E·XFL

Intel - 5SGXEA5N2F40I3L Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	185000
Number of Logic Elements/Cells	490000
Total RAM Bits	46080000
Number of I/O	600
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxea5n2f40i3l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

								·			
Transceiver Speed	Core Speed Grade										
Grade C1		C2, C2L	C3	C4	12, 12L	13, 13L	I 3YY	14			
3 GX channel—8.5 Gbps	_	Yes	Yes	Yes	_	Yes	Yes ⁽⁴⁾	Yes			

Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering ^{(1), (2), (3)} (Part 2 of 2)

Notes to Table 1:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

(3) C2L, I2L, and I3L speed grades are for low-power devices.

(4) I3YY speed grades can achieve up to 10.3125 Gbps.

Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices. **Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering** ⁽¹⁾, ⁽²⁾

Transseiver Speed Grade	Core Speed Grade						
Transceiver Speeu draue	C1	C2	12	13			
2 GX channel—12.5 Gbps GT channel—28.05 Gbps	Yes	Yes	_	_			
3 GX channel—12.5 Gbps GT channel—25.78 Gbps	Yes	Yes	Yes	Yes			

Notes to Table 2:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

TANIC J. ANSULULC MAXIMUM NALINYS IVI SUALIX V DEVICES (FAIL I UI Z)	Table 3.	Absolute Maximum	Ratings	for Stratix \	/ Devices	(Part 1 of 2)
--	----------	-------------------------	---------	---------------	-----------	---------------

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

Symbol	Description	Condition (V)	Overshoot Duration as % @ T _J = 100°C	Unit						
		3.8	100	%						
		3.85	64	%						
		3.9	36	%						
		3.95	21	%						
Vi (AC)	AC input voltage	4	12	%						
		4.05	7	%						
		4.1	4	%						
		4.15	2	%						
		4.2	1	%						

Table 5. Maximum Allowed Overshoot During Transitions

Figure 1. Stratix V Device Overshoot Duration

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
			0.82	0.85	0.88	
V _{CCR_GXBR}	Receiver analog power supply (right side)		0.87	0.90	0.93	v
(2)	neceiver analog power supply (right side)	ux, us, ui	0.97	1.0	1.03	v
			1.03	1.05	1.07	
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
			0.82	0.85	0.88	
V _{CCT GXBL}	Transmitter analog newer supply (left side)	GX, GS, GT	0.87	0.90	0.93	V
(2)	Transmitter analog power supply (left side)		0.97	1.0	1.03	
			1.03	1.05	1.07	
			0.82	0.85	0.88	V
V _{CCT GXBR}	Transmitter analog newer supply (right side)	GX, GS, GT	0.87	0.90	0.93	
(2) _	Transmitter analog power supply (light side)		0.97	1.0	1.03	
			1.03	1.05	1.07	
V_{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
V_{CCL_GTBR}	Transmitter clock network power supply	GT	1.02	1.05	1.08	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	1.425	1.5	1.575	V

Table 7.	Recommended Transceiver Power Supply Operating Conditions for Stratix V GX ,	GS , and GT Devices
(Part 2	of 2)	

Notes to Table 7:

(1) This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

(2) Refer to Table 8 to select the correct power supply level for your design.

(3) When using ATX PLLs, the supply must be 3.0 V.

(4) This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

1/0 Standard		V _{ccio} (V)		V _{REF} (V)			V _π (V)			
i/O Stanuaru	Min	Тур	Max	Min	Min Typ		Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-15 Class I, II	1.425	1.5	1.575	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}	
SSTL-135 Class I, II	1.283	1.35	1.418	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	
SSTL-125 Class I, II	1.19	1.25	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}	
SSTL-12 Class I, II	1.14	1.20	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCI0} /2	_	
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCI0} /2	_	
HSTL-12 Class I, II	1.14	1.2	1.26	0.47 * V _{CCIO}	0.5 * V _{CCIO}	0.53 * V _{CCIO}	_	V _{CCI0} /2	_	
HSUL-12	1.14	1.2	1.3	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	_			

Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Devi	ces
---	-----

Table 19.	Single-Ended SSTL	, HSTL, and HSUL I/	/O Standards Signal S	Specifications for	Stratix V Devices	(Part 1 of 2)
-----------	-------------------	---------------------	-----------------------	---------------------------	-------------------	---------------

1/0 Standard	V _{IL(DI}	_{c)} (V)	V _{IH(D}	_{c)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{ol} (V)	V _{oh} (V)	I (mA)	I _{oh}
i/o Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	I _{ol} (IIIA)	(mÄ)
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCI0} – 0.28	13.4	-13.4
SSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCI0}	0.8 * V _{CCI0}	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCI0}	0.8 * V _{CCI0}	16	-16
SSTL-135 Class I, II	_	V _{REF} – 0.09	V _{REF} + 0.09	—	V _{REF} – 0.16	V _{REF} + 0.16	0.2 * V _{CCI0}	0.8 * V _{CCI0}	—	_
SSTL-125 Class I, II		V _{REF} – 0.85	V _{REF} + 0.85	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCI0}	0.8 * V _{CCI0}		
SSTL-12 Class I, II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCI0}	0.8 * V _{CCI0}	_	

- You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.
- ***** For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trar	Unit		
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reconfiguration clock (mgmt_clk_clk) frequency	_	100		125	100		125	100	_	125	MHz
Receiver											
Supported I/O Standards	_			1.4-V PCMI	L, 1.5-V	PCML,	2.5-V PCM	L, LVPE	CL, and	d LVDS	
Data rate (Standard PCS) ^{(9), (23)}	_	600	_	12200	600	_	12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS) ^{(9),} ⁽²³⁾	_	600	_	14100	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
Absolute V _{MAX} for a receiver pin ⁽⁵⁾	_	_	_	1.2	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V
Maximum peak- to-peak differential input voltage V _{ID} (diff p- p) before device configuration ⁽²²⁾	_	_	_	1.6	_	_	1.6	_		1.6	V
Maximum peak- to-peak	V _{CCR_GXB} = 1.0 V/1.05 V (V _{ICM} = 0.70 V)	_	_	2.0	_	_	2.0	_	_	2.0	V
voltage V_{ID} (diff p- p) after device configuration ⁽¹⁸⁾ .	V _{CCR_GXB} = 0.90 V (V _{ICM} = 0.6 V)			2.4			2.4			2.4	V
(22)	$V_{CCR_GXB} = 0.85 V$ (V _{ICM} = 0.6 V)			2.4			2.4		_	2.4	V
Minimum differential eye opening at receiver serial input pins ^{(6), (22),} (27)	_	85			85			85	_	_	mV

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 3 of 7)

Table 26 shows the approximate maximum data rate using the 10G PCS.

Mada (2)	Transceiver	PMA Width	64	40	40	40	32	32	
mode ""	Speed Grade	PCS Width	64	66/67	50	40	64/66/67	32	
	1	C1, C2, C2L, I2, I2L core speed grade	14.1	14.1	10.69	14.1	13.6	13.6	
2	2	C1, C2, C2L, I2, I2L core speed grade	12.5	12.5	10.69	12.5	12.5	12.5	
	2	C3, I3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88	
FIFO or Register		C1, C2, C2L, I2, I2L core speed grade							
3	3	C3, I3, I3L core speed grade	8.5 Gbps						
	5	C4, I4 core speed grade							
		I3YY core speed grade	10.3125 Gbps						

Notes to Table 26:

(1) The maximum data rate is in Gbps.

(2) The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Figure 3 shows the Stratix V AC gain curves for GX channels.

Figure 3. AC Gain Curves for GX Channels (full bandwidth)

Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23.

Table 28 lists the Stratix V GT transceiver specifications.

Figure 4 shows the differential transmitter output waveform.

Figure 5 shows the Stratix V AC gain curves for GT channels.

Figure 5. AC Gain Curves for GT Channels

	Conditions		C1		C2,	C2L, I	2, I2L	C3,	13, 131	., I 3YY	C4,I4			
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{duty}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	45	50	55	%
t _{rise} & t _{fall}	True Differential I/O Standards	_	_	160	_	_	160	_	_	200	_	_	200	ps
	Emulated Differential I/O Standards with three external output resistor networks			250			250			250			300	ps
TCCS	True Differential I/O Standards	_	_	150	_	_	150	_	_	150	_	_	150	ps
	Emulated Differential I/O Standards			300			300	_		300			300	ps
Receiver														
	SERDES factor J = 3 to 10 (11), (12), (13), (14), (15), (16)	150		1434	150	_	1434	150	_	1250	150	_	1050	Mbps
True Differential I/O Standards - f _{HSDRDPA} (data rate)	SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16)	150	_	1600	150	_	1600	150	_	1600	150	_	1250	Mbps
	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)		(7)	Mbps

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4)

Speed Grade	Min	Max	Unit
C4,I4	8	16	ps

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 40:

(1) The typical value equals the average of the minimum and maximum values.

(2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps.

Table 41 lists the DQS phase shift error for Stratix V devices.

Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices ⁽¹⁾

Number of DQS Delay Buffers	C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,14	Unit
1	28	28	30	32	ps
2	56	56	60	64	ps
3	84	84	90	96	ps
4	112	112	120	128	ps

Notes to Table 41:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a -2 speed grade is ± 78 ps or ± 39 ps.

Table 42 lists the memory output clock jitter specifications for Stratix V devices.

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1	^{),} (Part 1 of 2) ^{(2), (3)}
---	---

Clock	Parameter	Symbol	C1		C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,14		Unit
NELWURK		_	Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	$t_{JIT(per)}$	-50	50	-50	50	-55	55	-55	55	ps
Regional	Cycle-to-cycle period jitter	$t_{\text{JIT(cc)}}$	-100	100	-100	100	-110	110	-110	110	ps
	Duty cycle jitter	t _{JIT(duty)}	-50	50	-50	50	-82.5	82.5	-82.5	82.5	ps
	Clock period jitter	$t_{JIT(per)}$	-75	75	-75	75	-82.5	82.5	-82.5	82.5	ps
Global	Cycle-to-cycle period jitter	t _{JIT(cc)}	-150	150	-150	150	-165	165	-165	165	ps
	Duty cycle jitter	$t_{\text{JIT}(\text{duty})}$	-75	75	-75	75	-90	90	-90	90	ps

Duty Cycle Distortion (DCD) Specifications

Table 44 lists the worst-case DCD for Stratix V devices.

Table 44. Worst-Case DCD on Stratix V I/O Pins (1)

Symbol	C1 C2, C2L,		L, 12, 12L	12, 12L C3, 13, 13L, 13YY		C4,14		Unit	
-	Min	Max	Min	Max	Min	Max	Min	Max	
Output Duty Cycle	45	55	45	55	45	55	45	55	%

Note to Table 44:

(1) The DCD numbers do not cover the core clock network.

Configuration Specification

POR Delay Specification

Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration.

For more information about the POR delay, refer to the *Hot Socketing and Power-On Reset in Stratix V Devices* chapter.

Table 45 lists the fast and standard POR delay specification.

Table 45. Fast and Standard POR Delay Specification (1)

POR Delay	Minimum	Maximum		
Fast	4 ms	12 ms		
Standard	100 ms	300 ms		

Note to Table 45:

(1) You can select the POR delay based on the MSEL settings as described in the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

JTAG Configuration Specifications

Table 46 lists the JTAG timing parameters and values for Stratix V devices.

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period ⁽²⁾	30		ns
t _{JCP}	TCK clock period ⁽²⁾	167	—	ns
t _{JCH}	TCK clock high time ⁽²⁾	14	—	ns
t _{JCL}	TCK clock low time ⁽²⁾	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns

FPP Configuration Timing when DCLK-to-DATA [] = 1

Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1.

Notes to Figure 12:

- (1) Use this timing waveform when the DCLK-to-DATA [] ratio is 1.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nstatus low for the time of the POR delay.
- (4) After power-up, before and during configuration, CONF_DONE is low.
- (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (8) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT DONE goes low.

Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2)

Notes to Figure 13:

- (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay.
- (4) After power-up, before and during configuration, CONF_DONE is low.
- (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (6) "r" denotes the DCLK-to-DATA [] ratio. For the DCLK-to-DATA [] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55.
- (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge.
- (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA [] ratio is more than 1.

Table 51.	FPP Timing	Parameters f	or Stratix V	Devices When	the DCLK-te	o-DATA[] Ratio	is >1 (1)
			•••••••			• • • • • • • • • • • • • • • • • • •		

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2		μS
t _{STATUS}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μS
t _{CF2CK} (5)	nCONFIG high to first rising edge on DCLK	1,506		μS
t _{ST2CK} (5)	nSTATUS high to first rising edge of DCLK	2		μS
t _{DSU}	DATA [] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA [] hold time after rising edge on DCLK	N-1/f _{DCLK} (5)		S
t _{CH}	DCLK high time	$0.45\times 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45\times 1/f_{MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}		S
f	DCLK frequency (FPP ×8/×16)	—	125	MHz
IMAX	DCLK frequency (FPP ×32)	—	100	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	—	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽³⁾	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) ⁽⁴⁾	_	_

Notes to Table 51:

- (1) Use these timing parameters when you use the decompression and design security features.
- (2) You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.
- (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (5) N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Active Serial Configuration Timing

Table 52 lists the DCLK frequency specification in the AS configuration scheme.

Fable 52.	DCLK Frequency	Specification in th	e AS Configuration	Scheme ^{(1),}	(2)
-----------	----------------	---------------------	--------------------	------------------------	-----

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Notes to Table 52:

(1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

(2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Figure 14 shows the single-device configuration setup for an AS ×1 mode.

Notes to Figure 14:

- (1) If you are using AS $\times 4$ mode, this signal represents the AS_DATA[3..0] and EPCQ sends in 4-bits of data for each DCLK cycle.
- (2) The initialization clock can be from internal oscillator or CLKUSR pin.
- (3) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices.

Table JS. As fining falancees for as $\times 1$ and as $\times 4$ configurations in straits V devices $(2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	Table 53.	AS Timing	Parameters for AS	\times 1 and AS \times 4 Confi	gurations in Stratix V	/ Devices ^{(1),} (2)	(Part 1 of 2)
--	-----------	-----------	--------------------------	------------------------------------	------------------------	-------------------------------	---------------

Symbol	Parameter	Minimum	Maximum	Units
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output	—	2	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	_	ns
t _H	Data hold time after falling edge on DCLK	0	_	ns

Table 54 lists the PS configuration timing parameters for Stratix V devices.

Table 54. PS Timing Parameters for Stratix V Devices

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μS
t _{status}	nSTATUS low pulse width	268	1,506 ⁽¹⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μS
t _{CF2CK} (5)	nCONFIG high to first rising edge on DCLK	1,506	—	μS
t _{ST2CK} (5)	nSTATUS high to first rising edge of DCLK	2	—	μS
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA [] hold time after rising edge on DCLK	0	—	ns
t _{CH}	DCLK high time	$0.45\times 1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45\times 1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f _{MAX}	DCLK frequency	—	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽³⁾	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{cd2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) ⁽⁴⁾	_	_

Notes to Table 54:

(1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

(3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

(4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section.

(5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Initialization

Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency.

Table 55.	Initialization	Clock Source	Option	and the	Maximum	Frequency

Initialization Clock Source	Configuration Schemes	Maximum Frequency	Minimum Number of Clock Cycles ⁽¹⁾
Internal Oscillator	AS, PS, FPP	12.5 MHz	
CLKUSR	AS, PS, FPP ⁽²⁾	125 MHz	8576
DCLK	PS, FPP	125 MHz	

Notes to Table 55:

(1) The minimum number of clock cycles required for device initialization.

(2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box.

Table 60. Glossary (Part 2 of 4)

Letter	Subject	Definitions
G H I	JTAG Timing Specifications	High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS
K L M N O		
Ρ	PLL Specifications	Diagram of PLL Specifications (1)
Q	_	—
R	RL	Receiver differential input discrete resistor (external to the Stratix V device).

Document Revision History

Table 61 lists the revision history for this chapter.

 Table 61. Document Revision History (Part 1 of 3)

Date	Version	Changes
June 2018	3.9	 Added the "Stratix V Device Overshoot Duration" figure.
		Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.
		 Changed the minimum value for t_{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table.
		 Changed the condition for 100-Ω R_D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table.
April 2017	3.8	 Changed the minimum value for t_{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.
		 Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table.
June 2016	3.7	 Added the V_{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table
		 Added the I_{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table.
December 2015	3.6	Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.
December 2015	2015 3.5	 Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table.
		 Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table.
		• Changed the data rate specification for transceiver speed grade 3 in the following tables:
		 "Transceiver Specifications for Stratix V GX and GS Devices"
		 "Stratix V Standard PCS Approximate Maximum Date Rate"
		 "Stratix V 10G PCS Approximate Maximum Data Rate"
July 2015	3.4	 Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table.
		 Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table.
		 Changed the t_{c0} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table.
		 Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table.

 Table 61. Document Revision History (Part 3 of 3)

Date	Version	Changes
		■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60
May 2013	2.7	Added Table 24, Table 48
		 Updated Figure 9, Figure 10, Figure 11, Figure 12
February 2013	2.6	 Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46
		Updated "Maximum Allowed Overshoot and Undershoot Voltage"
		 Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35
		Added Table 33
		 Added "Fast Passive Parallel Configuration Timing"
		 Added "Active Serial Configuration Timing"
December 2012	2.5	 Added "Passive Serial Configuration Timing"
		 Added "Remote System Upgrades"
		 Added "User Watchdog Internal Circuitry Timing Specification"
		Added "Initialization"
		Added "Raw Binary File Size"
June 2012	2.4	 Added Figure 1, Figure 2, and Figure 3.
		 Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59.
		 Various edits throughout to fix bugs.
		Changed title of document to <i>Stratix V Device Datasheet</i> .
		 Removed document from the Stratix V handbook and made it a separate document.
February 2012	2.3	■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31.
December 2011	22	■ Added Table 2–31.
December 2011	2.2	■ Updated Table 2–28 and Table 2–34.
	0.4	 Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices.
November 2011	2.1	 Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25.
		 Various edits throughout to fix SPRs.
		■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24.
May 2011	2.0	 Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title.
		Chapter moved to Volume 1.
		 Minor text edits.
		■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23.
December 2010	1.1	 Converted chapter to the new template.
		 Minor text edits.
July 2010	1.0	Initial release.