E·XFL

Intel - 5SGXEA7K3F40C2LN Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	234720
Number of Logic Elements/Cells	622000
Total RAM Bits	51200000
Number of I/O	696
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxea7k3f40c2ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			Calibration Accuracy						
Symbol	Description	Conditions	C1	C2,I2	C3,I3, I3YY	C4,14	Unit		
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%		
34- Ω and 40- Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	±15	±15	%		
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	V _{CCI0} = 1.2 V	±15	±15	±15	±15	%		
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCI0} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%		
20-Ω, 30-Ω, 40-Ω,60-Ω, and 120-Ω R _T	Internal parallel termination with calibration ($20 - \Omega$, $30 - \Omega$, $40 - \Omega$, $60 - \Omega$, and $120 - \Omega$ setting)	V _{CCI0} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%		
60- Ω and 120- Ω R _T	Internal parallel termination with calibration (60-Ω and 120-Ω setting)	V _{CCI0} = 1.2	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%		
$25-\Omega \\ R_{S_left_shift}$	Internal left shift series termination with calibration ($25-\Omega$ R _{S_left_shift} setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%		

Table II. OUI Valiblation Accuracy specifications for Stratix V Devices' / (Latt 2 OF	Table 11.	OCT Calibration A	ccuracy Specificati	ons for Stratix V D	Devices ⁽¹⁾ (Part 2 of
---	-----------	--------------------------	---------------------	---------------------	--------------------------	-----------

Note to Table 11:

(1) OCT calibration accuracy is valid at the time of calibration only.

Table 12 lists the Stratix V OCT without calibration resistance to PVT changes.

Table 12.	OCT Without Calibration	Resistance 1	Tolerance	Specifications	for Stratix	V Devices	(Part 1	of 2)
-----------	-------------------------	---------------------	------------------	-----------------------	-------------	-----------	---------	-------

			Resistance Tolerance					
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit	
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25-Ω setting)	$V_{CCIO} = 3.0$ and 2.5 V	±30	±30	±40	±40	%	
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.8 and 1.5 V	±30	±30	±40	±40	%	
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%	

Internal Weak Pull-Up Resistor

Table 16 lists the weak pull-up resistor values for Stratix V devices.

Symbol	Description	V _{CCIO} Conditions (V) ⁽³⁾	Value ⁽⁴⁾	Unit
		3.0 ±5%	25	kΩ
		2.5 ±5%	kΩ	
	Value of the I/O pin pull-up resistor before	1.8 ±5%	25	kΩ
R _{PU}	and during configuration, as well as user mode if you enable the programmable	1.5 ±5%	25	kΩ
	pull-up resistor option.	1.35 ±5%	25	kΩ
		1.25 ±5%	25	kΩ
		1.2 ±5%	25	kΩ

Table 16. Internal Weak Pull-Up Resistor for Stratix V Devices (1), (2)

Notes to Table 16:

(1) All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins.

(2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .

- (3) The pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.
- (4) These specifications are valid with a $\pm 10\%$ tolerance to cover changes over PVT.

I/O Standard Specifications

Table 17 through Table 22 list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Stratix V devices. These tables also show the Stratix V device family I/O standard specifications. The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL}, respectively.

For an explanation of the terms used in Table 17 through Table 22, refer to "Glossary" on page 65. For tolerance calculations across all SSTL and HSTL I/O standards, refer to Altera knowledge base solution rd07262012_486.

I/O	V _{CCIO} (V)			V _{IL} (V)		V _{IH} (V)		V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{oh}
Standard	Min	Тур	Max Min Max Min Max Max		Max	Min	(mA)	(mA)			
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	$V_{CCIO} - 0.2$	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCI0} + 0.3	0.45	V _{CCI0} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 * V _{CCI0}	0.65 * V _{CCI0}	V _{CCI0} + 0.3	0.25 * V _{CCIO}	0.75 * V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 * V _{CCI0}	0.65 * V _{CCI0}	V _{CCI0} + 0.3	0.25 * V _{CCIO}	0.75 * V _{CCIO}	2	-2

Table 17. Single-Ended I/O Standards for Stratix V Devices

1/0 Standard		V _{ccio} (V)			V _{REF} (V)		V _{TT} (V)			
i/O Stanuaru	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-15 Class I, II	1.425	1.5	1.575	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCI0}	0.5 * VCCIO	0.51 * V _{CCIO}	
SSTL-135 Class I, II	1.283	1.35	1.418	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	
SSTL-125 Class I, II	1.19	1.25	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}	
SSTL-12 Class I, II	1.14	1.20	1.26	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	0.49 * V _{CCIO}	0.5 * VCCIO	0.51 * V _{CCIO}	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCI0} /2	_	
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCI0} /2	_	
HSTL-12 Class I, II	1.14	1.2	1.26	0.47 * V _{CCIO}	0.5 * V _{CCIO}	0.53 * V _{CCIO}	_	V _{CCI0} /2	_	
HSUL-12	1.14	1.2	1.3	0.49 * V _{CCIO}	0.5 * V _{CCIO}	0.51 * V _{CCIO}	_	_		

Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Devi	ces
---	-----

Table 19.	Single-Ended SSTL	, HSTL, and HSUL I/	/O Standards Signal S	Specifications for	Stratix V Devices	(Part 1 of 2)
-----------	-------------------	---------------------	-----------------------	---------------------------	-------------------	---------------

1/0 Standard	V _{IL(DC)} (V)		V _{IH(DC)} (V)		V _{IL(AC)} (V)	$V_{IL(AC)}(V) = V_{IH(AC)}(V)$		V _{oh} (V)	I (mA)	I _{oh}
i/o Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	I _{ol} (IIIA)	(mÄ)
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCI0} – 0.28	13.4	-13.4
SSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCI0}	0.8 * V _{CCI0}	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 * V _{CCI0}	0.8 * V _{CCI0}	16	-16
SSTL-135 Class I, II	_	V _{REF} – 0.09	V _{REF} + 0.09	—	V _{REF} – 0.16	V _{REF} + 0.16	0.2 * V _{CCI0}	0.8 * V _{CCI0}	—	_
SSTL-125 Class I, II		V _{REF} – 0.85	V _{REF} + 0.85	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCI0}	0.8 * V _{CCI0}		
SSTL-12 Class I, II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCI0}	0.8 * V _{CCI0}	_	

- You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.
- ***** For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Transceiver Speed Grade 2			Trai	Unit		
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	85– Ω setting	_	85 ± 30%		_	85 ± 30%		—	85 ± 30%		Ω
Differential on-	100–Ω setting	_	100 ± 30%		_	100 ± 30%		_	100 ± 30%	_	Ω
chip termination resistors ⁽²¹⁾	120–Ω setting	_	120 ± 30%		_	120 ± 30%		_	120 ± 30%	_	Ω
	150-Ω setting	_	150 ± 30%		_	150 ± 30%	_	_	150 ± 30%	_	Ω
	V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth	_	600	_	_	600	_		600	_	mV
V _{ICM} (AC and DC	V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth		600	_		600	_		600	_	mV
(oupled)	V _{CCR_GXB} = 1.0 V/1.05 V full bandwidth	_	700	_	_	700	_	_	700	_	mV
	V _{CCR_GXB} = 1.0 V half bandwidth		750	_	_	750	_	_	750	_	mV
t _{LTR} ⁽¹¹⁾	—	_	_	10	_	—	10	_	—	10	μs
t _{LTD} ⁽¹²⁾	—	4	_		4	—		4	-	—	μs
t _{LTD_manual} ⁽¹³⁾	—	4			4	—		4	—	—	μs
t _{LTR_LTD_manual} ⁽¹⁴⁾	—	15	_		15	—		15	—	—	μs
Run Length		_		200	_	—	200	_	—	200	UI
Programmable equalization (AC Gain) ⁽¹⁰⁾	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)		_	16	_	_	16	_		16	dB

 Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 4 of 7)

Table 24 shows the maximum transmitter data rate for the clock network.

Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1)

		ATX PLL			CMU PLL ⁽²⁾)		fPLL	
Clock Network x1 ⁽³⁾ x6 ⁽³⁾ x6 PLL Feedback ⁽⁴⁾ xN (PCle)	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span
x1 ⁽³⁾	14.1	_	6	12.5	_	6	3.125	—	3
x6 ⁽³⁾	_	14.1	6	—	12.5	6	—	3.125	6
x6 PLL Feedback ⁽⁴⁾	_	14.1	Side- wide	_	12.5	Side- wide	_	_	_
xN (PCIe)	_	8.0	8	—	5.0	8	—	—	—
Clock Network x1 ⁽³⁾ x6 ⁽³⁾ x6 PLL Feedback ⁽⁴⁾ xN (PCIe) xN (Native PHY IP)	8.0	8.0	Up to 13 channels above and below PLL	7 00	7 00	Up to 13 channels above	3 125	3 125	Up to 13 channels above
	_	8.01 to 9.8304	Up to 7 channels above and below PLL	7.99	7.99	and below PLL	0.120	ps) (uups) 25 — 3 - 3.125 6 - — — - — — - — — 25 3.125 Up to 13 channel above and below PLL	and below PLL

Notes to Table 24:

(1) Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation.

(2) ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

(3) Channel span is within a transceiver bank.

(4) Side-wide channel bonding is allowed up to the maximum supported by the PHY IP.

Symbol/	Conditions	S	Transceive peed Grade	2	S	Fransceive Deed Grade	r 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	
Differential on-chip termination resistors ⁽⁷⁾	GT channels		100	_	_	100	_	Ω
	85- Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-chip	100-Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	Ω
for GX channels ⁽¹⁹⁾	120-Ω setting	_	120 ± 30%	_	—	120 ± 30%	—	Ω
	150-Ω setting		150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC coupled)	GT channels	_	650	_	—	650	—	mV
	VCCR_GXB = 0.85 V or 0.9 V	_	600	_	_	600	_	mV
VICM (AC and DC coupled) for GX Channels	VCCR_GXB = 1.0 V full bandwidth	_	700		_	700	_	mV
	VCCR_GXB = 1.0 V half bandwidth	_	750	_	_	750	_	mV
t _{LTR} ⁽⁹⁾	—	_	—	10	—	—	10	μs
t _{LTD} ⁽¹⁰⁾		4			4	_	_	μs
t _{LTD_manual} ⁽¹¹⁾		4	_		4	_	_	μs
t _{LTR_LTD_manual} ⁽¹²⁾	—	15	—	_	15	—	—	μs
Run Lenath	GT channels		—	72	—	—	72	CID
	GX channels				(8)			
CDR PPM	GT channels	_	—	1000	—	—	1000	± PPM
	GX channels				(8)			
Programmable	GT channels			14		_	14	dB
(AC Gain) ⁽⁵⁾	GX channels				(8)			
Programmable	GT channels	_		7.5	_		7.5	dB
DC gain ⁽⁶⁾	GX channels				(8)			
Differential on-chip termination resistors ⁽⁷⁾	GT channels	_	100	—	_	100	_	Ω
Transmitter								
Supported I/O Standards	_			1.4-V	and 1.5-V P	CML		
Data rate (Standard PCS)	GX channels	600	_	8500	600		8500	Mbps
Data rate (10G PCS)	GX channels	600		12,500	600		12,500	Mbps

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5)⁽¹⁾

	Table 28.	Transceiver S	pecifications	for Stratix V	GT Devices	(Part 4 of 5) (1)
--	-----------	----------------------	---------------	---------------	------------	-------------------

Symbol/ Description	Conditions	s	Transceive peed Grade	r 2	ר Sp	Fransceive Deed Grade	r 3	Unit		
Description		Min	Тур	Max	Min	Тур	Max			
Data rate	GT channels	19,600	_	28,050	19,600		25,780	Mbps		
Differential on-chip	GT channels	_	100	—		100	_	Ω		
termination resistors	GX channels				(8)					
	GT channels	_	500	_		500	_	mV		
V _{OCM} (AC Coupled)	GX channels		•	•	(8)		•			
Dice/Fell time	GT channels	_	15	—	—	15	—	ps		
Rise/Fail lime	GX channels				(8)					
Intra-differential pair skew	GX channels				(8)					
Intra-transceiver block transmitter channel-to- channel skew	GX channels		(8)							
Inter-transceiver block transmitter channel-to- channel skew	GX channels	(8)								
CMU PLL										
Supported Data Range	—	600		12500	600		8500	Mbps		
t _{pll_powerdown} ⁽¹³⁾	—	1	—	—	1	_	—	μs		
t _{pll_lock} ⁽¹⁴⁾	—	_	—	10	_	_	10	μs		
ATX PLL										
	VCO post- divider L=2	8000	_	12500	8000	_	8500	Mbps		
	L=4	4000	—	6600	4000	_	6600	Mbps		
Supported Data Rate	L=8	2000	—	3300	2000	_	3300	Mbps		
Range for GX Channels	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	Mbps		
Supported Data Rate Range for GT Channels	VCO post- divider L=2	9800	_	14025	9800	_	12890	Mbps		
t _{pll_powerdown} ⁽¹³⁾	—	1	—	—	1	_	—	μs		
t _{pll_lock} ⁽¹⁴⁾	—	_	—	10	_	_	10	μs		
fPLL										
Supported Data Range		600		3250/ 3.125 ⁽²³⁾	600		3250/ 3.125 ⁽²³⁾	Mbps		
t _{pll_powerdown} ⁽¹³⁾	—	1	—	—	1	—	—	μs		

Table 29 shows the V_{OD} settings for the GT channel.

Symbol	V _{OD} Setting	V _{od} Value (mV)
	0	0
	1	200
V., differential neak to neak typical (1)	2	400
The american hear to hear thicat to	3	600
	4	800
	5	1000

Note:

(1) Refer to Figure 4.

Figure 4 shows the differential transmitter output waveform.

Figure 5 shows the Stratix V AC gain curves for GT channels.

Figure 5. AC Gain Curves for GT Channels

Figure 6 shows the Stratix V DC gain curves for GT channels.

Figure 6. DC Gain Curves for GT Channels

Transceiver Characterization

This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols:

- Interlaken
- 40G (XLAUI)/100G (CAUI)
- 10GBase-KR
- QSGMII
- XAUI
- SFI
- Gigabit Ethernet (Gbe / GIGE)
- SPAUI
- Serial Rapid IO (SRIO)
- CPRI
- OBSAI
- Hyper Transport (HT)
- SATA
- SAS
- CEI

Symbol	Parameter	Min	Тур	Max	Unit
+ (3) (4)	Input clock cycle-to-cycle jitter ($f_{REF} \ge 100 \text{ MHz}$)			0.15	UI (p-p)
LINCCJ (0), (1)	Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz)	-750		+750	ps (p-p)
+ (5)	Period Jitter for dedicated clock output (f_{OUT} \geq 100 MHz)	_	_	175 ⁽¹⁾	ps (p-p)
Symbol t _{INCCJ} (3), (4) t _{OUTPJ_DC} (5) t _{FOUTPJ_DC} (5) t _{OUTCCJ_DC} (5) t _{FOUTCCJ_DC} (5) t _{OUTPJ_IO} (5), t _{OUTCCJ_DC} (5), t _{OUTCCJ_DC} (5), t _{OUTCCJ_DC} (5), t _{OUTCCJ_IO} (5),	Period Jitter for dedicated clock output (f _{OUT} < 100 MHz)	_	_	17.5 ⁽¹⁾	mUI (p-p)
+ (5)	Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
FOUTPJ_DC	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
+ (5)	Cycle-to-Cycle Jitter for a dedicated clock output ($f_{\text{OUT}} \geq 100 \text{ MHz})$	ParameterMinTypbck cycle-to-cycle jitter ($f_{REF} < 100 \text{ MHz}$)bck cycle-to-cycle jitter ($f_{REF} < 100 \text{ MHz}$)-750itter for dedicated clock output ($f_{OUT} \ge$ z)itter for dedicated clock output in fractional $T \ge 100 \text{ MHz}$)itter for dedicated clock output in fractional $T < 100 \text{ MHz}$)Cycle Jitter for a dedicated clock output00 MHz)Cycle Jitter for a dedicated clock output00 MHz)cycle Jitter for a dedicated clock output inal PLL ($f_{OUT} \ge 100 \text{ MHz}$)cycle Jitter for a dedicated clock output inal PLL ($f_{OUT} \ge 100 \text{ MHz}$)cycle Jitter for a clock output on a regular I/O inal PLL ($f_{OUT} \ge 100 \text{ MHz}$)cycle Jitter for a clock output on a regular I/O inal PLL ($f_{OUT} \ge 100 \text{ MHz}$)cycle Jitter for a clock output on a regular I/O inal PLL ($f_{OUT} \ge 100 \text{ MHz}$)cycle Jitter for a clock output on a regular I/O inal PLL ($f_{OUT} \ge 100 \text{ MHz}$)cycle Jitter for a clock output on a regular I/O inal PLL ($f_{OUT} \ge 100 \text{ MHz}$)cycle Jitter for a clock output on a regular I/O inal PLL ($f_{OUT} < 100 \text{ MHz}$)<	175	ps (p-p)	
COUTCCJ_DC	Cycle-to-Cycle Jitter for a dedicated clock output $(f_{OUT} < 100 \text{ MHz})$		_	17.5	mUI (p-p)
$t_{OUTPJ_DC} (5) = \begin{cases} Period Jitter for dedicated clock output (f_{OUT} \ge 100 \text{ MHz}) \\ Period Jitter for dedicated clock output (f_{OUT} < 100 \text{ MHz}) \\ Period Jitter for dedicated clock output in fraction PLL (f_{OUT} \ge 100 \text{ MHz}) \\ Period Jitter for dedicated clock output in fraction PLL (f_{OUT} < 100 \text{ MHz}) \\ Period Jitter for dedicated clock output in fraction PLL (f_{OUT} < 100 \text{ MHz}) \\ Period Jitter for dedicated clock output in fraction PLL (f_{OUT} < 100 \text{ MHz}) \\ Cycle-to-Cycle Jitter for a dedicated clock output (f_{OUT} < 100 \text{ MHz}) \\ Cycle-to-Cycle Jitter for a dedicated clock output (f_{OUT} < 100 \text{ MHz}) \\ Cycle-to-Cycle Jitter for a dedicated clock output (f_{OUT} < 100 \text{ MHz}) \\ Cycle-to-cycle Jitter for a dedicated clock output i fractional PLL (f_{OUT} \ge 100 \text{ MHz}) \\ Cycle-to-cycle Jitter for a dedicated clock output i fractional PLL (f_{OUT} < 100 \text{ MHz}) \\ Cycle-to-cycle Jitter for a dedicated clock output i fractional PLL (f_{OUT} < 100 \text{ MHz}) \\ Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} \ge 100 \text{ MHz}) \\ Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} > 100 \text{ MHz}) \\ Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} > 100 \text{ MHz}) \\ Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} > 100 \text{ MHz}) \\ Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} > 100 \text{ MHz}) \\ Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} > 100 \text{ MHz}) \\ Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} > 100 \text{ MHz}) \\ Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} > 100 \text{ MHz}) \\ Period Jitter for a clock output on a regula in integer PLL (f_{OUT} < 100 \text{ MHz}) \\ Cycle-to-cycle Jitter for a clock output on a regula in fractional PLL (f_{OUT} < 100 \text{ MHz}) \\ Cycle-to-cycle Jitter for a clock output on a regula in fractional PLL (f_{OUT} < 100 \text{ MHz}) \\ Cycle-to-cyc$	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)		_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
FOUTCCJ_DC	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)+		_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
t _{outpj 10} (5),	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)		_	600	ps (p-p)
t _{outpj_io} (5), (8)	Period Jitter for a clock output on a regular I/O $(f_{OUT} < 100 \text{ MHz})$		_	60	mUI (p-p)
t _{foutpj 10} ^{(5),}	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	0.15 UI ($+750$ ps (175 (1) ps (175 (1) ps (17.5 (1) mUI 250 (11), 175 (12) ps (25 (11), 17.5 (12) mUI 17.5 (12) mUI 250 (11), 17.5 (12) ps (250 (11), 17.5 (12) ps (250 (11), 17.5 (12) mUI 600 (10) ps (600 (10) ps (600 (10) ps (600 (10) mUI 600 (10) ps (17.5 mUI 175 ps (175 ps (17.5 mUI 175 ps (17.5 mUI 175 mUI 175 mUI 17.5 mUI 17.5	ps (p-p)
(8), (11)	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{outccj_io} (5),	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \geq 100 \mbox{ MHz})$	_	_	Max Unit 0.15 UI (p-p) +750 ps (p-p) 175 (1) ps (p-p) 17.5 (1) mUI (p-p) 17.5 (1) mUI (p-p) 250 (11), 175 (12) ps (p-p) 25 (11), 17.5 (12) mUI (p-p) 175 ps (p-p) 175 (12) mUI (p-p) 175 (12) mUI (p-p) 175 (12) ps (p-p) 175 (12) ps (p-p) 175 (12) ps (p-p) 600 ps (p-p) 600 ps (p-p) 600 (10) ps (p-p) 600 (10) ps (p-p) 600 (10) mUI (p-p) 600 (10) mUI (p-p) 600 (10) ps (p-p) 175 ps (p-p) 175 ps (p-p) 175 ps (p-p) 175 ps (p-p)	ps (p-p)
(8)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f _{OUT} < 100 MHz)	_	_		mUI (p-p)
$ \begin{array}{c c c c c c } \hline Period Jitter for dedicated clock output in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-Cycle Jitter for a dedicated clock output (f_{0UT} \geq 100 MHz) \\ \hline Cycle-to-Cycle Jitter for a dedicated clock output (f_{0UT} < 100 MHz) \\ \hline Cycle-to-Cycle Jitter for a dedicated clock output in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{0UT} \geq 100 MHz) \\ \hline Period Jitter for a clock output on a regular I/O in fractional PLL (f_{0UT} \geq 100 MHz) \\ \hline Period Jitter for a clock output on a regular I/O in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Period Jitter for a clock output on a regular I/O in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Period Jitter for a clock output on a regular I/O in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Period Jitter for a clock output on a regular I/O in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a clock output on a regular I in integer PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a clock output on a regular I in integer PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a clock output on a regular I in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a clock output on a regular I in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a clock output on a regular I in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a clock output on a regular I in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a clock output on a regular I in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a clock output on a regular I in fractional PLL (f_{0UT} < 100 MHz) \\ \hline Cycle-to-cycle Jitter for a clock output on a regular I in fractional PLL (f_{0UT} < $		_	600 ⁽¹⁰⁾	ps (p-p)	
(8), (11)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{CASC OUTPJ DC}	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
(5), (6)	Period Jitter for a dedicated clock output in cascaded PLLs (f_{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs		_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits
k _{VALUE}	Numerator of Fraction	128	8388608	2147483648	—

Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3)

Symbol	Conditions		C1		C2,	C2L, I	2, I2L	C3,	13, 131	., I 3 YY	C4,I4			Unit
Symbol		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
Transmitter														
True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor J = 3 to 10 ⁽⁹⁾ , ⁽¹¹⁾ , ⁽¹²⁾ , ⁽¹³⁾ , ⁽¹⁴⁾ , ⁽¹⁵⁾ , ⁽¹⁶⁾	(6)	_	1600	(6)	_	1434	(6)	_	1250	(6)	_	1050	Mbps
	SERDES factor J ≥ 4 LVDS TX with DPA (12), (14), (15), (16)	(6)		1600	(6)		1600	(6)		1600	(6)	_	1250	Mbps
	SERDES factor J = 2, uses DDR Registers	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)		(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) ⁽¹⁰⁾	SERDES factor J = 4 to 10 $(^{17})$	(6)		1100	(6)		1100	(6)		840	(6)		840	Mbps
t _{x Jitter} - True Differential I/O Standards	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps		_	160		_	160		_	160			160	ps
	Total Jitter for Data Rate < 600 Mbps		_	0.1			0.1			0.1		_	0.1	UI
t _{x Jitter} - Emulated Differential I/O Standards	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	300	_		300	_	_	300	_		325	ps
with Three External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_	_	0.2	_	_	0.2	_	_	0.2	_	_	0.25	UI

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 2 of 4)

Symbol	Conditiono	C1			C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,14			Unit		
əyiinuu	oonuntions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Umt
	SERDES factor J = 3 to 10	(6)		(8)	(6)	_	(8)	(6)		(8)	(6)		(8)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)	_	(7)	(6)	_	(7)	(6)		(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
DPA Mode	DPA Mode													
DPA run length	_			1000 0		_	1000 0	_		1000 0	_		1000 0	UI
Soft CDR mode														
Soft-CDR PPM tolerance	_	_	_	300	_	_	300	_	_	300	_	_	300	± PPM
Non DPA Mode														
Sampling Window	_			300			300			300			300	ps

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 4 of 4)

Notes to Table 36:

(1) When J = 3 to 10, use the serializer/deserializer (SERDES) block.

(2) When J = 1 or 2, bypass the SERDES block.

(3) This only applies to DPA and soft-CDR modes.

(4) Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.

(5) This is achieved by using the **LVDS** clock network.

(6) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

(7) The maximum ideal frequency is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.

(8) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

(9) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.

(10) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.

(11) The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design-dependent and requires timing analysis.

(12) Stratix V RX LVDS will need DPA. For Stratix V TX LVDS, the receiver side component must have DPA.

(13) Stratix V LVDS serialization and de-serialization factor needs to be x4 and above.

(14) Requires package skew compensation with PCB trace length.

(15) Do not mix single-ended I/O buffer within LVDS I/O bank.

(16) Chip-to-chip communication only with a maximum load of 5 pF.

(17) When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

Symbol	Description	Min	Max	Unit
t _{JPH}	JTAG port hold time	5	—	ns
t _{JPCO}	JTAG port clock to output	—	11 ⁽¹⁾	ns
t _{JPZX}	JTAG port high impedance to valid output	—	14 ⁽¹⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	14 ⁽¹⁾	ns

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Notes to Table 46:

(1) A 1 ns adder is required for each V_{CCI0} voltage step down from 3.0 V. For example, $t_{JPC0} = 12$ ns if V_{CCI0} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

(2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

Raw Binary File Size

For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices".

Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices.

Family	Device	evice Package BGXA3 H35, F40, F35 ⁽²⁾ GGXA4 GGXA5 GGXA7 GGXA9 GGXA8 GGXA5 GGXA7 GGXA8 GGXA9 GGXB8 GGXB6 GGXB7 GGXB8 GGXB9 GGXB9 GGXB7	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) ^{(4), (5)}		
	500742	H35, F40, F35 ⁽²⁾	213,798,880	562,392		
	JOUNAS	H29, F35 ⁽³⁾	137,598,880	564,504		
	5SGXA4	—	213,798,880	563,672		
	5SGXA5	—	269,979,008	562,392		
	5SGXA7	—	269,979,008	562,392		
Stratix V GX	5SGXA9	—	342,742,976	700,888		
	5SGXAB	—	342,742,976	700,888		
	5SGXB5	—	270,528,640	584,344		
	5SGXB6	—	270,528,640	584,344		
	5SGXB9	_	342,742,976	700,888		
	5SGXBB	—	342,742,976	700,888		
Stratix V CT	5SGTC5	—	269,979,008	562,392		
	5SGTC7	_	269,979,008	562,392		
	5SGSD3	—	137,598,880	564,504		
	590904	F1517	213,798,880	563,672		
Stratix V GS	J303D4		137,598,880	564,504		
	5SGSD5		213,798,880	563,672		
	5SGSD6		293,441,888	565,528		
	5SGSD8	—	293,441,888	565,528		

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

FPP Configuration Timing when DCLK-to-DATA [] = 1

Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1.

Notes to Figure 12:

- (1) Use this timing waveform when the DCLK-to-DATA [] ratio is 1.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nstatus low for the time of the POR delay.
- (4) After power-up, before and during configuration, CONF_DONE is low.
- (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (8) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT DONE goes low.

Active Serial Configuration Timing

Table 52 lists the DCLK frequency specification in the AS configuration scheme.

Fable 52.	DCLK Frequency	Specification in th	e AS Configuration	Scheme ^{(1),}	(2)
-----------	----------------	---------------------	--------------------	------------------------	-----

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Notes to Table 52:

(1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

(2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Figure 14 shows the single-device configuration setup for an AS ×1 mode.

Notes to Figure 14:

- (1) If you are using AS $\times 4$ mode, this signal represents the AS_DATA[3..0] and EPCQ sends in 4-bits of data for each DCLK cycle.
- (2) The initialization clock can be from internal oscillator or CLKUSR pin.
- (3) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices.

Table JS. As fining falancees for as $\times 1$ and as $\times 4$ configurations in straits V devices $(2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	Table 53.	AS Timing	Parameters for AS	\times 1 and AS \times 4 Confi	gurations in Stratix V	/ Devices ^{(1), (2)}	(Part 1 of 2)
--	-----------	-----------	--------------------------	------------------------------------	------------------------	-------------------------------	---------------

Symbol	Parameter	Minimum	Maximum	Units
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output	—	2	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	_	ns
t _H	Data hold time after falling edge on DCLK	0	_	ns

Table 60. Glossary (Part 2 of 4)

Letter	Subject	Definitions
G H I	JTAG Timing Specifications	High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS
K L M N O		
Ρ	PLL Specifications	Diagram of PLL Specifications (1)
Q	_	—
R	RL	Receiver differential input discrete resistor (external to the Stratix V device).

Table 60.	Glossary	(Part 3 of 4)
-----------	----------	---------------

Letter	Subject	Definitions			
	SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS RSKM			
S	Single-ended voltage referenced I/O standard	The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: <i>Single-Ended Voltage Referenced I/O Standard</i> 			
	t _C	High-speed receiver and transmitter input and output clock period.			
	TCCS (channel- to-channel-skew)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table).			
	touty	High-speed I/O block—Duty cycle on the high-speed transmitter output clock.			
т		Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window.			
		(TUI = 1/(receiver input clock frequency multiplication factor) = t_c/w)			
	t _{FALL}	Signal high-to-low transition time (80-20%)			
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.			
	t _{outpj_i0}	Period jitter on the general purpose I/O driven by a PLL.			
	t _{outpj_dc}	Period jitter on the dedicated clock output driven by a PLL.			
	t _{RISE}	Signal low-to-high transition time (20-80%)			
U		_			

 Table 61. Document Revision History (Part 3 of 3)

Date	Version	Changes
May 2013		■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60
	2.7	Added Table 24, Table 48
		 Updated Figure 9, Figure 10, Figure 11, Figure 12
February 2013	26	 Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46
		Updated "Maximum Allowed Overshoot and Undershoot Voltage"
		 Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35
		Added Table 33
		 Added "Fast Passive Parallel Configuration Timing"
		 Added "Active Serial Configuration Timing"
December 2012	2.5	 Added "Passive Serial Configuration Timing"
		 Added "Remote System Upgrades"
		 Added "User Watchdog Internal Circuitry Timing Specification"
		Added "Initialization"
		Added "Raw Binary File Size"
lune 2012	2.4	 Added Figure 1, Figure 2, and Figure 3.
		 Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59.
		 Various edits throughout to fix bugs.
		Changed title of document to <i>Stratix V Device Datasheet</i> .
		 Removed document from the Stratix V handbook and made it a separate document.
February 2012	2.3	■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31.
December 2011	2.2	■ Added Table 2–31.
December 2011		■ Updated Table 2–28 and Table 2–34.
November 2011	2.1	 Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices.
		 Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25.
		 Various edits throughout to fix SPRs.
May 2011	2.0	■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24.
		 Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title.
		Chapter moved to Volume 1.
		 Minor text edits.
		■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23.
December 2010	1.1	 Converted chapter to the new template.
		 Minor text edits.
July 2010	1.0	Initial release.