLL) ⁽⁶⁾	_	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) (6)	_	100	_	710	100	_	710	MHz
Rise time	20% to 80%	_	_	400	_	_	400	
Fall time	80% to 20%	_	_	400	_	<u> </u>	400	ps
Duty cycle	_	45	_	55	45	_	55	%
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCle		0 to -0.5	_	_	0 to -0.5	_	%
On-chip termination resistors (19)	_	_	100	_	_	100	_	Ω
Absolute V _{MAX} (3)	Dedicated reference clock pin	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_	_	1.2	_	_	1.2	
Absolute V _{MIN}	_	-0.4	_	_	-0.4		_	V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV
V _{ICM} (AC coupled)	Dedicated reference clock pin		1050/1000	2)	1	050/1000	2)	mV
	RX reference clock pin	1	.0/0.9/0.85	(22)	1.	0/0.9/0.85	(22)	V
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV

Switching Characteristics Page 33

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$

Symbol/	Conditions		Transceive peed Grade			Transceive beed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	
Data rate	GT channels	19,600	_	28,050	19,600	_	25,780	Mbps
Differential on-chip	GT channels	_	100	_	_	100	_	Ω
termination resistors	GX channels				(8)		'	
\/ (AO a a a d\)	GT channels	_	500	_	_	500	_	mV
V _{OCM} (AC coupled)	GX channels				(8)		'	
D'a a /Fall d'acc	GT channels	_	15	_	_	15	_	ps
Rise/Fall time	GX channels		<u>I</u>		(8)	I		
Intra-differential pair skew	GX channels				(8)			
ntra-transceiver block ransmitter channel-to- hannel skew					(8)			
Inter-transceiver block transmitter channel-to-channel skew					(8)			
CMU PLL								
Supported Data Range	_	600	_	12500	600	_	8500	Mbps
t _{pll_powerdown} (13)	_	1	_	_	1	_	_	μs
t _{pll_lock} (14)	_	_	_	10	_	_	10	μs
ATX PLL								
	VCO post- divider L=2	8000	_	12500	8000	_	8500	Mbps
	L=4	4000	_	6600	4000	_	6600	Mbps
Supported Data Rate	L=8	2000	_	3300	2000	_	3300	Mbps
Range for GX Channels	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	Mbps
Supported Data Rate Range for GT Channels	VCO post- divider L=2	9800	_	14025	9800	_	12890	Mbps
t _{pll_powerdown} (13)	_	1	_	_	1	_	-	μs
t _{pll_lock} (14)	_	_	_	10	_	_	10	μs
fPLL			•					
Supported Data Range	_	600	_	3250/ 3.125 ⁽²³⁾	600	_	3250/ 3.125 ⁽²³⁾	Mbps
t _{pll_powerdown} (13)	_	1	_	<u> </u>	1	_	_	μs

Switching Characteristics Page 37

Figure 6 shows the Stratix V DC gain curves for GT channels.

Figure 6. DC Gain Curves for GT Channels

Transceiver Characterization

This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols:

- Interlaken
- 40G (XLAUI)/100G (CAUI)
- 10GBase-KR
- QSGMII
- XAUI
- SFI
- Gigabit Ethernet (Gbe / GIGE)
- SPAUI
- Serial Rapid IO (SRIO)
- CPRI
- OBSAI
- Hyper Transport (HT)
- SATA
- SAS
- CEI

Page 54 Configuration Specification

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) (4), (5)
Stratix V E (1)	5SEE9	_	342,742,976	700,888
Stratix V L 17	5SEEB	_	342,742,976	700,888

Notes to Table 47:

- (1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme.
- (2) 36-transceiver devices.
- (3) 24-transceiver devices.
- (4) File size for the periphery image.
- (5) The IOCSR .rbf size is specifically for the CvP feature.

Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design.

For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help*.

Table 48 lists the minimum configuration time estimates for Stratix V devices.

Table 48. Minimum Configuration Time Estimation for Stratix V Devices

	Banker		Active Serial (1))	Fas	t Passive Parall	el ⁽²⁾
Variant	Member Code	Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)
	A3	4	100	0.534	32	100	0.067
	AS	4	100	0.344	32	100	0.043
	A4	4	100	0.534	32	100	0.067
	A5	4	100	0.675	32	100	0.084
	A7	4	100	0.675	32	100	0.084
GX	A9	4	100	0.857	32	100	0.107
	AB	4	100	0.857	32	100	0.107
	B5	4	100	0.676	32	100	0.085
	B6	4	100	0.676	32	100	0.085
	В9	4	100	0.857	32	100	0.107
	BB	4	100	0.857	32	100	0.107
GT	C5	4	100	0.675	32	100	0.084
G1	C7	4	100	0.675	32	100	0.084

Configuration Specification Page 55

Table 48. Minimum Configuration Time Estimation for Stratix V Devices

Variant	Member Code	Active Serial ⁽¹⁾			Fast Passive Parallel (2)		
		Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)
	D3	4	100	0.344	32	100	0.043
	D4	4	100	0.534	32	100	0.067
GS		4	100	0.344	32	100	0.043
us	D5	4	100	0.534	32	100	0.067
	D6	4	100	0.741	32	100	0.093
	D8	4	100	0.741	32	100	0.093
E	E9	4	100	0.857	32	100	0.107
Е	EB	4	100	0.857	32	100	0.107

Notes to Table 48:

Fast Passive Parallel Configuration Timing

This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices.

DCLK-to-DATA[] Ratio for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[] ratio for each combination.

Table 49. DCLK-to-DATA[] Ratio (1) (Part 1 of 2)

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FPP ×8	Disabled	Enabled	1
IFF X0	Enabled	Disabled	2
	Enabled	Enabled	2
	Disabled	Disabled	1
FPP ×16	Disabled	Enabled	2
IFF XIO	Enabled	Disabled	4
	Enabled	Enabled	4

⁽¹⁾ DCLK frequency of 100 MHz using external CLKUSR.

⁽²⁾ Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Configuration Specification Page 59

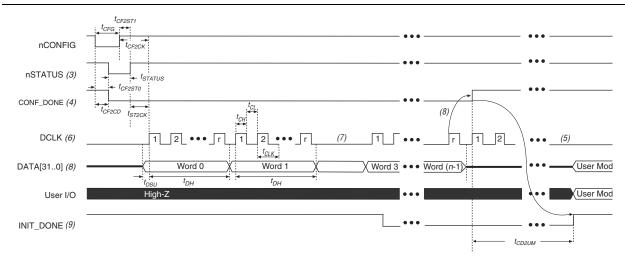


Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2)

Notes to Figure 13:

- (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nconfig, nstatus, and conf_done are at logic high levels. When nconfig is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay.
- (4) After power-up, before and during configuration, CONF DONE is low.
- (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (6) "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55.
- (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge.
- (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Glossary Page 67

Table 60. Glossary (Part 3 of 4)

Letter	Subject	Definitions						
	SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window (SW) 0.5 x TCCS						
S	Single-ended voltage referenced I/O standard	The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard Voh Vih(DC) Voh Vih(DC) Voh Vih(DC) Voh Vik(AC) Voh Vik(AC)						
	t _C	High-speed receiver and transmitter input and output clock period.						
T	TCCS (channel- to-channel-skew)	The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table).						
	t _{DUTY}	High-speed I/O block—Duty cycle on the high-speed transmitter output clock.						
		Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{receiver input clock frequency multiplication factor}) = t_c/w)$						
	t _{FALL}	Signal high-to-low transition time (80-20%)						
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input. Period jitter on the general purpose I/O driven by a PLL.						
	t _{OUTPJ_IO}							
	t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.						
	t _{RISE}	Signal low-to-high transition time (20-80%)						
U	_	_						

Document Revision History Page 69

Document Revision History

Table 61 lists the revision history for this chapter.

Table 61. Document Revision History (Part 1 of 3)

Date	Version	Changes
June 2018	3.9	■ Added the "Stratix V Device Overshoot Duration" figure.
	3.8	■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.
		■ Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table.
		■ Changed the condition for 100-Ω R _D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table.
April 2017		■ Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table
		■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.
		■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.
		■ Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table.
June 2016	3.7	■ Added the V _{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table
Julie 2010		■ Added the I _{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table.
December 2015	3.6	■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.
December 2015	3.5	■ Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table.
December 2013		■ Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table.
	3.4	■ Changed the data rate specification for transceiver speed grade 3 in the following tables:
		"Transceiver Specifications for Stratix V GX and GS Devices"
		■ "Stratix V Standard PCS Approximate Maximum Date Rate"
		■ "Stratix V 10G PCS Approximate Maximum Data Rate"
July 2015		■ Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table.
-		Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table.
		■ Changed the t _{CO} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table.
		■ Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table.