Intel - 5SGXEA5H2F35I3L Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	185000
Number of Logic Elements/Cells	490000
Total RAM Bits	46080000
Number of I/O	552
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxea5h2f35i3l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
	Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades)	_	0.87	0.9	0.93	V
V _{CC}	Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) ⁽³⁾		0.82	0.85	0.88	V
V _{CCPT}	Power supply for programmable power technology	_	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology		2.375	2.5	2.625	V
VI (1)	I/O pre-driver (3.0 V) power supply	_	2.85	3.0	3.15	V
VCCPD	I/O pre-driver (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCIO}	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply		1.283	1.35	1.45	V
	I/O buffers (1.25 V) power supply	_	1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply		2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	-	1.71	1.8	1.89	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply		2.375	2.5	2.625	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply	-	1.45	1.5	1.55	V
V _{CCBAT} (2)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.0	V
VI	DC input voltage	_	-0.5	—	3.6	V
V ₀	Output voltage		0	_	V _{CCIO}	V
т	Operating junction temperature	Commercial	0	—	85	°C
IJ		Industrial	-40	_	100	°C

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
			0.82	0.85	0.88	
V _{CCR GXBR}	Dessiver engles never evenly (right side)		0.87	0.90	0.93	v
(2)	neceiver analog power supply (right side)	ux, us, ui	0.97	1.0	1.03	v
			1.03	1.05	1.07	
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
			0.82	0.85	0.88	
V _{CCT_GXBL}	Transmitter analog power supply (left side)	GX, GS, GT -	0.87	0.90	0.93	V
			0.97	1.0	1.03	
			1.03	1.05	1.07	
			0.82	0.85	0.88	
V _{CCT GXBR}	Transmitter analog newer supply (right side)		0.87	0.90	0.93	v
(2) _	Transmitter analog power supply (right side)	un, us, ui	0.97	1.0	1.03	V
			1.03	1.05	1.07	
V_{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
V_{CCL_GTBR}	Transmitter clock network power supply	GT	1.02	1.05	1.08	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	1.425	1.5	1.575	V

Table 7.	Recommended Transceiver Power Supply Operating Conditions for Stratix V GX ,	GS , and GT Devices
(Part 2	of 2)	

Notes to Table 7:

(1) This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

(2) Refer to Table 8 to select the correct power supply level for your design.

(3) When using ATX PLLs, the supply must be 3.0 V.

(4) This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 8 shows the transceiver power supply voltage requirements for various conditions.

Table 8. Transceiver Power Supply Voltage Requirements

Conditions	Core Speed Grade	VCCR_GXB & VCCT_GXB ⁽²⁾	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:	A11	1.05			
■ Data rate > 10.3 Gbps.	All	1.00			
 DFE is used. 					
If ANY of the following conditions are true ⁽¹⁾ :			3.0		
 ATX PLL is used. 					
■ Data rate > 6.5Gbps.	All	1.0			
■ DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used.				1.5	V
If ALL of the following	C1, C2, I2, and I3YY	0.90	2.5		
 ATX PLL is not used. 					
■ Data rate \leq 6.5Gbps.	C2L, C3, C4, I2L, I3, I3L, and I4	0.85	2.5		
 DFE, AEQ, and EyeQ are not used. 					

Notes to Table 8:

(1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.

(2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply.

DC Characteristics

This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications.

Supply Current

Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

				Calibratio	n Accuracy		
Symbol	Description	Conditions	C1	C2,I2	C3,I3, I3YY	C4,14	Unit
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%
34- Ω and 40- Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	±15	±15	%
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	V _{CCI0} = 1.2 V	±15	±15	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCI0} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
20-Ω, 30-Ω, 40-Ω,60-Ω, and 120-Ω R _T	Internal parallel termination with calibration ($20 - \Omega$, $30 - \Omega$, $40 - \Omega$, $60 - \Omega$, and $120 - \Omega$ setting)	V _{CCI0} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
60- $Ω$ and 120- $Ω$ R _T	Internal parallel termination with calibration (60-Ω and 120-Ω setting)	V _{CCI0} = 1.2	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
$25-\Omega \\ R_{S_left_shift}$	Internal left shift series termination with calibration ($25-\Omega$ R _{S_left_shift} setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%

Table II. OUI Valiblation Accuracy specifications for Stratix V Devices' / (Latt 2 OF	Table 11.	OCT Calibration A	ccuracy Specificati	ons for Stratix V D	Devices ⁽¹⁾ (Part 2 of
---	-----------	--------------------------	---------------------	---------------------	--------------------------	-----------

Note to Table 11:

(1) OCT calibration accuracy is valid at the time of calibration only.

Table 12 lists the Stratix V OCT without calibration resistance to PVT changes.

Table 12.	OCT Without Calibration	Resistance 1	Tolerance	Specifications	for Stratix	V Devices	(Part 1	of 2)
-----------	-------------------------	---------------------	------------------	-----------------------	-------------	------------------	---------	-------

		Resistance Tolerance					
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25-Ω setting)	$V_{CCIO} = 3.0$ and 2.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.8 and 1.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%

			Re	esistance	Tolerance		
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCIO} = 1.8$ and 1.5 V	±30	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%
100-Ω R _D	Internal differential termination (100- Ω setting)	V _{CCPD} = 2.5 V	±25	±25	±25	±25	%

Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 2 of 2)

Calibration accuracy for the calibrated series and parallel OCTs are applicable at the moment of calibration. When voltage and temperature conditions change after calibration, the tolerance may change.

OCT calibration is automatically performed at power-up for OCT-enabled I/Os. Table 13 lists the OCT variation with temperature and voltage after power-up calibration. Use Table 13 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration.

Equation 1. OCT Variation Without Recalibration for Stratix V Devices (1), (2), (3), (4), (5), (6)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big) \label{eq:ROCT}$$

Notes to Equation 1:

- (1) The R_{OCT} value shows the range of OCT resistance with the variation of temperature and V_{CCIO} .
- (2) R_{SCAL} is the OCT resistance value at power-up.
- (3) ΔT is the variation of temperature with respect to the temperature at power-up.
- (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power-up.
- (5) dR/dT is the percentage change of R_{SCAL} with temperature.
- (6) dR/dV is the percentage change of $\mathsf{R}_{\mathsf{SCAL}}$ with voltage.

Table 13 lists the on-chip termination variation after power-up calibration.

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 1 of 2)
--

Symbol	Description	V _{CCIO} (V)	Typical	Unit
		3.0	0.0297	
dR/dV	OCT variation with voltage without recalibration	2.5	0.0344	
		1.8	0.0499	%/mV
		1.5	0.0744	
		1.2	0.1241	

Symbol	Description	V _{CCIO} (V)	Typical	Unit
		3.0	0.189	
		2.5	0.208	
dR/dT	OCT variation with temperature without recalibration	1.8	0.266	%/°C
	without robalibration	1.5	0.273	
		1.2	0.317	

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2)⁽¹⁾

Note to Table 13:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to 85°C.

Pin Capacitance

Table 14 lists the Stratix V device family pin capacitance.

Table 14. Pin Capacitance for Stratix V Devices

Symbol	Description	Value	Unit
CIOTB	Input capacitance on the top and bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	6	рF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	6	pF

Hot Socketing

Table 15 lists the hot socketing specifications for Stratix V devices.

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μA
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹⁾
IXCVR-TX (DC)	DC current per transceiver transmitter pin	100 mA
IXCVR-RX (DC)	DC current per transceiver receiver pin	50 mA

Note to Table 15:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{10PIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

I/O	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)				V _{CM(DC)} (V	V _{DIF(AC)} (V)		
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCI0} + 0.3	_	0.5* V _{CCI0}	_	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCI0}	0.3	V _{CCI0} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5*V _{CCI0} - 0.12	0.5* V _{CCI0}	0.5*V _{CCI0} + 0.12	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.44	0.44

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2)

Table 22. Differential I/O Standard Specifications for Stratix V Devices (7)

I/O	Vc	_{cio} (V)	(10)		V _{ID} (mV) ⁽⁸⁾			V _{ICM(DC)} (V)			V _{od} (V) ⁽⁶⁾			V _{OCM} (V) ⁽⁶⁾		
Standard	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max	
PCML	Trar	nsmitte	er, receiv transmi	ver, and itter, rec	input referer ceiver, and re	nce cloo eference	ck pins e clock	of the high-s I/O pin speci	peed tra fications	nsceiver , refer to	rs use o Table	the PC e 23 on	ML I/O s page 18	standard 3.	. For	
2.5 V	2 375	25	2 625	100	V _{CM} =	_	0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	_	0.6	1.125	1.25	1.375	
LVDS ⁽¹⁾	2.575	2.0	2.025	100	1.25 V	_	1.05	D _{MAX} > 700 Mbps	1.55	0.247	_	0.6	1.125	1.25	1.375	
BLVDS (5)	2.375	2.5	2.625	100	_	_	_	_	_	_	_	—	_	—		
RSDS (HIO) ⁽²⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	_	1.4	0.1	0.2	0.6	0.5	1.2	1.4	
Mini- LVDS (HIO) ⁽³⁾	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25	_	0.6	1	1.2	1.4	
LVPECL (4	_	_	_	300	_		0.6	D _{MAX} ≤ 700 Mbps	1.8		_	_	_	_	_	
), (9)				300			1	D _{MAX} > 700 Mbps	1.6							

Notes to Table 22:

(1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.

(2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.

(3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.

- (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.
- (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology.
- (6) RL range: $90 \le RL \le 110 \Omega$.
- (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18.
- (8) The minimum VID value is applicable over the entire common mode range, VCM.
- (9) LVPECL is only supported on dedicated clock input pins.
- (10) Differential inputs are powered by VCCPD which requires 2.5 V.

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature.

- You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.
- ***** For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	er Speed e 3	Unit	
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Spread-spectrum downspread	PCIe	_	0 to 0.5	_	_	0 to 0.5	_	_	0 to 0.5	_	%
On-chip termination resistors ⁽²¹⁾	_	_	100		_	100		_	100		Ω
Absolute V _{MAX} ⁽⁵⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_		1.2		_	1.2			1.2	
Absolute V _{MIN}	—	-0.4	-	_	-0.4	_		-0.4	—		V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	200		1600	mV
V _{ICM} (AC	Dedicated reference clock pin	1050/	(1000/90	00/850 ⁽²⁾	1050/	1000/9	00/850 ⁽²⁾	1050/	1000/9	00/850 ⁽²⁾	mV
coupled) (3)	RX reference clock pin	1.0/0.9/0.85 (4)			1.	.0/0.9/0	.85 (4)	1.	.0/0.9/0	.85 ⁽⁴⁾	V
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250		550	250		550	250	_	550	mV
	100 Hz	—	—	-70	—	—	-70	—	—	-70	dBc/Hz
Transmitter	1 kHz	—	—	-90	—	—	-90	—	—	-90	dBc/Hz
REFCLK Phase	10 kHz	—	—	-100	—	—	-100	—	—	-100	dBc/Hz
(622 MHz) ⁽²⁰⁾	100 kHz	—	—	-110	—	—	-110	—	—	-110	dBc/Hz
	≥1 MHz	—	—	-120		—	-120	—	—	-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁷⁾	10 kHz to 1.5 MHz (PCIe)	_	_	3	_	_	3	_	_	3	ps (rms)
R _{REF} (19)	_	_	1800 ±1%	_	_	1800 ±1%	_	_	180 0 ±1%	_	Ω
Transceiver Clocks											
fixedclk clock frequency	PCIe Receiver Detect		100 or 125			100 or 125		_	100 or 125		MHz

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 2 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trar	er Speed e 3	Unit	
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reconfiguration clock (mgmt_clk_clk) frequency	_	100		125	100		125	100	_	125	MHz
Receiver											
Supported I/O Standards	_			1.4-V PCMI	L, 1.5-V	PCML,	2.5-V PCM	L, LVPE	CL, and	d LVDS	
Data rate (Standard PCS) (9), (23)	_	600	_	12200	600	_	12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS) ^{(9),} ⁽²³⁾	_	600	_	14100	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
Absolute V _{MAX} for a receiver pin ⁽⁵⁾	_	_	_	1.2	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V
Maximum peak- to-peak differential input voltage V _{ID} (diff p- p) before device configuration ⁽²²⁾	_	_	_	1.6	_	_	1.6	_		1.6	V
Maximum peak- to-peak	V _{CCR_GXB} = 1.0 V/1.05 V (V _{ICM} = 0.70 V)	_	_	2.0	_	_	2.0		_	2.0	V
voltage V_{ID} (diff p- p) after device configuration ⁽¹⁸⁾ .	$V_{CCR_GXB} = 0.90 V$ (V _{ICM} = 0.6 V)			2.4			2.4			2.4	V
<i>(22)</i>	$V_{CCR_GXB} = 0.85 V$ (V _{ICM} = 0.6 V)			2.4			2.4		_	2.4	V
Minimum differential eye opening at receiver serial input pins ^{(6), (22),} (27)	_	85			85			85	_	_	mV

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 3 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	DC Gain Setting = 0		0	_	_	0	_	_	0	—	dB
	DC Gain Setting = 1	_	2		_	2	_	_	2	_	dB
Programmable DC gain	DC Gain Setting = 2	_	4	_	_	4	_	_	4	_	dB
	DC Gain Setting = 3	_	6	_	_	6	_	_	6	_	dB
	DC Gain Setting = 4		8			8	_		8	_	dB
Transmitter											
Supported I/O Standards	_		1.4-V and 1.5-V PCML								
Data rate (Standard PCS)	_	600	_	12200	600	_	12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS)	_	600	_	14100	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
	85-Ω setting	_	85 ± 20%	_	_	85 ± 20%	_	_	85 ± 20%	—	Ω
Differential on-	100-Ω setting	_	100 ± 20%	_	_	100 ± 20%	_	_	100 ± 20%	_	Ω
chip termination resistors	120-Ω setting		120 ± 20%	_		120 ± 20%	_		120 ± 20%	_	Ω
	150-Ω setting	_	150 ± 20%			150 ± 20%	_		150 ± 20%	_	Ω
V _{OCM} (AC coupled)	0.65-V setting	_	650		_	650	_	_	650	—	mV
V _{OCM} (DC coupled)	_	_	650	_	_	650		_	650	_	mV
Rise time ⁽⁷⁾	20% to 80%	30	—	160	30	—	160	30	—	160	ps
Fall time ⁽⁷⁾	80% to 20%	30		160	30		160	30	—	160	ps
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps	_	_	15			15		_	15	ps
Intra-transceiver block transmitter channel-to- channel skew	x6 PMA bonded mode	_	_	120	_	_	120	_		120	ps

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 5 of 7)

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 6 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trar	isceive Grade	r Speed 2	Tran	isceive Grade	er Speed e 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Inter-transceiver block transmitter channel-to- channel skew	xN PMA bonded mode	_	_	500	_	_	500	_	_	500	ps
CMU PLL	•										
Supported Data Range	_	600	_	12500	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
t _{pll_powerdown} ⁽¹⁵⁾	—	1			1			1			μs
t _{pll_lock} ⁽¹⁶⁾		—		10	—	_	10	—	_	10	μs
ATX PLL											
	VCO post-divider L=2	8000	_	14100	8000	_	12500	8000	_	8500/ 10312.5 (24)	Mbps
Supported Data	L=4	4000	_	7050	4000	_	6600	4000	—	6600	Mbps
Rate Range	L=8	2000		3525	2000		3300	2000		3300	Mbps
	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	1000	_	1762.5	Mbps
t _{pll_powerdown} (15)	—	1	_	—	1	_	—	1	_	—	μs
t _{pll_lock} (16)	—		—	10		—	10	—		10	μs
fPLL	•										
Supported Data Range	_	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	Mbps
t _{pll_powerdown} ⁽¹⁵⁾	_	1	—		1	—		1			μs

Symbol/	Conditions	s	Transceive peed Grade	r 2	S	Unit					
Description		Min	Тур	Max	Min	Тур	Max				
Reference Clock								1			
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCN	IL, 1.4-V PC	ML, 1.5-V P(CML, 2.5-V I and HCSL	PCML, Diffe	rential LVPE	ECL, LVDS,			
otanuarus	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS									
Input Reference Clock Frequency (CMU PLL) ⁽⁶⁾		40	_	710	40	_	710	MHz			
Input Reference Clock Frequency (ATX PLL) ⁽⁶⁾	_	100	_	710	100	_	710	MHz			
Rise time	20% to 80%	_		400	_	_	400				
Fall time	80% to 20%			400	—	_	400	ps			
Duty cycle	—	45	_	55	45	_	55	%			
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30	_	33	30	_	33	kHz			
Spread-spectrum downspread	PCle	_	0 to -0.5	_	_	0 to -0.5	_	%			
On-chip termination resistors ⁽¹⁹⁾	_	_	100	_	_	100	_	Ω			
Absolute V _{MAX} ⁽³⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	V			
	RX reference clock pin	_	_	1.2	_	_	1.2				
Absolute V _{MIN}	—	-0.4		—	-0.4	—		V			
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV			
V _{ICM} (AC coupled)	Dedicated reference clock pin		1050/1000 ^{(,}	2)	1	050/1000 (2)	mV			
	RX reference clock pin	1	.0/0.9/0.85 (22)	1.	0/0.9/0.85 ((22)	V			
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250		550	mV			

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5)⁽¹⁾

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5)⁽¹⁾

Symbol/	Conditions	S	Transceive peed Grade	r 2	SI	Unit		
Description		Min	Тур	Max	Min	Тур	Max	
	100 Hz	—	—	-70			-70	
Transmitter REFCLK	1 kHz		_	-90	_	_	-90	
Phase Noise (622	10 kHz		—	-100	_		-100	dBc/Hz
MHz) ⁽¹⁸⁾	100 kHz			-110			-110	
	\geq 1 MHz	—	—	-120	_	_	-120	
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁵⁾	10 kHz to 1.5 MHz (PCle)	_	_	3		_	3	ps (rms)
RREF ⁽¹⁷⁾	_	_	1800 ± 1%	—	_	1800 ± 1%	_	Ω
Transceiver Clocks								
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_clk) frequency	_	100	_	125	100	_	125	MHz
Receiver	•							
Supported I/O Standards	_		1.4-V PCML	., 1.5-V PCMI	L, 2.5-V PCI	VIL, LVPEC	L, and LVDS	6
Data rate (Standard PCS) ⁽²¹⁾	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS) ⁽²¹⁾	GX channels	600	_	12,500	600	_	12,500	Mbps
Data rate	GT channels	19,600	—	28,050	19,600		25,780	Mbps
Absolute V _{MAX} for a receiver pin ⁽³⁾	GT channels	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	GT channels	-0.4	_	—	-0.4	_	_	V
Maximum peak-to-peak	GT channels	_		1.6	—	_	1.6	V
differential input voltage V _{ID} (diff p-p) before device configuration ⁽²⁰⁾	GX channels				(8)			
	GT channels							
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) after device	V _{CCR_GTB} = 1.05 V (V _{ICM} = 0.65 V)	_	_	2.2	_	—	2.2	V
	GX channels		1	1 1	(8)			1
Minimum differential	GT channels	200	_	—	200		_	mV
eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾	GX channels			·	(8)			

	Table 28.	Transceiver S	specifications	for Stratix \	V GT Devices	(Part 4 of 5) (1)
--	-----------	----------------------	----------------	---------------	--------------	-------------------

Symbol/	Conditions	Transceiver Speed Grade 2		2		Transceiver Speed Grade 3		Unit
Description		Min	Тур	Max	Min	Тур	Max	
Data rate	GT channels	19,600	—	28,050	19,600		25,780	Mbps
Differential on-chip	GT channels	_	100	_		100	—	Ω
termination resistors	GX channels				(8)			
	GT channels	_	500	—	—	500		mV
V _{OCM} (AC Coupled)	GX channels	(8)						
Dico/Fall time	GT channels	_	15	—	_	15	_	ps
	GX channels				(8)			
Intra-differential pair skew	GX channels	(8)						
Intra-transceiver block transmitter channel-to- channel skew	GX channels	(8)						
Inter-transceiver block transmitter channel-to- channel skew	GX channels	ls (8)						
CMU PLL	•							
Supported Data Range	—	600		12500	600		8500	Mbps
t _{pll_powerdown} ⁽¹³⁾	—	1	—	—	1			μs
t _{pll_lock} ⁽¹⁴⁾	—		—	10	_		10	μs
ATX PLL								
Supported Data Rate	VCO post- divider L=2	8000	_	12500	8000	—	8500	Mbps
	L=4	4000		6600	4000	_	6600	Mbps
	L=8	2000		3300	2000		3300	Mbps
	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	Mbps
Supported Data Rate Range for GT Channels	VCO post- divider L=2	9800	_	14025	9800	_	12890	Mbps
t _{pll_powerdown} ⁽¹³⁾	—	1	—	—	1	_	—	μs
t _{pll_lock} ⁽¹⁴⁾	—	_	—	10	_	_	10	μs
fPLL	fPLL							
Supported Data Range		600		3250/ 3.125 ⁽²³⁾	600		3250/ 3.125 ⁽²³⁾	Mbps
t _{pll_powerdown} ⁽¹³⁾	_	1	—	—	1	—	—	μs

- XFI
- ASI
- HiGig/HiGig+
- HiGig2/HiGig2+
- Serial Data Converter (SDC)
- GPON
- SDI
- SONET
- Fibre Channel (FC)
- PCIe
- QPI
- SFF-8431

Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols.

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications.

Clock Tree Specifications

Table 30 lists the clock tree specifications for Stratix V devices.

Table 30. Clock Tree Performance for Stratix V Devices (1)

	Performance				
Symbol	C1, C2, C2L, I2, and I2L	C3, I3, I3L, and I3YY	C4, I4	Unit	
Global and Regional Clock	717	650	580	MHz	
Periphery Clock	550	500	500	MHz	

Note to Table 30:

(1) The Stratix V ES devices are limited to 600 MHz core clock tree performance.

Symbol	Parameter	Min	Тур	Max	Unit
t	Input clock cycle-to-cycle jitter ($f_{REF} \ge 100 \text{ MHz}$)			0.15	UI (p-p)
LINCCJ (0), (1)	Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz)	-750		+750	ps (p-p)
t _{outpj_dc} (5)	Period Jitter for dedicated clock output (f_{OUT} \geq 100 MHz)	_	_	175 ⁽¹⁾	ps (p-p)
	Period Jitter for dedicated clock output (f _{OUT} < 100 MHz)	_	_	17.5 ⁽¹⁾	mUI (p-p)
t _{foutpj_dc} (5)	Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
+ (5)	Cycle-to-Cycle Jitter for a dedicated clock output ($f_{\text{OUT}} \geq 100 \text{ MHz})$		_	175	ps (p-p)
t _{outccj_dc} ⁽⁵⁾	Cycle-to-Cycle Jitter for a dedicated clock output $(f_{OUT} < 100 \text{ MHz})$		_	17.5	mUI (p-p)
+ (5)	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)		_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{foutccj_dc}	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)+		_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
t _{outpj_io} (5), (8)	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)		_	600	ps (p-p)
	Period Jitter for a clock output on a regular I/O $(f_{OUT} < 100 \text{ MHz})$		_	60	mUI (p-p)
t _{FOUTPJ_IO} (5), (8), (11)	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600 ⁽¹⁰⁾	ps (p-p)
	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{outccj_io} (5),	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \geq 100 \mbox{ MHz})$	_	_	600	ps (p-p)
(8)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f _{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{FOUTCCJ_IO} (5), (8), (11)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100$ MHz)		_	600 ⁽¹⁰⁾	ps (p-p)
	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
tcase outer de	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
(5), (6)	Period Jitter for a dedicated clock output in cascaded PLLs (f_{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs		_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits
k _{VALUE}	Numerator of Fraction	128	8388608	2147483648	—

Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3)

Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1.

Table 50. FPP Timing Parameters for Stratix V Devices (1)

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low		600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low		600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μS
t _{status}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high		1,506 ⁽³⁾	μS
t _{CF2CK} (6)	nCONFIG high to first rising edge on DCLK	1,506	_	μS
t _{ST2CK} (6)	nSTATUS high to first rising edge of DCLK	2	_	μS
t _{DSU}	DATA [] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA [] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45\times1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45\times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
£	DCLK frequency (FPP ×8/×16)	—	125	MHz
IMAX	DCLK frequency (FPP ×32)	—	100	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁴⁾	175	437	μS
t _{CD2CU}	gove how high to grow analysis	4 × maximum		
	CONF_DONE HIGH to CLEOSE enabled	DCLK period	—	
t _{cd2uмc}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) ⁽⁵⁾	_	_

Notes to Table 50:

(1) Use these timing parameters when the decompression and design security features are disabled.

(2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(3) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

- (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.
- (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

FPP Configuration Timing when DCLK-to-DATA [] > 1

Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1.

Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2)

Notes to Figure 13:

- (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay.
- (4) After power-up, before and during configuration, CONF_DONE is low.
- (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (6) "r" denotes the DCLK-to-DATA [] ratio. For the DCLK-to-DATA [] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55.
- (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge.
- (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.