E·XFL

Intel - 5SGXEA5N3F45I3LN Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	185000
Number of Logic Elements/Cells	490000
Total RAM Bits	46080000
Number of I/O	840
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1932-BBGA, FCBGA
Supplier Device Package	1932-FBGA, FC (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxea5n3f45i3ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 8 shows the transceiver power supply voltage requirements for various conditions.

 Table 8. Transceiver Power Supply Voltage Requirements

Conditions	Core Speed Grade	VCCR_GXB & VCCT_GXB ⁾	VCCA_GXE	3 VCCH_G	ХВ	Unit
If BOTH of the following conditions are true:		4.05				
Data rate > 10.3 Gbps.	All	1.05				
DFE is used.						
If ANY of the following conditions are trué ¹ :			3.0			
ATX PLL is used.						
Data rate > 6.5Gbps.	All	1.0				
DFE (data rat e 10.3 Gbps), AEQ, or EyeQ feature is used.				1.5	V	
If ALL of the following conditions are true:	C1, C2, I2, and I3YY	0.90	2.5			
ATX PLL is not used.						
Data rated6.5Gbps.	C2L, C3, C4, I2L, I3, I3L, and	I4 0.85	2.5			
DFE, AEQ, and EyeQ a not used.	are					

Notes toTable 8

(1) Choose this power supply voltagequirement option if you plan to upgrade ydeusign later with anyf the listed conditions.

(2) If the VCCR_GXB and VCCT_GXB supplicest avel.0 V or 1.05 V, they cannot shared with the VCCrec supply. If the VCC_GXB and VCCT_GXB are set to either 0.90 V or 0.816e. y/can be shared with VCC core supply.

DC Characteristics

This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications.

Supply Current

Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

f For more information about power estimation tools, refer to the PowerPlay Early Power Estimator User Guideand the PowerPlay Power Analysischapter in the Quartus II Handbook

I/O Pin Leakage Current

Table 9 lists the Stratix V I/O pin le akage current specifications.

Symbol	Description	Conditions	Min	Тур	Мах	: Ui	nit
I _I	Input pin	$V = 0 V$ to V_{CIOMAX}	-30	_	30	μA	
I _{OZ}	Tri-stated I/O pin	∂∕= 0 V to Vciomax	-30	_	30	μA	

Table 9. I/O Pin Leakage Current for Stratix V Devides

Note toTable 9

(1) If $V_O = V_{CCIO}$ to $V_{CCIOMax}$ 100 μ A of leakage current per I/O is expected.

Bus Hold Specifications

Table 10 lists the Stratix V device family bus hold specifications.

Table 10. Bus Hold Parameters for Stratix V Devices

							Vo	CIO					
Parameter	Symbo	I Conditions	s 1.2	2 V	1.	5 V	1	.8 V	2	.5 V	3	.0 V	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	c Min	Ma	x
Low sustaining current	I _{SUSL}	V _{IN} > V _L (maximum)	22.5	_	25.0		30.0		50.0	_	70.0		μA
High sustaining current	I _{SUSH}	V _{IN} < V _H (minimum)	-22.5	_	-25.0	_	-30.0) —	-50.	0 —	-70	0 —	- μΑ
Low overdrive current	I _{ODL}	0V < V _N < V _{CCIO}		120		160		200		300	_	500	μA
High overdrive current	I _{ODH}	0V < V _N < V _{CCIO}		-120	_	-160		-200		-300) —	-50	0 μΑ
Bus-hold trip point	V _{TRIP}		0.45	0.95	0.50	1.00	0.68	3 1.0	7 0.7	0 1.	70 0.8	30 2	.00 \

On-Chip Termination (OCT) Specifications

If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block. Table 11 lists the Stratix V OCT termination calibration accuracy specifications.

Table 11. OCT Calibration Accuracy Specifications for Stratix V Device(Part 1 of 2)

				Calibratio	n Accuracy		
Symbol	Description	Conditions	C1	C2,I2	C3,I3, I3YY	C4,I4	Unit
25-: R _S	Internal series termination with calibration (25:- setting)	ⁿ V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%

Internal Weak Pull-Up Resistor

Table 16 lists the weak pull-up resistor values for Stratix V devices.

Symbol	Description	V_{CCIO} Conditions $(V)^{(3)}$	Value ⁽⁴⁾	Unit
		3.0 ±5%	25	k
		2.5 ±5%	25	k
	Value of the I/O pin pull-up resistor before	e 1.8 ±5%	25	k
R _{PU}	and during configuration, as well as user mode if you enable the programmable	1.5 ±5%	25	k
	pull-up resistor option.	1.35 ±5%	25	k
		1.25 ±5%	25	k
		1.2 ±5%	25	k

Table 16. Internal Weak Pull-Up Resistor for Stratix V Devides	Table 16	Internal Weak Pull-	Up Resistor for Stratix	V Devides
--	----------	---------------------	-------------------------	-----------

Notes toTable 16

(1) All I/O pins have an count to enable the weak pull-toesistor except the configuration, test, and JTAG pins.

(2) The internal/weak pull-down feature is **pra**tvailable for the JTATCK pin. The typical valuer this internal weak pull-down resistor is approximately 25 k

(3) The pin pull-up resistance vestumay be lower if an extersalurce drives the pin higher that the

(4) These specifications are divide with a $\pm 10\%$ tolerance cover charges over PVT.

I/O Standard Specifications

Table 17through Table 22list the input voltage (V $_{IH}$ and V $_{IL}$), output voltage (V $_{OH}$ and V $_{OL}$), and current drive characteristics (I $_{OH}$ and I $_{OL}$) for various I/O standards supported by Stratix V devices. These tablesalso show the Stratix V device family I/O standard specifications. The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL}, respectively.

For an explanation of the terms used in Table 17through Table 22, refer to "Glossary" on page 65 For tolerance calculations across all SSTL and HSTL I/O standards, refer to Altera knowledge base solution rd07262012_486

I/O		V _{ccid} (V)		Y _L	(V)	Чн	(V)	V _{6L} (V)	V _{6н} (V)	I _{OL}	I _{OH}
Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	(mA)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4		2 -2
LVCMOS	2.85	3	3.15	-0.3	3 0.8	1.7	' 3.6	6 0.2	2 _{CCI})/- 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2		-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.25 * V _{CCIO}	0.75 * V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.25 * V _{CCIO}	0.75 * V _{CCIO}	2	-2

Table 17. Single-Ended I/O Standards for Stratix V Devices

	V _{IL(D}	c(V)	Viur	oc(V)	V _{L(AC)} (V)	V _{H(AC} (V)	V6∟(V)	V6н(V)		
I/O Standard	▼IL(D	C) • 7	۹H(L)C), • /	4L(AC)(• 7	NH(AC) V	UL(V)	VH(V)	l _{ol} (mA)	(I _{oh}
	Min	Max	Min	Max	Max	Min	Max	Min	01	(mA)
HSTL-18 Class I	_	V _{REF} 0.1	V _{REF} + 0.1	_	V _{REF} 0.2	K _{EF} + 0.2	0.4	V _{CCIO} - 0.4	8	-8
HSTL-18 Class II	_	V _{REF} 0.1	V _{REF} + 0.1	_	V _{REF} 0.2	K _{EF} + 0.2	0.4	V _{CCIO} - 0.4	16	-16
HSTL-15 Class I		V _{REF} 0.1	V _{REF} + 0.1	_	V _{REF} 0.2	K _{EF} + 0.2	0.4	V _{CCIO} - 0.4	8	-8
HSTL-15 Class II		V _{REF} 0.1	V _{REF} + 0.1	_	V _{REF} 0.2	K _{EF} + 0.2	0.4	V _{CCIO} - 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF}	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF}	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCIO}	16	-16
HSUL-12		V _{REF} 0.13	V _{REF} + 0.13		V _{REF} 0.22	V _{REF} + 0.22	0.1* V _{CCIO}	0.9* V _{CCIO}		_

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 2 of 2)

Table 20. Differential SSTL I/O Standards for Stratix V Devices

I/O Standard		V _{ccid} (V)		KWIN	_{NG(D} ₫)V)		V _{k(AC)} (V)		Kwing	_{6(A} ())
1/O Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCI} 62- 0.2	—	V _{CCI} 62 + 0.2	0.62	V _{CCIO} + 0.6
SSTL-18 Class I, II	³ 1.71	1.8	1.89	0.25	V _{CCIØ} + 0.6	V _{CCIØ} 2- 0.175	_	V _{CCIØ} 2 + 0.175	0.5	V _{CCIO} + 0.6
SSTL-15 Class I, II	³ 1.425	1.5	1.575	0.2	(1)	V _{CCIØ} 2- 0.15	_	V _{CCIØ} 2 + 0.15	0.35	—
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(1)	V _{CCIØ} 2- 0.15	V _{CCI0} 2	V _{CCIØ} 2 + 0.15	2(V _{IH(AC)} - V _{RE})	2(V _{IL(AC)} - V _{RE})
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(1)	V _{CCIØ} 2- 0.15	V _{CCI0} 2	V _{CCIØ} 2 + 0.15	2(V _{IH(AC)} - V _{RE})	
SSTL-12 Class I, II	1.14	1.2	1.26	0.18		V _{REF} –0.15	V _{CCI0} 2	V _{REF} + 0.15	-0.30	0.30

Note toTable 20

The maximum value for
 ^V_{WING(DC} is not defined. However, each singheled signal needs the within the respecte single-ended limits (V_{IH(DC}) and V_{L(DC}).

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 1 of 2

I/O	,	V _{ccid} (V))	VGIF(_{(DC} (V)		V _{x(AC} (V))		VCM(DC(V	/)	VGIF((V)
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	o Ma	x M	in Ma
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78	_	1.12	0.78	3 —	1.12	20.	4 –
HSTL-15 Class I, II	1.425	1.5	1.575	0.2		0.68	_	0.9	0.68	3 —	0.9	0.	4 –

Table 23	Transceiver S	necifications for	Stratix V	GX and GS	Devic∉Bart 2 of 7)
		pecinications for			

Symbol/	Conditions	Tra	nsceive Grade	er Speed e 1	Transceiver Speed Grade 2			Trar	nsceive Grad	er Speed e 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Mir	n Ty	p Max	
Spread-spectrum downspread	PCle	_	0 to 0.5	_	_	0 to 0.5	—	_	0 to 0.5	_	%
On-chip termination resistors ⁽²¹⁾	_	_	100			100	_	_	100	_	:
Absolute ₩ _{AX} ⁽⁵⁾	Dedicated reference clock pin	_		1.6	_	_	1.6	_	_	1.6	V
	RX reference clock pin		_	1.2		—	1.2	_	_	1.2	
Absolute Min	—	-0.4	—	—	-0.4	—	_	-0.4		—	V
Peak-to-peak differential input voltage	_	200		1600	200		1600	200)	1600	mV
V _{ICM} (AC coupled) ³⁾	Dedicated reference clock pin	ference 1050/1000/900/850 ²⁾ ock pin		1050/	1000/9	900/85Ø ²⁾	1050/	1000/§	900/85Ø ²⁾	mV	
	RX reference clock pin	1.0/0.9/0.85 ⁴⁾			1.0/0.9/0.85 ⁴⁾			1.0/0.9/0.854)			V
V _{ICM} (DC coupled	HCSL I/O standard for PCIe reference clock	250	_	550	250		550	250		550	mV
	100 Hz		_	-70			-70	_	_	-70	dBc/H
Transmitter	1 kHz	_	_	-90	_	—	-90	_	_	-90	dBc/H
REFCLK Phase Noise	10 kHz	_	—	-100		—	-100			-100	dBc/⊦
(622 MHz) ²⁰⁾	100 kHz	—		-110		—	-110			-110	dBc/F
	≥1 MHz	—		-120		_	-120			-120	dBc/⊦
Transmitter REFCLK Phase Jitter (100 MHz) ¹⁷⁾	10 kHz to 1.5 MHz (PCle)			3		—	3			3	ps (rms)
R _{REF} ⁽¹⁹⁾	_	_	1800 ±1%			1800 ±1%	_	_	180 0 ±1%	_	:
Transceiver Clock	ks										
fixedclk clock frequency	PCIe Receiver Detect		100 or 125	_		100 or 125	_	_	100 or 125	_	MHz

Table 26 shows the approximate maximum data rate using the 10G PCS.

Table 26	Strativ V/ 100	C BCS Approvimate	Maximum Data (Pata
Table 26.	Stratix V TU	5 PUS Approximate	e Maximum Data Rate

$M_{\rm ender}$ (2)	Transceiver	PMA Width	64	40	40	40	32	32		
Mode ⁽²⁾	Speed Grade	PCS Width	64	66/67	50	40	64/66/6	7 32		
	1	C1, C2, C2L, I2, I2 core speed grade		14.1	10.69	14.1	13.6	13.6		
	2	C1, C2, C2L, I2, I2 core speed grade	125	12.5	10.69	12.5	12.5	12.5		
	2	C3, I3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88		
FIFO or Register										
3	C3, I3, I3L core speed grade	8.5 Gbps								
	5	C4, I4 core speed grade	, ,							
		I3YY core speed grade	10 3125 Gbps							

Notes toTable 26

(1) The maximum data rate is in Gbps.

(2) The Phase Compensation FIFO can be counting uf IFO mode or register mode. In Fith FO mode, the ptoins are not fixed number of the latency can vary. In the register mode through the latency.

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2⁽) 5)

Symbol/	Conditions		Transceive peed Grad			Fransceive peed Grac		Unit
Description		Min	Тур	Max	Min	Тур	Max	
	100 Hz	_	_	-70			-70	
Transmitter REFCLK	1 kHz	_	_	-90	_		-90	
Phase Noise (622	10 kHz	_		-100		_	-100	dBc/Hz
MHz) ⁽¹⁸⁾	100 kHz	_	_	-110	_		-110	
	≥1 MHz	_		-120	_		-120	
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁵⁾	10 kHz to 1.5 MHz (PCle)	_	_	3		_	3	ps (rms)
RRE ^{#17)}	_		1800 ± 1%			1800 ± 1%	_	:
Transceiver Clocks								
fixedclk clock frequency	PCIe Receiver Detect		100 or 125		_	100 or 125		MHz
Reconfiguration clock (mgmt_clk_clk) frequency	_	100	_	125	100		125	MHz
Receiver								
Supported I/O Standards	_		1.4-V PCM	L, 1.5-V PC	CML, 2.5-V	PCML, L	VPECL, ar	nd LVDS
Data rate (Standard PC\$) ¹⁾	GX channels	600	—	8500	600	_	8500) Mbps
Data rate (10G PCS ^{p1)}	GX channels	600	_	12,500	600		12,50	00 Mbps
Data rate	GT channels	19,60	0 —	28,0	50 19,6	- 00	- 25,	780 Mbp
Absolute M_{AX} for a receiver pin ⁽³⁾	GT channels	_	_	1.2	_		1.2	V
Absolute M _{IN} for a receiver pin	GT channels	-0.4			-0.4	_	_	V
Maximum peak-to-pea	kGT channels		_	1.6	_	_	1.6	V
differential input voltage \6 (diff p-p) before device configuration ²⁰⁾	GX channels				(8)			
	GT channels							
Maximum peak-to-pea differential input voltage 1/6 (diff p-p) after device configuration ⁽¹⁶⁾ , ⁽²⁰⁾	k _{V_{CCR_GT}₽ 1.05 V (V_{ICM}= 0.65 V)}	—	—	2.2	—	—	2.2	V
	GX channels				(8)			
Minimum differential	GT channels	200	—	—	200	_		mV
eye opening at receive serial input pins ⁽⁴⁾ , ⁽²⁰⁾	GX channels				(8)			

Table 28. Transceiver Symbol/	Conditions		Transceive	r	 	Fransceive beed Grad		Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Offic
Differential on-chip termination resistor ^{द्र)}	GT channels	-	100	—		100	_	:
	85-: setting	_	85±30%	—	_	85 ±30%	_	:
Differential on-chip termination resistors	100-: setting	_	100 ±30%	—	_	100 ±30%	_	:
for GX channels ⁹⁾	120-: setting	_	120 ±30%	—	_	120 ±30%	_	:
	150-: setting	_	150 ±30%	_	_	150 ±30%	_	:
V _{ICM} (AC coupled)	GT channe	ls —	650	_		650) —	m۷
	VCCR_GXB 0.85 V or 0.9 V	=	600	_	_	600	_	mV
VICM (AC and DC coupled) for GX Channels	VCCR_GXB 1.0 V full bandwidth	=	700	_	_	700	_	mV
	VCCR_GXB 1.0 V half bandwidth	=	750	_		750	_	mV
t _{LTR} ⁽⁹⁾	—	_	—	10		—	10	μs
t _{LTD} ⁽¹⁰⁾	_	4	—	—	4	—	—	μs
(11) t _{LTD_manual}	—	4	_	_	4	—	_	μs
(12) t _{LTR_LTD_manual}		15	_		15	_		μs
Run Length	GT channels	. –	_	72	—	—	72	CID
Run Lengin	GX channels				(8)			
CDR PPM	GT channels		_	1000	_		1000	± PPN
CORTIN	GX channels				(8)			
Programmable	GT channels		_	14	_		14	dB
equalization (AC Gain ⁽⁵⁾	GX channels				(8)			
Programmable	GT channels	. —	—	7.5	—	_	7.5	dB
DC gain ⁶⁾	GX channels				(8)			
Differential on-chip termination resistor ^{द्र)}	GT channels	-	100	—		100	—	:
Transmitter			. .			L. L	•	
Supported I/O Standards	_			1.4-V	and 1.5-V	PCML		
Data rate (Standard PCS)	GX channels	600	_	8500	600	_	8500	Mbp
Data rate (10G PCS)	GX channels	600		12,500	600		12,500) Mbp

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3^(b)f 5)

Figure 6 shows the Stratix V DC gain curves for GT channels.

Figure 6. DC Gain Curves for GT Channels

Transceiver Characterization

This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols:

Interlaken 40G (XLAUI)/100G (CAUI) 10GBase-KR QSGMII XAUI SFI Gigabit Ethernet (Gbe / GIGE) SPAUI Serial Rapid IO (SRIO) CPRI OBSAI Hyper Transport (HT) SATA SAS

June 2018 Altera Corporation

PLL Specifications

Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85°C) and the industrial junction temperature range (-40° to 100° C).

Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (C1, C2, C2L, I2, and I2L sp grades)	beed 5	_	800 ⁽¹⁾	MHz
f _{IN}	Input clock frequency (C3, I3, I3L, and I3YY speed grades)	d 5	—	800 ⁽¹⁾	MHz
	Input clock frequency (C4, I4 speed grades)	Ę	i –	⁽¹ 650	MHz
f _{INPFD}	Input frequency to the PFD	5		325	MHz
f _{FINPFD}	Fractional Input clock frequency to the PFD		0 –	- 160	MH
	PLL VCO operating range (C1, C2, C2L, I2, I2L sp grades)	beed 600	—	1600	MHz
f _{VCO} ⁽⁹⁾	PLL VCO operating range (C3, I3, I3L, I3YY spee grades)	d 600		1600	MHz
	PLL VCO operating range (C4, I4 speed grades)	(600	— 130	о м
t _{EINDUTY}	Input clock or external feedback clock input duty c	ycle 4	40 -	- 60	%
	Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades)		_	717 ⁽²⁾	MHz
f _{OUT}	Output frequency for an internal global or regional clock (C3, I3, I3L speed grades)	_	—	650 ⁽²⁾	MHz
	Output frequency for an internal global or regional clock (C4, I4 speed grades)		_	580 ⁽²⁾	MHz
	Output frequency for an external clock output (C1 C2L, I2, I2L speed grades)	, C2 <u>,</u>	_	800(2)	MHz
f _{OUT_EXT}	Output frequency for an external clock output (C3 I3L speed grades)	, I3, <u> </u>	—	667 ⁽²⁾	MHz
	Output frequency for an external clock output (C4 speed grades)	_	—	553 ⁽²⁾	MHz
t _{outduty}	Duty cycle for a dedicated external clock output (v set to50%)	vhen ₄₅	50	55	%
t _{FCOMP}	External feedback clock compensation time	-		- 10	ns
f _{DYCONFIGCLK}	Dynamic Configuration Clock usednfgmt_clk and scanclk	_	—	100	MHz
t _{LOCK}	Time required to lock from the end-of-device configuration or deassertionaveset	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchove reconfiguring any non-post-scale counters/delays)		_	1	ms
	PLL closed-loop low bandwidth	—	0.3	_	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	—	1.5	_	MHz
	PLL closed-loop high bandwidth	-	4	_	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	±50	ps
t _{ARESET}	Minimum pulse width on thateset signal	10	_	_	ns

Table 31. PLL Specifications for Stratix V Devices (Part 3 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
f _{RES}	Resolution of VCO frequenc _{Mr} (# _D = 100 MHz)	390625	5.96	0.023	Hz

Notes toTable 31

(1) This specification is limited in the actual II software by the I/Oaximum frequency. The maximul/O frequency is difference in the actual of the standard.

(2) This specification is limited the lower of the two: $I/Q_{A}f_{X}$ or f_{OUT} of the PLL.

- (3) A high input jitter directly affectset FLL output jitter. To have low PLL output k jitter, you must provide a clearackal source < 120 ps.
- (4) f_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter withprobability level of 1¹/₂ (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PL when an input jitter of 30s is applied. The external memory interface clock output jitterifications use a different measurement nhed and are available Tiable 44 on page 52
- (6) The cascaded PLL specification is applicable with the llowing condition: a. Upstream PLL: 0.59Mht Upstream PLL BW < 1 MHz</p>
 - b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are supported in external feedback mode.
- (8) The external memory interface clodpolujitter specifications use a differenteasurement method, ich is available in able 42 on page 50
- (9) The VCO frequency reported by the Quartus II software PinLtibusage Summary section of the pilation report takes into consideration the VCO post-scale counter K value. Therefore counter K has a value of 2 fitted uncy reported can be lower than the takes into consideration.
- (10) This specification only covers fractional PLL for low bandwidth_C to the fractional value range 0.05 0.95 must be00 MHz, while to for fractional value range 0.20 0.80 must be00 MHz.
- (11) This specification only coveremetrional PLL for low bandwidth. Theofor fractional value range 0.05-0.95 must the00 MHz.
- (12) This specification only coveremetrional PLL for low bandwidth. Theofor fractional value range 0.20-0.80 must ble200 MHz.

DSP Block Specifications

Table 32 lists the Stratix V DSP block performance specifications.

			P	eforman	ce			
Mode	C1	C2, C2l	- 12, 121	. C3	13, 13L, 13YY	C4	14	Unit
		Modes	using one	DSP				
Three 9 x 9	600	600	600	480	480	420	420	MHz
One 18 x 18	600	600	600	480	480	420	400	MHz
Two partial 18 x 18 (or 16 x 16)	600	600	600	480	480	420	400	MHz
One 27 x 27	500	500	500	400	400	350	350	MHz
One 36 x 18	500	500	500	400	400	350	350	MHz
One sum of two 18 x 18(One sum 2 16 x 16)	9f00	500	500	400	400	350	350	MHz
One sum of square	500	500	500	400	400	350	350	MHz
One 18 x 18 plus 36 (a x b) + c	500	500	500	400	400	35) 350	MHz
		Modes ι	using two	DSPs			·	
Three 18 x 18	500	500	500	400	400	350	350	MHz
One sum of four 18 x 18	475	475	475	380	380	300	300	MHz
One sum of two 27 x 27	465	465	450	380	380	300	290	MHz
One sum of two 36 x 18	475	475	475	380	380	300	300	MHz
One complex 18 x 18	500	500	500	400	400	350	350	MHz
One 36 x 36	475	475	475	380	380	300	300	MHz

Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 1 of 2)
--

		Peformance							
Mode	C1	C2, C2I	. 12, 121	. C3	13, 13L, 13YY	C4	14	Unit	
Modes using Three DSPs									
One complex 18 x 25	425	425	415	340	340	275	265	MHz	
Modes using Four DSPs									
One complex 27 x 27	465	465	465	380	380	300	290	MHz	

Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 2 of 2)

Memory Block Specifications

Table 33 lists the Stratix V memory block specifications.

Table 33.	Memory Block Performance Specifications for Stratix V Devides (Part 1 of 2)

		Resources Used		Performance								
Memory	Mode	ALUTs	Memor	y C1	C2, C2L	C3	C4	12, 12L	13, . 13L, 13YY	14	Unit	
	Single port, all supported widths	0	1	450	450	400	315	450	400	315	5 M	Hz
MLAB	Simple dual-port, x32/x64 depth	0	1	450	450	400	315	450	400	315	5 M	Hz
WILAD	Simple dual-port, x16 depth ⁽³⁾	0	1	675	675	533	400	675	533	400) М	Hz
	ROM, all supported widths	0	1	600	600	500	450	600	500	450) М	Hz

Cumbal	Conditions		C1		C2,	C2, C2L, I2, I2L C3, I3, I3L, I3YY				Υ	C4,I4		Unit	
Symbol	Conditions	Min	Тур	Max	Min	Тур	o Max	k Mi	n Ty	rp Ma	x N	lin T	ур М	ax
	SERDES factor = 3 to 10	J ₍₆₎	_	(8)	(6)	_	(8)	(6)		(8)	(6)		(8)	Mbps
f _{HSDR} (data rate)	SERDES factor (= 2, uses DDR Registers	J (6)	_	(7)	(6)		(7)	(6)		(7)	(6)		(7)	Mbps
	SERDES factor = 1, uses SDR Register	J (6)	—	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
DPA Mode														
DPA run length	_		_	1000 0		_	1000 0	_		1000 0	_		1000 0	UI
Soft CDR mo	Soft CDR mode													
Soft-CDR PPM tolerance	_	_		300		_	300		_	300			300	± PPM
Non DPA Mo	Non DPA Mode													
Sampling Window	_			300	—		300		_	300			300	ps

Table 36. High-Speed I/O Specifications for Stratix V Devides (Part 4 of 4)

Notes toTable 36

(1) When J = 3 to 10, use the serializer/deserializer (SERDES) block.

(2) When J = 1 or 2, bypass the SERDES block.

(3) This only applies **10**PA and soft-CDR modes.

(4) Clock Boost Factor (W) is the ratio betwiberinput data rate to the input clock rate.

(5) This is achieved by using the DSclock network.

(6) The minimum specification depends on the clock source (finple, the PLL and ck pin) and the clock routing resource (figl, regional, or local) that you use. The I/O differential buffering register do not have a minimum toggle rate.

(7) The maximum ideal frequency is SERDES factor (J) x the PLL maximum of utput ency (fOUT) proved you can close the sdgn timing and the signal integritismulation is clean.

(8) You can estimate the achievable maximutarrate for non-DPA mode by performing timing closure analysis. You must determine skew margin, transmitter delanargin, and receiver sampling argin to determine the aximum data rate supported.

(9) If the receiver with DPA enabled and transmittersarg shared PLLs, the minimulata rate is 150 Mbps.

(10) You must calculate the leftotioning margin in the receiver by performing timing closure anyatis. You must consident board skew margin, transmitter channel-to-chanskew, and receiver sampling matginatermine leftoer timing margin.

(11) The f_{MAX} specification is based of the fast clock used for **ser** data. The interfac g_{MAX} is also dependent on the rallel clock domain which is design-dependent a **ne** quires timing analysis.

(12) Stratix V RX LVDS will needed D For Stratix V TX LVDS, the received component must have DPA.

(13) Stratix V LVDS serialization and de-scartadin factor needs to be x4 and above.

(14) Requires package skew comstation with PCB trace length.

(15) Do not mix single-ended 160 ffer within LVDS I/O bank.

(16) Chip-to-chip communication prwith a maximum load of 5 pF.

(17) When using True LVDS RX chanfinetemulated LVDS TX channel, onfigite ation factors 1 and 2 are supported.

Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled.

Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled

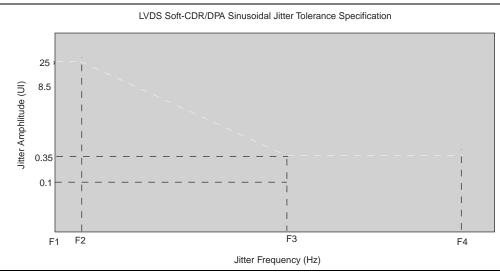
rx_reset		
rx_dpa_locked		
-		

Table 37 lists the DPA lock time specifications for Stratix V devices.

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁴⁾	Maximum
SPI-4	0000000000111111111	1 2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
	01010101	8	32	640 data transitions

Notes toTable 37

(1) The DPA lock time is for one channel.


(2) One data transition is defined as a 0-to-1 or 1-to-0 transition.

(3) The DPA lock time stated in this tapleties to both commendiand industrial grade.

(4) This is the number of repetitisofor the stated training patternachieve the 25 that transitions.

Figure 8 shows the LVDS soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate t 1.25 Gbps.Table 38lists the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate t 1.25 Gbps.

Duty Cycle Distortin (DCD) Specifications

Table 44 lists the worst-case DCD for Stratix V devices.

Table 44. Worst-Case DCD on Stratix V I/O Pins

Symbol	C	:1	C2, C	2L, I2, I2L		3, I3L, SYY	C	4,14	Unit
	Min	Max	Min	Max	Min	Max	Min	Мах	
Output Duty Cycle	45	55	45	55	4	5 55	5 4	5 5	5 %

Note toTable 44

(1) The DCD numbers do not veo the core clock network.

Configuration Specification

POR Delay Specification

Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUSis released high and your device is ready to begin configuration.

f For more information about the POR delay, refer to the Hot Socketing and Power-On Reset in Stratix V Deviceshapter.

Table 45 lists the fast and standard POR delay specification.

Table 45. Fast and Standard POR Delay Specification

POR Delay	Minimum	Maximum	
Fast	4 ms	12 ms	
Standard	100 ms	300 ms	

Note toTable 45

 You can select the POR delay based dh/3Elesettings as described in th/4EEL Pin Settings section of the "Configuration, Design Security, and RtenSaystem Upgrades in Stratix V Deviceabiter."

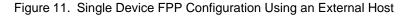
JTAG Configuration Specifications

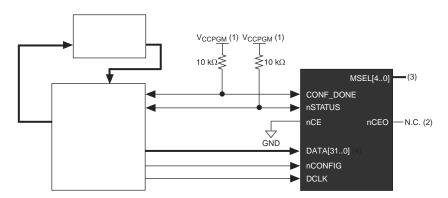
Table 46 lists the JTAG timing parameters and values for Stratix V devices.

Table 46. JTAG	Timing Parameters	and Values for	Stratix V Devices

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock peride	30	_	ns
t _{JCP}	TCK clock peride	167	—	ns
t _{JCH}	TCK clock high time	14	—	ns
t _{JCL}	TCK clock low time	14	—	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	—	ns

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio		
	Disabled	Disabled	1		
FPP x32	Disabled	Enabled	4		
FFF X32	Enabled	Disabled	8		
	Enabled	Enabled	8		


Table 49. DCLK-to-DATA[] Ratio (Part 2 of 2)


Note toTable 49

(1) Depending on the CLK to-DATA[] ratio, the host must sende LK frequency that is r times the data rate in bytes per second (Bps), or words per second (Bps), for example, in FPP ×16 wherDt Dt K-to-DATA[] ratio is 2, the DCLK frequency must be 2 times the data in Wps. Stratix V devices the additionablock cycles to decrypt and decompress the configuration data.

1 If the DCLKto-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK(DCLKto-DATA[] ratio – 1) clock cycles after the last data is latched into the Stratix V device.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.

Notes toFigure 11

- (1) Connect the resistor to a supplight provides an acceptable insignal for the Stratix V device_CV_{GM}must be high enough to meet the_IAspecification of the I/O on tdevice and the external hosteAd recommends powering up all configuration sytem I/Os with V_{CPGM}
- (2) You can leave the EOpin unconnected or use as a user I/O pin when it edonot feed another device E pin.
- (3) The MSELpin settings vary for different datated th, configuration voltage stated, and POR delay. To con Matel, refer to the MSEL Pin Settings section of the "Configurationg Descicurity, and Remote System Upgrades in Stratix V Devices chapter.
- (4) If you use FPP x8, uBATA[7..0] . If you use FPP x16, uBATA[15..0] .

FPP Configuration Timing when DCLK-to-DATA [] = 1

Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLKto-DATA[] ratio is 1.

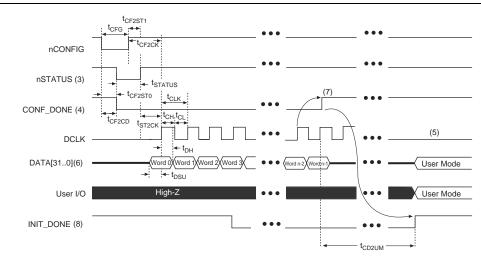


Figure 12. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1

Notes toFigure 12

- (1) Use this timing waveform when DCLK-to-DATA[] ratio is 1.
- (2) The beginning of this aveform shows the device user mode. In user mode CONFIG nSTATUS and CONF_DONE re at logic-high levels. When nCONFIG is pulled low, a recodiguration cycle begins.
- (3) After power-up, the Satix V device holdsSTATUSIow for the time of the POR delay.
- (4) After power-up, before and during configuration NF_DONEs low.
- (5) Do not leav BCLK floating after configuratio DCLK is ignored after configuration is complete an toggle high or low if required.
- (6) For FPP x16, uStATA[15..0] . For FPP x8, uStATA[7..0] . DATA[31..0] are available as a user I/O pin advertiguration. The state of this pin depends on the dual-purpose pin settings.
- (7) To ensure a successful configinment send the entire configuration data to the Stratix V device neceives all the configuration data successfully CONE configuration begin initialization and enter user mode.
- (8) After the optiobit to enable theNIT_DONE pin is configure into the device, the UT_DONE goes low.