Intel - 5SGXEA5H2F35I3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	185000
Number of Logic Elements/Cells	490000
Total RAM Bits	46080000
Number of I/O	552
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxea5h2f35i3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

								·				
Transceiver Speed	Core Speed Grade											
Grade	C1	C2, C2L	C3	C4	12, 12L	13, 13L	I 3YY	14				
3 GX channel—8.5 Gbps	_	Yes	Yes	Yes	_	Yes	Yes ⁽⁴⁾	Yes				

Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering ^{(1), (2), (3)} (Part 2 of 2)

Notes to Table 1:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

(3) C2L, I2L, and I3L speed grades are for low-power devices.

(4) I3YY speed grades can achieve up to 10.3125 Gbps.

Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices. **Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering** ⁽¹⁾, ⁽²⁾

Transseiver Speed Grade	Core Speed Grade									
Transceiver Speeu draue	C1	C2	12	13						
2 GX channel—12.5 Gbps GT channel—28.05 Gbps	Yes	Yes	_	_						
3 GX channel—12.5 Gbps GT channel—25.78 Gbps	Yes	Yes	Yes	Yes						

Notes to Table 2:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

TANIC J. ANSULULC MAXIMUM NALINYS IVI SUALIX V DEVICES (FAIL I UI Z)	Table 3.	Absolute Maximum	Ratings	for Stratix \	/ Devices	(Part 1 of 2)
--	----------	-------------------------	---------	---------------	-----------	---------------

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
			0.82	0.85	0.88	
V _{CCR_GXBR}	Receiver analog power supply (right side)		0.87	0.90	0.93	V
(2)	neceiver analog power supply (right side)	ux, u3, u1	0.97	1.0	1.03	
			1.03	1.05	1.07	
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
			0.82	0.85	0.88	V
V _{CCT_GXBL}	Transmitter analog newer supply (left side)		0.87	0.90	0.93	
	Transmitter analog power supply (left side)	un, uo, ui	0.97	1.0	1.03	
			1.03	1.05	1.07	
		GX, GS, GT	0.82	0.85	0.88	V
V _{CCT GXBR}	Transmitter analog newer supply (right side)		0.87	0.90	0.93	
(2) _	Transmitter analog power supply (light side)		0.97	1.0	1.03	
			1.03	1.05	1.07	
V_{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
V_{CCL_GTBR}	Transmitter clock network power supply	GT	1.02	1.05	1.08	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	1.425	1.5	1.575	V

Table 7.	Recommended Transceiver Power Supply Operating Conditions for Stratix V GX ,	GS , and GT Devices
(Part 2	of 2)	

Notes to Table 7:

(1) This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

(2) Refer to Table 8 to select the correct power supply level for your design.

(3) When using ATX PLLs, the supply must be 3.0 V.

(4) This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 8 shows the transceiver power supply voltage requirements for various conditions.

Table 8. Transceiver Power Supply Voltage Requirements

Conditions	Core Speed Grade	VCCR_GXB & VCCT_GXB ⁽²⁾	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:	A11	1.05			
■ Data rate > 10.3 Gbps.	All	1.00			
 DFE is used. 					
If ANY of the following conditions are true ⁽¹⁾ :			3.0		
 ATX PLL is used. 					V
■ Data rate > 6.5Gbps.	All	1.0			
■ DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used.				1.5	
If ALL of the following	C1, C2, I2, and I3YY	0.90	2.5		
 ATX PLL is not used. 					
■ Data rate \leq 6.5Gbps.	C2L, C3, C4, I2L, I3, I3L, and I4	0.85	2.5		
 DFE, AEQ, and EyeQ are not used. 					

Notes to Table 8:

(1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.

(2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply.

DC Characteristics

This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications.

Supply Current

Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

- You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.
- ***** For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Symbol/ Description	Conditions	Tra	nsceive Grade	r Speed 1	Transceiver Speed Grade 2			Trai	Unit		
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Spread-spectrum downspread	PCIe	_	0 to 0.5	_	_	0 to 0.5	_	_	0 to 0.5	_	%
On-chip termination resistors ⁽²¹⁾	_	_	100		_	100		_	100		Ω
Absolute V _{MAX} ⁽⁵⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_		1.2		_	1.2			1.2	
Absolute V _{MIN}	—	-0.4	-	_	-0.4	_		-0.4	—		V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	200	_	1600	mV
V _{ICM} (AC coupled) ⁽³⁾	Dedicated reference clock pin	1050/	(1000/90	00/850 ⁽²⁾	1050/1000/900/850 (2)			1050/	1000/9	00/850 ⁽²⁾	mV
	RX reference clock pin	1.0/0.9/0.85 ⁽⁴⁾			1.	.0/0.9/0	.85 (4)	1.	.0/0.9/0	.85 ⁽⁴⁾	V
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250		550	250		550	250	_	550	mV
	100 Hz	—	—	-70	—	—	-70	—	—	-70	dBc/Hz
Transmitter	1 kHz	—	—	-90	—	—	-90	—	—	-90	dBc/Hz
REFCLK Phase	10 kHz	—	—	-100	—	—	-100	—	—	-100	dBc/Hz
(622 MHz) ⁽²⁰⁾	100 kHz	—	—	-110	—	—	-110	—	—	-110	dBc/Hz
	≥1 MHz	—	—	-120		—	-120	—	-	-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁷⁾	10 kHz to 1.5 MHz (PCIe)	_	_	3	_	_	3	_	_	3	ps (rms)
R _{REF} (19)	_	_	1800 ±1%	_	_	1800 ±1%	_	_	180 0 ±1%	_	Ω
Transceiver Clock	s										
fixedclk clock frequency	PCIe Receiver Detect		100 or 125			100 or 125		_	100 or 125		MHz

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 2 of 7)

Symbol/	Conditions	Transceiver Speed Grade 1		Transceiver Speed Grade 2			Trai	Unit			
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Differential on- chip termination resistors ⁽²¹⁾	85– Ω setting	_	85 ± 30%		_	85 ± 30%		—	85 ± 30%		Ω
	100–Ω setting	_	100 ± 30%		_	100 ± 30%		_	100 ± 30%	_	Ω
	120–Ω setting	_	120 ± 30%		_	120 ± 30%		_	120 ± 30%	_	Ω
	150-Ω setting	_	150 ± 30%		_	150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC and DC	V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth	_	600	_	_	600	_		600	_	mV
	V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth		600	_		600	_		600	_	mV
(oupled)	V _{CCR_GXB} = 1.0 V/1.05 V full bandwidth	_	700	_	_	700	_	_	700	_	mV
	V _{CCR_GXB} = 1.0 V half bandwidth		750	_	_	750	_	_	750	_	mV
t _{LTR} ⁽¹¹⁾	—	_	_	10	_	—	10	_	—	10	μs
t _{LTD} ⁽¹²⁾	—	4	_		4	—		4	-	—	μs
t _{LTD_manual} ⁽¹³⁾	—	4			4	—		4	—	—	μs
t _{LTR_LTD_manual} ⁽¹⁴⁾	—	15	_		15	—		15	—	—	μs
Run Length		_		200	_	—	200	_	—	200	UI
Programmable equalization (AC Gain) ⁽¹⁰⁾	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)		_	16	_	_	16	_		16	dB

 Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 4 of 7)

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 6 of 7)

Symbol/	Conditions	Transceiver Speed Grade 1			Trar	isceive Grade	r Speed 2	Tran	Unit		
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Inter-transceiver block transmitter channel-to- channel skew	xN PMA bonded mode	_	_	500	_	_	500	_	_	500	ps
CMU PLL											
Supported Data Range	_	600	_	12500	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
t _{pll_powerdown} ⁽¹⁵⁾	—	1			1			1			μs
t _{pll_lock} ⁽¹⁶⁾		—		10	—	_	10	—	_	10	μs
ATX PLL											
	VCO post-divider L=2	8000	_	14100	8000	_	12500	8000	_	8500/ 10312.5 (24)	Mbps
Supported Data	L=4	4000	_	7050	4000	_	6600	4000	—	6600	Mbps
Rate Range	L=8	2000		3525	2000		3300	2000		3300	Mbps
nale nalige	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	1000	_	1762.5	Mbps
t _{pll_powerdown} (15)	—	1	_	—	1	_	—	1	_	—	μs
t _{pll_lock} (16)	—		—	10		—	10	—		10	μs
fPLL	•									•	
Supported Data Range	_	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	Mbps
t _{pll_powerdown} ⁽¹⁵⁾	_	1	—		1	—		1			μs

Table 27 shows the V_{OD} settings for the GX channel.

Symbol	V _{op} Setting	V _{od} Value (mV)	V _{op} Setting	V _{op} Value (mV)
	0 (1)	0	32	640
	1 (1)	20	33	660
	2 (1)	40	34	680
	3 (1)	60	35	700
	4 (1)	80	36	720
	5 ⁽¹⁾	100	37	740
	6	120	38	760
	7	140	39	780
	8	160	40	800
	9	180	41	820
	10	200	42	840
	11	220	43	860
	12	240	44	880
	13	260	45	900
	14	280	46	920
V_{0D} differential peak to peak	15	300	47	940
typical ⁽³⁾	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

Table 27. Typical V_{0D} Setting for GX Channel, TX Termination = 100 $\Omega^{\left(2\right)}$

Note to Table 27:

(1) If TX termination resistance = 100Ω , this VOD setting is illegal.

(2) The tolerance is +/-20% for all VOD settings except for settings 2 and below.

(3) Refer to Figure 2.

Symbol/	Conditions	s	Transceive peed Grade	r 2	S	Transceive peed Grade	r 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	
Reference Clock								1
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCN	IL, 1.4-V PC	ML, 1.5-V P(CML, 2.5-V I and HCSL	PCML, Diffe	rential LVPE	ECL, LVDS,
otanuarus	RX reference clock pin		1.4-V PCML	., 1.5-V PCM	IL, 2.5-V PC	ML, LVPEC	L, and LVDS	6
Input Reference Clock Frequency (CMU PLL) ⁽⁶⁾	_	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽⁶⁾	_	100	_	710	100	_	710	MHz
Rise time	20% to 80%	_		400	_	_	400	
Fall time	80% to 20%			400	—	_	400	ps
Duty cycle	—	45	_	55	45	_	55	%
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCle	_	0 to -0.5	_	_	0 to -0.5	_	%
On-chip termination resistors ⁽¹⁹⁾	_	_	100	_	_	100	_	Ω
Absolute V _{MAX} ⁽³⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_	_	1.2	_	_	1.2	
Absolute V _{MIN}	—	-0.4		—	-0.4	—		V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV
V _{ICM} (AC coupled)	Dedicated reference clock pin		1050/1000 ^{(,}	2)	1	050/1000 (2)	mV
	RX reference clock pin	1	.0/0.9/0.85 (22)	1.	0/0.9/0.85 ((22)	V
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250		550	mV

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5)⁽¹⁾

- XFI
- ASI
- HiGig/HiGig+
- HiGig2/HiGig2+
- Serial Data Converter (SDC)
- GPON
- SDI
- SONET
- Fibre Channel (FC)
- PCIe
- QPI
- SFF-8431

Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols.

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications.

Clock Tree Specifications

Table 30 lists the clock tree specifications for Stratix V devices.

Table 30. Clock Tree Performance for Stratix V Devices (1)

		Performance		
Symbol	C1, C2, C2L, I2, and I2L	C3, I3, I3L, and I3YY	C4, I4	Unit
Global and Regional Clock	717	650	580	MHz
Periphery Clock	550	500	500	MHz

Note to Table 30:

(1) The Stratix V ES devices are limited to 600 MHz core clock tree performance.

PLL Specifications

Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (-40° to 100° C).

Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (C1, C2, C2L, I2, and I2L speed grades)	5		800 (1)	MHz
f _{IN}	Input clock frequency (C3, I3, I3L, and I3YY speed grades)	5		800 (1)	MHz
	Input clock frequency (C4, I4 speed grades)	5	—	650 ⁽¹⁾	MHz
f _{INPFD}	Input frequency to the PFD	5	—	325	MHz
f _{FINPFD}	Fractional Input clock frequency to the PFD	50	—	160	MHz
	PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades)	600	_	1600	MHz
f _{VCO} (9)	PLL VCO operating range (C3, I3, I3L, I3YY speed grades)	600		1600	MHz
	PLL VCO operating range (C4, I4 speed grades)	600	—	1300	MHz
t _{einduty}	Input clock or external feedback clock input duty cycle	40	—	60	%
	Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades)	_	_	717 ⁽²⁾	MHz
f _{OUT}	Output frequency for an internal global or regional clock (C3, I3, I3L speed grades)			650 ⁽²⁾	MHz
	Output frequency for an internal global or regional clock (C4, I4 speed grades)			580 ⁽²⁾	MHz
	Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades)			800 ⁽²⁾	MHz
f _{OUT_EXT}	Output frequency for an external clock output (C3, I3, I3L speed grades)			667 ⁽²⁾	MHz
	Output frequency for an external clock output (C4, I4 speed grades)			553 ⁽²⁾	MHz
t _{outduty}	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_		10	ns
f _{dyconfigclk}	Dynamic Configuration Clock used for mgmt_clk and scanclk		_	100	MHz
t _{LOCK}	Time required to lock from the end-of-device configuration or deassertion of areset			1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)			1	ms
	PLL closed-loop low bandwidth	—	0.3	—	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	—	1.5	—	MHz
	PLL closed-loop high bandwidth (7)	—	4	-	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	10	—	_	ns

Jitter Free	quency (Hz)	Sinusoidal Jitter (UI)
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

iadie 38. lvus sott-luk/upa sinusoidai jitter mask vaiues tor a uata kate > 1.2	25 G	.2	1.	1	>	>		Ì	e	F	Ł	đ	a	2	1	R	P							Ľ	I.		I.	Ì	1	3	a	3	a	2	2	2	ŀ	t	t	t	ſ	ľ	3	2	2	2	2	2	1)	D		I		Ľ	1	2	2	ź	â	i		۴	ŕ	r	r		I	I	Ì	1	Π	٥	٢	i	F	f	f	1	1		5	S	S	S	2	2	e	E	I	U	h	I	١	a	ŀ	I	V	۱			ľ	٢	k	k	s	S	S	1	a	2	2		И	V	N			•	۴	r	r	1	1	1	2	2	2	2	e	e	e	E	t	t	i	ŀ	t	ľ	i	i	f	f	ŀ	ŀ	li
---	------	----	----	---	---	---	--	---	---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	---	----	--	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	---	---	---	---	---	---	--	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----

Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps.

DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications

Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices.

Table 39. DLL Range Specifications for Stratix V Devices (1)

C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,I4	Unit
300-933	300-933	300-890	300-890	MHz

Note to Table 39:

(1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL.

Table 40 lists the DQS phase offset delay per stage for Stratix V devices.

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices ^{(1), (2)} (Part 1 of 2)

Speed Grade	Min	Max	Unit
C1	8	14	ps
C2, C2L, I2, I2L	8	14	ps
C3,I3, I3L, I3YY	8	15	ps

Speed Grade	Min	Max	Unit
C4,I4	8	16	ps

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 40:

(1) The typical value equals the average of the minimum and maximum values.

(2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps.

Table 41 lists the DQS phase shift error for Stratix V devices.

Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices ⁽¹⁾

Number of DQS Delay Buffers	C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,14	Unit
1	28	28	30	32	ps
2	56	56	60	64	ps
3	84	84	90	96	ps
4	112	112	120	128	ps

Notes to Table 41:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a -2 speed grade is ± 78 ps or ± 39 ps.

Table 42 lists the memory output clock jitter specifications for Stratix V devices.

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1	^{),} (Part 1 of 2) ^{(2), (3)}
---	---

Clock	Parameter	Symbol	C	1	C2, C2L	, 12, 12L	C3, I3 I3	8, 13L, YY	C4	,14	Unit
NELWURK		-	Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	$t_{JIT(per)}$	-50	50	-50	50	-55	55	-55	55	ps
Regional	Cycle-to-cycle period jitter	$t_{\text{JIT(cc)}}$	-100	100	-100	100	-110	110	-110	110	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-50	50	-50	50	-82.5	82.5	-82.5	82.5	ps
	Clock period jitter	$t_{JIT(per)}$	-75	75	-75	75	-82.5	82.5	-82.5	82.5	ps
Global	Cycle-to-cycle period jitter	$t_{\text{JIT(cc)}}$	-150	150	-150	150	-165	165	-165	165	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-75	75	-75	75	-90	90	-90	90	ps

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) ^{(4), (5)}
Stratix $V \in (1)$	5SEE9	—	342,742,976	700,888
	5SEEB	—	342,742,976	700,888

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Notes to Table 47:

(1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme.

(2) 36-transceiver devices.

(3) 24-transceiver devices.

(4) File size for the periphery image.

(5) The IOCSR .rbf size is specifically for the CvP feature.

Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design.

• For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help.*

Table 48 lists the minimum configuration time estimates for Stratix V devices.

Table 48. Minimum Configuration Time Estimation for Stratix V Devi
--

	Member Code	Active Serial ⁽¹⁾			Fast Passive Parallel ⁽²⁾			
Variant		Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)	
	٨٥	4	100	0.534	32	100	0.067	
	AJ	4	100	0.344	32	100	0.043	
	A4	4	100	0.534	32	100	0.067	
	A5	4	100	0.675	32	100	0.084	
	A7	4	100	0.675	32	100	0.084	
GX	A9	4	100	0.857	32	100	0.107	
	AB	4	100	0.857	32	100	0.107	
	B5	4	100	0.676	32	100	0.085	
	B6	4	100 0.6		32	100	0.085	
	B9	4	100	0.857	32	100	0.107	
	BB	4	100	0.857	32	100	0.107	
ст	C5	4	100	0.675	32	100	0.084	
ul	C7	4	100	0.675	32	100	0.084	

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
	Disabled	Enabled	4
IFF XJZ	Enabled	Disabled	8
	Enabled	Enabled	8

Table 49.	DCLK-to-DATA[]	Ratio ⁽¹⁾	(Part 2 of 2)
-----------	----------------	----------------------	---------------

Note to Table 49:

(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.

Figure 11. Single Device FPP Configuration Using an External Host

Notes to Figure 11:

- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM} .
- (2) You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device's nCE pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP ×8, use DATA [7..0]. If you use FPP ×16, use DATA [15..0].

IF the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio – 1) clock cycles after the last data is latched into the Stratix V device.

Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1.

Table 50. FPP Timing Parameters for Stratix V Devices (1)

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low		600	ns
t _{CFG}	nCONFIG low pulse width	2		μS
t _{status}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽³⁾	μS
t _{CF2CK} (6)	nCONFIG high to first rising edge on DCLK	1,506		μS
t _{ST2CK} (6)	nSTATUS high to first rising edge of DCLK	2		μS
t _{DSU}	DATA [] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA [] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45\times1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45\times1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}		S
4	DCLK frequency (FPP ×8/×16)	—	125	MHz
IMAX	DCLK frequency (FPP ×32)	—	100	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁴⁾	175	437	μS
+	CONTR DOWN high to CT WARD analysis	4 × maximum		
LCD2CU	CONF_DONE HIGH to CLEOSE enabled	DCLK period	—	_
t _{cD2UMC}	CONF_DONE high to user mode with CLKUSR option on	$\begin{array}{c} t_{\text{CD2CU}} + \\ (8576 \times \text{CLKUSR} \\ \text{period}) \ ^{(5)} \end{array}$		_

Notes to Table 50:

(1) Use these timing parameters when the decompression and design security features are disabled.

(2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(3) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

- (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.
- (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

FPP Configuration Timing when DCLK-to-DATA [] > 1

Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1.

Table 54 lists the PS configuration timing parameters for Stratix V devices.

Table 54. PS Timing Parameters for Stratix V Devices

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μS
t _{status}	nSTATUS low pulse width	268	1,506 ⁽¹⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μS
t _{CF2CK} (5)	nCONFIG high to first rising edge on DCLK	1,506	—	μS
t _{ST2CK} (5)	nSTATUS high to first rising edge of DCLK	2	—	μS
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA [] hold time after rising edge on DCLK	0	—	ns
t _{CH}	DCLK high time	$0.45\times 1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45\times 1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f _{MAX}	DCLK frequency	—	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽³⁾	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{cd2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) ⁽⁴⁾	_	_

Notes to Table 54:

(1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

(3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

(4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section.

(5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Initialization

Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency.

Table 55.	Initialization	Clock Source	e Option	and the	Maximum	Frequency

Initialization Clock Source	Configuration Schemes	Maximum Frequency	Minimum Number of Clock Cycles ⁽¹⁾
Internal Oscillator	AS, PS, FPP	12.5 MHz	
CLKUSR	AS, PS, FPP ⁽²⁾	125 MHz	8576
DCLK	PS, FPP	125 MHz	

Notes to Table 55:

(1) The minimum number of clock cycles required for device initialization.

(2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box.

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specificatio

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} ⁽¹⁾	250	—	ns
t _{RU_nRSTIMER} ⁽²⁾	250	_	ns

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum	Typical	Maximum	Units
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

 You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Deremeter	Available	Min Fast Model Slow Model					odel					
Parameter (1)	Settings 0	ttings (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns

Parameter	Available Settings	Min Offset (2)	Fast Model		Slow Model							
			Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D3	8	0	1.587	1.699	2.793	2.793	2.992	3.192	2.811	3.047	3.257	ns
D4	64	0	0.464	0.492	0.838	0.838	0.924	1.011	0.843	0.920	1.006	ns
D5	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D6	32	0	0.229	0.244	0.415	0.415	0.458	0.503	0.418	0.456	0.499	ns

Table 58.	IOE Pro	grammable De	lay for	Stratix V	V Devices	(Part 2 of 2)
-----------	---------	--------------	---------	-----------	-----------	--------------	---

Notes to Table 58:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor.

(2) Minimum offset does not include the intrinsic delay.

Programmable Output Buffer Delay

Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

Symbol	Parameter	Typical	Unit	
		0 (default)	ps	
Dauman	Rising and/or falling edge	25	ps	
DOUTBUF	delay	50	ps	
		75	ps	

Note to Table 59:

(1) You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

Glossary

Table 60 lists the glossary for this chapter.

Table 60. Glossary (Part 1 of 4)

Letter	Subject	Definitions		
Α				
В	—	—		
С				
D	—	_		
E				
	f _{HSCLK}	Left and right PLL input clock frequency.		
F	f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate $(f_{HSDR} = 1/TUI)$, non-DPA.		
	f _{hsdrdpa}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.		

Document Revision History

Table 61 lists the revision history for this chapter.

 Table 61. Document Revision History (Part 1 of 3)

Date	Version	n Changes			
June 2018	3.9	 Added the "Stratix V Device Overshoot Duration" figure. 			
		Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.			
		 Changed the minimum value for t_{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. 			
		 Changed the condition for 100-Ω R_D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. 			
April 2017	3.8	 Changed the minimum value for t_{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table 			
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 			
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 			
		 Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. 			
June 2016	3.7	 Added the V_{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table 			
Julie 2010		 Added the I_{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. 			
December 2015	3.6	Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.			
December 2015	3.5	 Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 			
		 Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. 			
		• Changed the data rate specification for transceiver speed grade 3 in the following tables:			
		 "Transceiver Specifications for Stratix V GX and GS Devices" 			
	3.4	 "Stratix V Standard PCS Approximate Maximum Date Rate" 			
		 "Stratix V 10G PCS Approximate Maximum Data Rate" 			
July 2015		 Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. 			
		 Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 			
		 Changed the t_{c0} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. 			
		 Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. 			