

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	185000
Number of Logic Elements/Cells	490000
Total RAM Bits	46080000
Number of I/O	432
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxea5k3f35c2ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Page 2 Electrical Characteristics

Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering (1), (2), (3) (Part 2 of 2)

Transceiver Speed	Core Speed Grade									
Grade	C1	C2, C2L	C3	C4	12, 12L	13, 13L	I3YY	14		
3 GX channel—8.5 Gbps	_	Yes	Yes	Yes	_	Yes	Yes ⁽⁴⁾	Yes		

Notes to Table 1:

- (1) C = Commercial temperature grade; I = Industrial temperature grade.
- (2) Lower number refers to faster speed grade.
- (3) C2L, I2L, and I3L speed grades are for low-power devices.
- (4) I3YY speed grades can achieve up to 10.3125 Gbps.

Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices.

Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering (1), (2)

Transacius Snood Crada		Core Speed Grade								
Transceiver Speed Grade	C1	C2	12	13						
2 GX channel—12.5 Gbps GT channel—28.05 Gbps	Yes	Yes	_	_						
3 GX channel—12.5 Gbps GT channel—25.78 Gbps	Yes	Yes	Yes	Yes						

Notes to Table 2:

- (1) C = Commercial temperature grade; I = Industrial temperature grade.
- (2) Lower number refers to faster speed grade.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 1 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V

Page 6 Electrical Characteristics

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
t	Power supply ramp time	Standard POR	200 μs	_	100 ms	_
LRAMP	Fower supply rainp line	Fast POR	200 μs	_	4 ms	_

Notes to Table 6:

- (1) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.
- (2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low.
- (3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades.
- (4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices.

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2)

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left	GX, GS, GT	2.85	3.0	3.15	V
(1), (3)	side)	७४, ७७, ७१	2.375	2.5	2.625	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right	GX, GS	2.85	3.0	3.15	V
$(1), (\overline{3})$	side)	রম, রহ	2.375	2.5	2.625	V
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	2.85	3.0	3.15	V
	Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V_{CCHIP_R}	Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
			0.82	0.85	0.88	
V _{CCR_GXBL}	Receiver analog power supply (left side)	GX, GS, GT	0.87	0.90	0.93	V
(2)	Treceiver arialog power supply (left side)	un, us, ui	0.97	1.0	1.03	v
			1.03	1.05	1.07	

Page 8 Electrical Characteristics

Table 8 shows the transceiver power supply voltage requirements for various conditions.

Table 8. Transceiver Power Supply Voltage Requirements

Conditions	Core Speed Grade	VCCR_GXB & VCCT_GXB (2)	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:					
■ Data rate > 10.3 Gbps.	All	1.05			
■ DFE is used.					
If ANY of the following conditions are true ⁽¹⁾ :			3.0		
ATX PLL is used.					
■ Data rate > 6.5Gbps.	All	1.0			
■ DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used.				1.5	V
If ALL of the following	C1, C2, I2, and I3YY	0.90	2.5		
conditions are true: ATX PLL is not used.					
■ Data rate ≤ 6.5Gbps.	C2L, C3, C4, I2L, I3, I3L, and I4	0.85	2.5		
DFE, AEQ, and EyeQ are not used.					

Notes to Table 8:

- (1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.
- (2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply.

DC Characteristics

This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications.

Supply Current

Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Page 14 Electrical Characteristics

Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Devices

I/O Standard		V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)	
I/O Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах
SSTL-2 Class I, II	2.375	2.5	2.625	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	V _{REF} – 0.04	V_{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
SSTL-15 Class I, II	1.425	1.5	1.575	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}
SSTL-135 Class I, II	1.283	1.35	1.418	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}
SSTL-125 Class I, II	1.19	1.25	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}
SSTL-12 Class I, II	1.14	1.20	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCIO} /2	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCIO} /2	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.47 * V _{CCIO}	0.5 * V _{CCIO}	0.53 * V _{CCIO}	_	V _{CCIO} /2	_
HSUL-12	1.14	1.2	1.3	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	_	_	_

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 1 of 2)

I/O Standard	V _{IL(D(}	_{c)} (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I (mA)	I _{oh}
i/U Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	I _{ol} (mA)	(mA)
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCIO} - 0.28	13.4	-13.4
SSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCIO}	0.8 * V _{CCIO}	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCIO}	0.8 * V _{CCIO}	16	-16
SSTL-135 Class I, II	_	V _{REF} – 0.09	V _{REF} + 0.09	_	V _{REF} – 0.16	V _{REF} + 0.16	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_
SSTL-125 Class I, II	_	V _{REF} – 0.85	V _{REF} + 0.85	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_
SSTL-12 Class I, II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_

Page 16 Electrical Characteristics

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2)

I/O	ndord			$V_{CCIO}(V)$ $V_{DIF(DC)}(V)$			V _{X(AC)} (V)			V _{CM(DC)} (V	V _{DIF(AC)} (V)		
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3	_	0.5* V _{CCIO}	_	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.3	V _{CCIO} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5*V _{CCIO} - 0.12	0.5* V _{CCIO}	0.5*V _{CCIO} + 0.12	0.4* V _{CCIO}	0.5* V _{CCIO}	0.6* V _{CCIO}	0.44	0.44

Table 22. Differential I/O Standard Specifications for Stratix V Devices (7)

I/O	Vc	_{CIO} (V)	(10)	V _{ID} (mV) ⁽⁸⁾				$V_{ICM(DC)}$ (V)			D (V) (6)	V _{OCM} (V) ⁽⁶⁾		
Standard	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Trar	Transmitter, receiver, and input reference clock pins of the high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to Table 23 on page 18.													
2.5 V	2.375	2.5	2.625	100	V _{CM} =	_	0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247		0.6	1.125	1.25	1.375
LVDS (1)	2.373	2.3	2.023	100	1.25 V		1.05	D _{MAX} > 700 Mbps	1.55	0.247	_	0.6	1.125	1.25	1.375
BLVDS (5)	2.375	2.5	2.625	100	_	_	_	_	_	_	_	_	_		_
RSDS (HIO) ⁽²⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	_	1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini- LVDS (HIO) (3)	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25	_	0.6	1	1.2	1.4
LVPECL (4	_	_	_	300	_	_	0.6	D _{MAX} ≤ 700 Mbps	1.8	_	_	_	_	_	_
), (9)	_	_	_	300	_	_	1	D _{MAX} > 700 Mbps	1.6	_	_	_	_	_	_

Notes to Table 22:

- (1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.
- (2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.
- (3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.
- (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.
- (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology.
- (6) RL range: $90 \le RL \le 110 \Omega$.
- (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18.
- (8) The minimum VID value is applicable over the entire common mode range, VCM.
- (9) LVPECL is only supported on dedicated clock input pins.
- (10) Differential inputs are powered by VCCPD which requires 2.5 $\rm V.$

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature.

Electrical Characteristics Page 17

You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 2 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Spread-spectrum downspread	PCle	_	0 to -0.5	_	_	0 to -0.5	_	_	0 to -0.5	_	%
On-chip termination resistors (21)	_	_	100	_	_	100	_	_	100	_	Ω
Absolute V _{MAX} ⁽⁵⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	_	_	1.6	V
	RX reference clock pin		_	1.2	_	_	1.2	_	_	1.2	
Absolute V _{MIN}	_	-0.4		_	-0.4		_	-0.4	_	_	V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	200	_	1600	mV
V _{ICM} (AC	Dedicated reference clock pin	1050/	1000/90	00/850 ⁽²⁾	1050/1000/900/850 (2)			1050/	mV		
coupled) ⁽³⁾	RX reference clock pin	1.	.0/0.9/0	.85 ⁽⁴⁾	1.	0/0.9/0	.85 ⁽⁴⁾	1.	V		
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
	100 Hz	_	_	-70	_	_	-70	_	_	-70	dBc/Hz
Transmitter	1 kHz	_	_	-90	_	_	-90	_	_	-90	dBc/Hz
REFCLK Phase Noise	10 kHz		_	-100	_	_	-100	_	_	-100	dBc/Hz
(622 MHz) ⁽²⁰⁾	100 kHz	_	_	-110	_	_	-110	_	_	-110	dBc/Hz
	≥1 MHz	_	_	-120		_	-120		_	-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) (17)	10 kHz to 1.5 MHz (PCle)	_	_	3	_	_	3	_	_	3	ps (rms)
R _{REF} (19)	_	_	1800 ±1%	_	_	1800 ±1%	_	_	180 0 ±1%	_	Ω
Transceiver Clock	<u> </u>			_			_				
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	_	100 or 125	_	MHz

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 4 of 7)

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade		Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	85– Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-	100–Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	_	100 ± 30%	_	Ω
chip termination resistors (21)	120–Ω setting	_	120 ± 30%		_	120 ± 30%		_	120 ± 30%	_	Ω
	150-Ω setting	_	150 ± 30%	_	_	150 ± 30%	_	_	150 ± 30%	_	Ω
	V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth	_	600	_	_	600	_	_	600	_	mV
V _{ICM} (AC and DC	V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth	_	600	_	_	600	_	_	600	_	mV
coupled)	V _{CCR_GXB} = 1.0 V/1.05 V full bandwidth	_	700	_	_	700	_	_	700	_	mV
	V _{CCR_GXB} = 1.0 V half bandwidth	_	750	_	_	750	_	_	750	_	mV
t _{LTR} (11)	_	_	_	10	_	_	10	_	_	10	μs
t _{LTD} (12)	_	4	_		4			4		_	μs
t _{LTD_manual} (13)	_	4	_		4	_		4	_		μs
t _{LTR_LTD_manual} (14)	_	15	_	_	15		_	15		_	μs
Run Length	_		_	200		_	200	_		200	UI
Programmable equalization (AC Gain) ⁽¹⁰⁾	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)	_	_	16	_	_	16	_	_	16	dB

Page 24 Switching Characteristics

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 7 of 7)

Symbol/ Description	Conditions	Transceiver Speed Grade 1			Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{pll_lock} (16)	_		_	10	_	_	10	_	_	10	μs

Notes to Table 23:

- (1) Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*.
- (2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
- (3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V.
- (4) This supply follows VCCR_GXB.
- (5) The device cannot tolerate prolonged operation at this absolute maximum.
- (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (8) The input reference clock frequency options depend on the data rate and the device speed grade.
- (9) The line data rate may be limited by PCS-FPGA interface speed grade.
- (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (12) t_{I TD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (14) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (15) $t_{pll\ powerdown}$ is the PLL powerdown minimum pulse width.
- (16) t_{nll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (17) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (19) For ES devices, R_{REF} is 2000 Ω ±1%.
- (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (22) Refer to Figure 2.
- (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (24) I3YY devices can achieve data rates up to 10.3125 Gbps.
- (25) When you use fPLL as a TXPLL of the transceiver.
- (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification.
- (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Figure 6 shows the Stratix V DC gain curves for GT channels.

Figure 6. DC Gain Curves for GT Channels

Transceiver Characterization

This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols:

- Interlaken
- 40G (XLAUI)/100G (CAUI)
- 10GBase-KR
- QSGMII
- XAUI
- SFI
- Gigabit Ethernet (Gbe / GIGE)
- SPAUI
- Serial Rapid IO (SRIO)
- CPRI
- OBSAI
- Hyper Transport (HT)
- SATA
- SAS
- CEI

Page 42 Switching Characteristics

Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 2 of 2)

Mode		Peformance								
	C1	C2, C2L	12, 12L	C3	13, 13L, 13YY	C4	14	Unit		
		Modes us	ing Three	DSPs	•					
One complex 18 x 25	425	425	415	340	340	275	265	MHz		
Modes using Four DSPs										
One complex 27 x 27	465	465	465	380	380	300	290	MHz		

Memory Block Specifications

Table 33 lists the Stratix V memory block specifications.

Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 1 of 2)

Memory		Resources Used		Performance							
	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, I2L	13, 13L, 13YY	14	Unit
MLAB -	Single port, all supported widths	0	1	450	450	400	315	450	400	315	MHz
	Simple dual-port, x32/x64 depth	0	1	450	450	400	315	450	400	315	MHz
	Simple dual-port, x16 depth (3)	0	1	675	675	533	400	675	533	400	MHz
	ROM, all supported widths	0	1	600	600	500	450	600	500	450	MHz

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 4 of 4)

Cumbal	Conditions		C1		C2,	C2L, I	2, I2L	C3,	I3, I3I	., I3YY		C4,I	4	Unit
Symbol	Conuntions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ullit
	SERDES factor J = 3 to 10	(6)	_	(8)	(6)		(8)	(6)		(8)	(6)	_	(8)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)		(7)	(6)		(7)	(6)		(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
DPA Mode														
DPA run length	_		_	1000 0			1000 0	_		1000 0	_	_	1000 0	UI
Soft CDR mode	•													
Soft-CDR PPM tolerance	_	_	_	300	_	_	300	_	_	300	_	_	300	± PPM
Non DPA Mode	,													
Sampling Window	_	_	_	300	_		300	_		300	_	_	300	ps

Notes to Table 36:

- (1) When J = 3 to 10, use the serializer/deserializer (SERDES) block.
- (2) When J = 1 or 2, bypass the SERDES block.
- (3) This only applies to DPA and soft-CDR modes.
- (4) Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.
- (5) This is achieved by using the **LVDS** clock network.
- (6) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (7) The maximum ideal frequency is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.
- (8) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.
- (9) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.
- (10) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- (11) The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design-dependent and requires timing analysis.
- (12) Stratix V RX LVDS will need DPA. For Stratix V TX LVDS, the receiver side component must have DPA.
- (13) Stratix V LVDS serialization and de-serialization factor needs to be x4 and above.
- (14) Requires package skew compensation with PCB trace length.
- (15) Do not mix single-ended I/O buffer within LVDS I/O bank.
- (16) Chip-to-chip communication only with a maximum load of 5 pF.
- (17) When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

Page 48 Switching Characteristics

Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled.

Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled

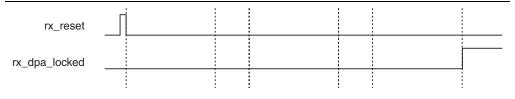


Table 37 lists the DPA lock time specifications for Stratix V devices.

Table 37. DPA Lock Time Specifications for Stratix V GX Devices Only (1), (2), (3)

Standard	00001111 10010000 10101010	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁴⁾	Maximum
SPI-4	0000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
Farallel hapiu 1/0	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
IVIISCEIIAIIEOUS	01010101	8	32	640 data transitions

Notes to Table 37:

- (1) The DPA lock time is for one channel.
- (2) One data transition is defined as a 0-to-1 or 1-to-0 transition.
- (3) The DPA lock time stated in this table applies to both commercial and industrial grade.
- (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 8 shows the **LVDS** soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps.

Figure 8. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate \geq 1.25 Gbps

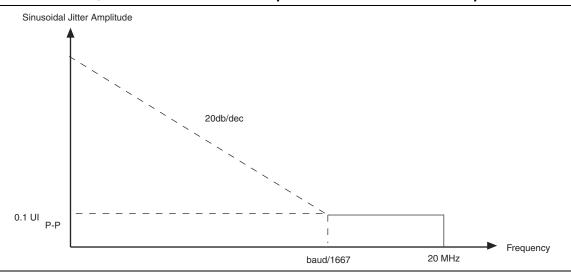

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification

Table 38. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate \geq 1.25 Gbps

Jitter Fr	equency (Hz)	Sinusoidal Jitter (UI)
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps.

Figure 9. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate < 1.25 Gbps

DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications

Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices.

Table 39. DLL Range Specifications for Stratix V Devices (1)

C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,I4	Unit
300-933	300-933	300-890	300-890	MHz

Note to Table 39:

(1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL.

Table 40 lists the DQS phase offset delay per stage for Stratix V devices.

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 1 of 2)

Speed Grade	Min	Max	Unit
C1	8	14	ps
C2, C2L, I2, I2L	8	14	ps
C3,I3, I3L, I3YY	8	15	ps

Page 50 Switching Characteristics

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 2 of 2)

Speed Grade	Min	Max	Unit
C4,I4	8	16	ps

Notes to Table 40:

- (1) The typical value equals the average of the minimum and maximum values.
- (2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps.

Table 41 lists the DQS phase shift error for Stratix V devices.

Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices (1)

Number of DQS Delay Buffers	C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,I4	Unit
1	28	28	30	32	ps
2	56	56	60	64	ps
3	84	84	90	96	ps
4	112	112	120	128	ps

Notes to Table 41:

Table 42 lists the memory output clock jitter specifications for Stratix V devices.

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 1 of 2) (2), (3)

Clock Network	Parameter	Symbol	C1		C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,I4		Unit
NEIWUIK			Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	t _{JIT(per)}	-50	50	-50	50	-55	55	-55	55	ps
Regional	Cycle-to-cycle period jitter	t _{JIT(cc)}	-100	100	-100	100	-110	110	-110	110	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-50	50	-50	50	-82.5	82.5	-82.5	82.5	ps
	Clock period jitter	t _{JIT(per)}	-75	75	- 75	75	-82.5	82.5	-82.5	82.5	ps
Global	Cycle-to-cycle period jitter	t _{JIT(cc)}	-150	150	-150	150	-165	165	-165	165	ps
	Duty cycle jitter	t _{JIT(duty)}	- 75	75	-75	75	-90	90	-90	90	ps

⁽¹⁾ This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a −2 speed grade is ±78 ps or ±39 ps.

Page 58 Configuration Specification

Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1.

Table 50. FPP Timing Parameters for Stratix V Devices (1)

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μS
t _{STATUS}	nstatus low pulse width	268	1,506 ⁽²⁾	μ\$
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1,506 ⁽³⁾	μ\$
t _{CF2CK} (6)	nCONFIG high to first rising edge on DCLK	1,506	_	μ\$
t _{ST2CK} (6)	nSTATUS high to first rising edge of DCLK	2	_	μ\$
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f	DCLK frequency (FPP ×8/×16)	_	125	MHz
f _{MAX}	DCLK frequency (FPP ×32)	_	100	MHz
t _{CD2UM}	CONF_DONE high to user mode (4)	175	437	μS
t _{CD2CU}		4 × maximum		
	CONF_DONE high to CLKUSR enabled	DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) ⁽⁵⁾	_	_

Notes to Table 50:

- (1) Use these timing parameters when the decompression and design security features are disabled.
- (2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (3) This value is applicable if you do not delay configuration by externally holding the nstatus low.
- (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.
- (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

FPP Configuration Timing when DCLK-to-DATA [] > 1

Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1.

Configuration Specification Page 59

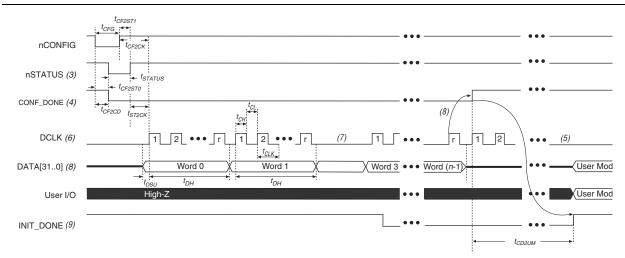


Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2)

Notes to Figure 13:

- (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nconfig, nstatus, and conf_done are at logic high levels. When nconfig is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay.
- (4) After power-up, before and during configuration, CONF DONE is low.
- (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (6) "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55.
- (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge.
- (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Page 60 Configuration Specification

Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA [] ratio is more than 1.

Table 51. FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1 $^{(1)}$

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nconfig low to conf_done low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μS
t _{STATUS}	nstatus low pulse width	268	1,506 ⁽²⁾	μS
t _{CF2ST1}	nconfig high to nstatus high	_	1,506 ⁽²⁾	μS
t _{CF2CK} (5)	nconfig high to first rising edge on DCLK	1,506	_	μS
t _{ST2CK} (5)	nstatus high to first rising edge of DCLK	2	_	μS
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	N-1/f _{DCLK} ⁽⁵⁾	_	S
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f _{MAX}	DCLK frequency (FPP ×8/×16)	_	125	MHz
	DCLK frequency (FPP ×32)	_	100	MHz
t _R	Input rise time	_	40	ns
t _F	Input fall time	_	40	ns
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) ⁽⁴⁾	_	_

Notes to Table 51:

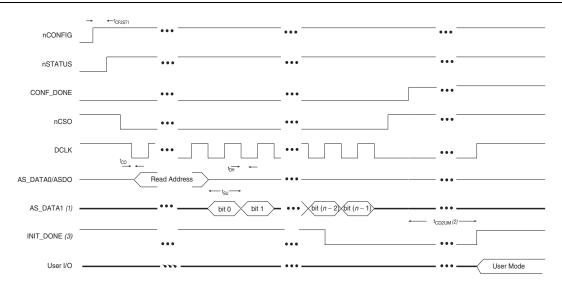
- (1) Use these timing parameters when you use the decompression and design security features.
- (2) You can obtain this value if you do not delay configuration by extending the nconfig or nstatus low pulse width.
- (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.
- (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (5) N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating.
- (6) If nstatus is monitored, follow the t_{status} specification. If nstatus is not monitored, follow the t_{cfack} specification.

Configuration Specification Page 61

Active Serial Configuration Timing

Table 52 lists the DCLK frequency specification in the AS configuration scheme.

Table 52. DCLK Frequency Specification in the AS Configuration Scheme (1), (2)


Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Notes to Table 52:

- This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.
- (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Figure 14 shows the single-device configuration setup for an AS ×1 mode.

Figure 14. AS Configuration Timing

Notes to Figure 14:

- (1) If you are using AS ×4 mode, this signal represents the AS_DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle.
- (2) The initialization clock can be from internal oscillator or ${\tt CLKUSR}$ pin.
- (3) After the option bit to enable the $INIT_DONE$ pin is configured into the device, the $INIT_DONE$ goes low.

Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices.

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Minimum	Maximum	Units
t _{CO}	DCLK falling edge to AS_DATAO/ASDO output	_	2	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	_	ns
t _H	Data hold time after falling edge on DCLK	0	_	ns

Configuration Specification Page 63

Table 54 lists the PS configuration timing parameters for Stratix V devices.

Table 54. PS Timing Parameters for Stratix V Devices

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2		μS
t _{STATUS}	nstatus low pulse width	268	1,506 ⁽¹⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1,506 ⁽²⁾	μS
t _{CF2CK} (5)	nCONFIG high to first rising edge on DCLK	1,506		μS
t _{ST2CK} (5)	nstatus high to first rising edge of DCLK	2	_	μS
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0		ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}		S
f _{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) (4)	_	_

Notes to Table 54:

- (1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.
- (3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.
- (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section.
- (5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Initialization

Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency.

Table 55. Initialization Clock Source Option and the Maximum Frequency

Initialization Clock Source	Configuration Schemes	Maximum Frequency	Minimum Number of Clock Cycles ⁽¹⁾
Internal Oscillator	AS, PS, FPP	12.5 MHz	
CLKUSR	AS, PS, FPP (2)	125 MHz	8576
DCLK	PS, FPP	125 MHz	

Notes to Table 55:

- $(1) \quad \text{The minimum number of clock cycles required for device initialization}.$
- (2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box.