Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 317000 | | Number of Logic Elements/Cells | 840000 | | Total RAM Bits | 53248000 | | Number of I/O | 696 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-HBGA (45x45) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxea9k3h40i3n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Page 6 Electrical Characteristics Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2) | Symbol | Description | Condition | Min ⁽⁴⁾ | Тур | Max ⁽⁴⁾ | Unit | |--------|-------------------------|--------------|--------------------|-----|--------------------|------| | t | Power supply ramp time | Standard POR | 200 μs | _ | 100 ms | _ | | LRAMP | Fower supply rainp line | Fast POR | 200 μs | _ | 4 ms | _ | #### Notes to Table 6: - (1) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. - (2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low. - (3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades. - (4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices. Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | |-----------------------|---|------------|------------------------|---------|------------------------|------| | V _{CCA_GXBL} | Transceiver channel PLL power supply (left | GX, GS, GT | 2.85 | 3.0 | 3.15 | V | | (1), (3) | side) | ७४, ७७, ७१ | 2.375 | 2.5 | 2.625 | V | | V _{CCA_GXBR} | Transceiver channel PLL power supply (right | GX, GS | 2.85 | 3.0 | 3.15 | V | | $(1), (\overline{3})$ | side) | রম, রহ | 2.375 | 2.5 | 2.625 | V | | V _{CCA_GTBR} | Transceiver channel PLL power supply (right side) | GT | 2.85 | 3.0 | 3.15 | V | | | Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | V _{CCHIP_L} | Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | V_{CCHIP_R} | Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | V _{CCHSSI_L} | Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | V _{CCHSSI_R} | Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCR_GXBL} | Receiver analog power supply (left side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Treceiver arialog power supply (left side) | un, us, ui | 0.97 | 1.0 | 1.03 | v | | | | | 1.03 | 1.05 | 1.07 | | Page 8 Electrical Characteristics Table 8 shows the transceiver power supply voltage requirements for various conditions. **Table 8. Transceiver Power Supply Voltage Requirements** | Conditions | Core Speed Grade | VCCR_GXB & VCCT_GXB (2) | VCCA_GXB | VCCH_GXB | Unit | |--|-----------------------------------|-------------------------|----------|----------|------| | If BOTH of the following conditions are true: | | 4.05 | | | | | ■ Data rate > 10.3 Gbps. | All | 1.05 | | | | | ■ DFE is used. | | | | | | | If ANY of the following conditions are true ⁽¹⁾ : | | | 3.0 | | | | ATX PLL is used. | | | | | | | ■ Data rate > 6.5Gbps. | All | 1.0 | | | | | ■ DFE (data rate ≤
10.3 Gbps), AEQ, or
EyeQ feature is used. | | | | 1.5 | V | | If ALL of the following | C1, C2, I2, and I3YY | 0.90 | 2.5 | | | | conditions are true: ATX PLL is not used. | | | | | | | ■ Data rate ≤ 6.5Gbps. | C2L, C3, C4, I2L, I3, I3L, and I4 | 0.85 | 2.5 | | | | DFE, AEQ, and EyeQ are
not used. | | | | | | ### Notes to Table 8: - (1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions. - (2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply. ### **DC Characteristics** This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications. ### **Supply Current** Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Page 14 Electrical Characteristics Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Devices | I/O Standard | | V _{CCIO} (V) | | | V _{REF} (V) | | | V _{TT} (V) | | |-------------------------|-------|-----------------------|-------|-----------------------------|-------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------| | I/O Standard | Min | Тур | Max | Min | Тур | Max | Min | Тур | Мах | | SSTL-2
Class I, II | 2.375 | 2.5 | 2.625 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | V _{REF} – 0.04 | V_{REF} | V _{REF} + 0.04 | | SSTL-18
Class I, II | 1.71 | 1.8 | 1.89 | 0.833 | 0.9 | 0.969 | V _{REF} – 0.04 | V _{REF} | V _{REF} + 0.04 | | SSTL-15
Class I, II | 1.425 | 1.5 | 1.575 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | SSTL-135
Class I, II | 1.283 | 1.35 | 1.418 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
V _{CCIO} | 0.51 *
V _{CCIO} | | SSTL-125
Class I, II | 1.19 | 1.25 | 1.26 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | SSTL-12
Class I, II | 1.14 | 1.20 | 1.26 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | HSTL-18
Class I, II | 1.71 | 1.8 | 1.89 | 0.85 | 0.9 | 0.95 | _ | V _{CCIO} /2 | _ | | HSTL-15
Class I, II | 1.425 | 1.5 | 1.575 | 0.68 | 0.75 | 0.9 | _ | V _{CCIO} /2 | _ | | HSTL-12
Class I, II | 1.14 | 1.2 | 1.26 | 0.47 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.53 *
V _{CCIO} | _ | V _{CCIO} /2 | _ | | HSUL-12 | 1.14 | 1.2 | 1.3 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | _ | _ | _ | Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 1 of 2) | I/O Standard | V _{IL(D(} | _{C)} (V) | V _{IH(D} | _{C)} (V) | V _{IL(AC)} (V) | V _{IH(AC)} (V) | V _{OL} (V) | V _{OH} (V) | I (mA) | I _{oh} | |-------------------------|--------------------|--------------------------|--------------------------|-------------------------|----------------------------|--------------------------|----------------------------|----------------------------|----------------------|-----------------| | i/U Stanuaru | Min | Max | Min | Max | Max | Min | Max | Min | I _{ol} (mA) | (mA) | | SSTL-2
Class I | -0.3 | V _{REF} – 0.15 | V _{REF} + 0.15 | V _{CCIO} + 0.3 | V _{REF} –
0.31 | V _{REF} + 0.31 | V _{TT} –
0.608 | V _{TT} + 0.608 | 8.1 | -8.1 | | SSTL-2
Class II | -0.3 | V _{REF} – 0.15 | V _{REF} + 0.15 | V _{CCIO} + 0.3 | V _{REF} – 0.31 | V _{REF} + 0.31 | V _{TT} – 0.81 | V _{TT} + 0.81 | 16.2 | -16.2 | | SSTL-18
Class I | -0.3 | V _{REF} – 0.125 | V _{REF} + 0.125 | V _{CCIO} + 0.3 | V _{REF} – 0.25 | V _{REF} +
0.25 | V _{TT} – 0.603 | V _{TT} + 0.603 | 6.7 | -6.7 | | SSTL-18
Class II | -0.3 | V _{REF} – 0.125 | V _{REF} + 0.125 | V _{CCIO} + 0.3 | V _{REF} –
0.25 | V _{REF} + 0.25 | 0.28 | V _{CCIO} - 0.28 | 13.4 | -13.4 | | SSTL-15
Class I | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} – 0.175 | V _{REF} + 0.175 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | 8 | -8 | | SSTL-15
Class II | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} – 0.175 | V _{REF} + 0.175 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | 16 | -16 | | SSTL-135
Class I, II | _ | V _{REF} – 0.09 | V _{REF} + 0.09 | _ | V _{REF} –
0.16 | V _{REF} + 0.16 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | | SSTL-125
Class I, II | _ | V _{REF} – 0.85 | V _{REF} + 0.85 | _ | V _{REF} –
0.15 | V _{REF} + 0.15 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | | SSTL-12
Class I, II | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} –
0.15 | V _{REF} + 0.15 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | Electrical Characteristics Page 17 You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Page 24 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 7 of 7) | Symbol/
Description | Conditions | Trai | nsceive
Grade | r Speed
1 | Trar | sceive
Grade | r Speed
2 | Tran | sceive
Grade | r Speed
3 | Unit | |----------------------------|------------|------|------------------|--------------|------|-----------------|--------------|------|-----------------|--------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | t _{pll_lock} (16) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | #### Notes to Table 23: - (1) Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*. - (2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level. - (3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V. - (4) This supply follows VCCR_GXB. - (5) The device cannot tolerate prolonged operation at this absolute maximum. - (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. - (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode. - (8) The input reference clock frequency options depend on the data rate and the device speed grade. - (9) The line data rate may be limited by PCS-FPGA interface speed grade. - (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain. - (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset. - (12) t_{I TD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high. - (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode. - (14) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode. - (15) $t_{pll\ powerdown}$ is the PLL powerdown minimum pulse width. - (16) t_{nll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset. - (17) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f. - (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}). - (19) For ES devices, R_{REF} is 2000 Ω ±1%. - (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622). - (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (22) Refer to Figure 2. - (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only. - (24) I3YY devices can achieve data rates up to 10.3125 Gbps. - (25) When you use fPLL as a TXPLL of the transceiver. - (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification. - (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition. Page 26 Switching Characteristics Table 25 shows the approximate maximum data rate using the standard PCS. Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3) | Mada (2) | Transceiver | PMA Width | 20 | 20 | 16 | 16 | 10 | 10 | 8 | 8 | |---------------------|-------------|--|---------|---------|---------|---------|-----|-----|------|------| | Mode ⁽²⁾ | Speed Grade | PCS/Core Width | 40 | 20 | 32 | 16 | 20 | 10 | 16 | 8 | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.5 | 5.8 | 5.2 | 4.72 | | | 2 | C1, C2, C2L, I2, I2L core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.5 | 5.8 | 5.2 | 4.72 | | | 2 | C3, I3, I3L
core speed grade | 9.8 | 9.0 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | FIFO | | C1, C2, C2L, I2, I2L core speed grade | 8.5 | 8.5 | 8.5 | 8.5 | 6.5 | 5.8 | 5.2 | 4.72 | | | 3 | I3YY
core speed grade | 10.3125 | 10.3125 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | | 3 | C3, I3, I3L
core speed grade | 8.5 | 8.5 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | | | C4, I4
core speed grade | 8.5 | 8.2 | 7.04 | 6.56 | 4.8 | 4.2 | 3.84 | 3.44 | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.1 | 5.7 | 4.88 | 4.56 | | | 2 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.1 | 5.7 | 4.88 | 4.56 | | | 2 | C3, I3, I3L
core speed grade | 9.8 | 9.0 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | Register | | C1, C2, C2L, I2, I2L
core speed grade | 10.3125 | 10.3125 | 10.3125 | 10.3125 | 6.1 | 5.7 | 4.88 | 4.56 | | | 3 | I3YY
core speed grade | 10.3125 | 10.3125 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | | 3 | C3, I3, I3L
core speed grade | 8.5 | 8.5 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | | | C4, I4
core speed grade | 8.5 | 8.2 | 7.04 | 6.56 | 4.4 | 4.1 | 3.52 | 3.28 | ### Notes to Table 25: ⁽¹⁾ The maximum data rate is in Gbps. ⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency. ⁽³⁾ The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade. Figure 2 shows the differential transmitter output waveform. Figure 2. Differential Transmitter Output Waveform Figure 3 shows the Stratix V AC gain curves for GX channels. Figure 3. AC Gain Curves for GX Channels (full bandwidth) Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23. Table 28 lists the Stratix V GT transceiver specifications. Page 30 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$ | Symbol/ | Conditions | 5 | Transceive
Speed Grade | | | Transceive
peed Grade | | Unit | | |--|--|-----------|--|--------------|--------------|--------------------------|-------------|----------|--| | Description | | Min | Тур | Max | Min | Тур | Max | | | | Reference Clock | • | • | • | • | • | • | • | | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V PCN | 1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL and HCSL | | | | | | | | Standards | RX reference clock pin | | 1.4-V PCML | ., 1.5-V PCN | IL, 2.5-V PC | ML, LVPEC | L, and LVDS | ; | | | Input Reference Clock
Frequency (CMU
PLL) ⁽⁶⁾ | _ | 40 | _ | 710 | 40 | _ | 710 | MHz | | | Input Reference Clock
Frequency
(ATX PLL) (6) | _ | 100 | _ | 710 | 100 | _ | 710 | MHz | | | Rise time | 20% to 80% | _ | _ | 400 | _ | _ | 400 | | | | Fall time | 80% to 20% | _ | _ | 400 | _ | <u> </u> | 400 | ps | | | Duty cycle | _ | 45 | _ | 55 | 45 | _ | 55 | % | | | Spread-spectrum
modulating clock
frequency | PCI Express
(PCIe) | 30 | _ | 33 | 30 | _ | 33 | kHz | | | Spread-spectrum
downspread | PCle | _ | 0 to -0.5 | _ | _ | 0 to -0.5 | _ | % | | | On-chip termination resistors (19) | _ | _ | 100 | _ | _ | 100 | _ | Ω | | | Absolute V _{MAX} (3) | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | V | | | | RX reference
clock pin | _ | _ | 1.2 | _ | _ | 1.2 | | | | Absolute V _{MIN} | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | _ | 1600 | mV | | | V _{ICM} (AC coupled) | Dedicated
reference
clock pin | | 1050/1000 | 2) | | 1050/1000 | 2) | mV | | | | RX reference clock pin | 1 | .0/0.9/0.85 | (22) | 1 | .0/0.9/0.85 | (22) | V | | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | mV | | Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5) $^{(1)}$ | Symbol/ | Conditions | S | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | |--|---|--------|--------------------------|--------------|--------------|--------------------------|-------------|----------| | Description | | Min | Тур | Max | Min | Тур | Max | 1 | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | | | Transmitter REFCLK | 1 kHz | _ | _ | -90 | | _ | -90 | | | Phase Noise (622 | 10 kHz | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | MHz) ⁽¹⁸⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | | | | ≥1 MHz | | _ | -120 | _ | | -120 | 1 | | Transmitter REFCLK
Phase Jitter (100
MHz) ⁽¹⁵⁾ | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | ps (rms) | | RREF (17) | _ | _ | 1800
± 1% | _ | _ | 1800
± 1% | _ | Ω | | Transceiver Clocks | | | | | | | | | | fixedclk clock
frequency | PCIe
Receiver
Detect | _ | 100 or
125 | _ | _ | 100 or
125 | _ | MHz | | Reconfiguration clock
(mgmt_clk_clk)
frequency | | 100 | _ | 125 | 100 | | 125 | MHz | | Receiver | | | | | | | | | | Supported I/O
Standards | _ | | 1.4-V PCML | , 1.5-V PCML | _, 2.5-V PCI | ML, LVPEC | L, and LVDS | 6 | | Data rate
(Standard PCS) (21) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) (21) | GX channels | 600 | _ | 12,500 | 600 | _ | 12,500 | Mbps | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | Absolute V _{MAX} for a receiver pin ⁽³⁾ | GT channels | _ | _ | 1.2 | _ | _ | 1.2 | V | | Absolute V _{MIN} for a receiver pin | GT channels | -0.4 | _ | _ | -0.4 | _ | _ | V | | Maximum peak-to-peak | GT channels | | _ | 1.6 | _ | | 1.6 | V | | differential input
voltage V _{ID} (diff p-p)
before device
configuration ⁽²⁰⁾ | GX channels | | | | (8) | | | | | | GT channels | | | | | | | | | Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration (16), (20) | $V_{CCR_GTB} = 1.05 \text{ V} $ $(V_{ICM} = 0.65 \text{ V})$ | _ | _ | 2.2 | _ | _ | 2.2 | V | | oomiguration ', ' / | GX channels | | | <u> </u> | (8) | | • | • | | Minimum differential | GT channels | 200 | _ | _ | 200 | | _ | mV | | eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾ | GX channels | | | | (8) | | | | Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | |--|--|--------|--------------------------|--------------------------------|--------|--------------------------|--------------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | Differential on-chip | GT channels | _ | 100 | _ | | 100 | <u> </u> | Ω | | termination resistors | GX channels | | | • | (8) | | <u>'</u> | | | \/ | GT channels | _ | 500 | _ | _ | 500 | _ | mV | | V _{OCM} (AC coupled) | GX channels | | | • | (8) | | <u>'</u> | | | Diag/Fall time | GT channels | _ | 15 | _ | _ | 15 | _ | ps | | Rise/Fall time | GX channels | | <u>I</u> | | (8) | | | | | Intra-differential pair
skew | GX channels | | | | (8) | | | | | Intra-transceiver block
transmitter channel-to-
channel skew | GX channels | | | | (8) | | | | | Inter-transceiver block
transmitter channel-to-
channel skew | GX channels | | | | (8) | | | | | CMU PLL | | | | | | | | | | Supported Data Range | _ | 600 | _ | 12500 | 600 | _ | 8500 | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | ATX PLL | | | | | | | | | | | VCO post-
divider L=2 | 8000 | _ | 12500 | 8000 | _ | 8500 | Mbps | | | L=4 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | Supported Data Rate | L=8 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | Range for GX Channels | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | Supported Data Rate
Range for GT Channels | VCO post-
divider L=2 | 9800 | _ | 14025 | 9800 | _ | 12890 | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | fPLL | | | • | | | | | | | Supported Data Range | _ | 600 | _ | 3250/
3.125 ⁽²³⁾ | 600 | _ | 3250/
3.125 ⁽²³⁾ | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | # **PLL Specifications** Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85°C) and the industrial junction temperature range (-40° to 100° C). Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3) | Symbol | Parameter | Min | Тур | Max | Unit | |---------------------------------|--|-----|-----|--------------------|------| | | Input clock frequency (C1, C2, C2L, I2, and I2L speed grades) | 5 | _ | 800 (1) | MHz | | f _{IN} | Input clock frequency (C3, I3, I3L, and I3YY speed grades) | 5 | _ | 800 (1) | MHz | | | Input clock frequency (C4, I4 speed grades) | 5 | _ | 650 ⁽¹⁾ | MHz | | f _{INPFD} | Input frequency to the PFD | 5 | _ | 325 | MHz | | FINPFD | Fractional Input clock frequency to the PFD | 50 | _ | 160 | MHz | | | PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades) | 600 | _ | 1600 | MHz | | f _{vco} ⁽⁹⁾ | PLL VCO operating range (C3, I3, I3L, I3YY speed grades) | 600 | _ | 1600 | MHz | | | PLL VCO operating range (C4, I4 speed grades) | 600 | _ | 1300 | MHz | | EINDUTY | Input clock or external feedback clock input duty cycle | 40 | _ | 60 | % | | | Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades) | _ | _ | 717 (2) | MHz | | Гоит | Output frequency for an internal global or regional clock (C3, I3, I3L speed grades) | _ | _ | 650 ⁽²⁾ | MHz | | | Output frequency for an internal global or regional clock (C4, I4 speed grades) | _ | _ | 580 ⁽²⁾ | MHz | | | Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades) | _ | _ | 800 (2) | MHz | | f _{OUT_EXT} | Output frequency for an external clock output (C3, I3, I3L speed grades) | _ | _ | 667 (2) | MHz | | | Output frequency for an external clock output (C4, I4 speed grades) | _ | _ | 553 ⁽²⁾ | MHz | | t _{оитриту} | Duty cycle for a dedicated external clock output (when set to 50%) | 45 | 50 | 55 | % | | FCOMP | External feedback clock compensation time | _ | _ | 10 | ns | | DYCONFIGCLK | Dynamic Configuration Clock used for mgmt_clk and scanclk | _ | _ | 100 | MHz | | Lock | Time required to lock from the end-of-device configuration or deassertion of areset | _ | _ | 1 | ms | | DLOCK | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) | _ | _ | 1 | ms | | | PLL closed-loop low bandwidth | | 0.3 | | MHz | | :
CLBW | PLL closed-loop medium bandwidth | | 1.5 | | MHz | | | PLL closed-loop high bandwidth (7) | _ | 4 | _ | MHz | | PLL_PSERR | Accuracy of PLL phase shift | | _ | ±50 | ps | | ARESET | Minimum pulse width on the areset signal | 10 | _ | _ | ns | Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 2 of 2) | | | Resour | ces Used | | | Pe | erforman | ce | | | | |---------------|---|--------|----------|-----|------------|-----|----------|---------|---------------------|-----|------| | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C3 | C4 | 12, 12L | 13,
13L,
13YY | 14 | Unit | | | Single-port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | Simple dual-port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | Simple dual-port with
the read-during-write
option set to Old Data ,
all supported widths | 0 | 1 | 525 | 525 | 455 | 400 | 525 | 455 | 400 | MHz | | M20K
Block | Simple dual-port with ECC enabled, 512 × 32 | 0 | 1 | 450 | 450 | 400 | 350 | 450 | 400 | 350 | MHz | | | Simple dual-port with
ECC and optional
pipeline registers
enabled, 512 × 32 | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | | | True dual port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | ROM, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | ### Notes to
Table 33: ### **Temperature Sensing Diode Specifications** Table 34 lists the internal TSD specification. **Table 34. Internal Temperature Sensing Diode Specification** | Tei | mperature
Range | Accuracy | Offset
Calibrated
Option | Sampling Rate | Conversion
Time | Resolution | Minimum
Resolution
with no
Missing Codes | |------|--------------------|----------|--------------------------------|----------------|--------------------|------------|---| | -40° | °C to 100°C | ±8°C | No | 1 MHz, 500 KHz | < 100 ms | 8 bits | 8 bits | Table 35 lists the specifications for the Stratix V external temperature sensing diode. Table 35. External Temperature Sensing Diode Specifications for Stratix V Devices | Description | Min | Тур | Max | Unit | |--|-------|-------|-------|------| | I _{bias} , diode source current | 8 | _ | 200 | μΑ | | V _{bias,} voltage across diode | 0.3 | _ | 0.9 | V | | Series resistance | _ | _ | <1 | Ω | | Diode ideality factor | 1.006 | 1.008 | 1.010 | _ | ⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes. ⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}. ⁽³⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled. Page 44 Switching Characteristics ## **Periphery Performance** This section describes periphery performance, including high-speed I/O and external memory interface. I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load. The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system. ### **High-Speed I/O Specification** Table 36 lists high-speed I/O timing for Stratix V devices. Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 1 of 4) | _ | | | | | | | | | | | | | | | |--|---------------------------------------|-----|-----|-----|-----|--------|--------|-------------------------|-----|------------|-----|------|------------|-------| | Cumbal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, I3, I3L, I3YY C4,I4 | | | 4 | Unit | | | | Symbol | Conuntions | Min | Тур | Max | Ullit | | f _{HSCLK_in} (input
clock
frequency)
True
Differential
I/O Standards | Clock boost factor
W = 1 to 40 (4) | 5 | | 800 | 5 | _ | 800 | 5 | | 625 | 5 | | 525 | MHz | | f _{HSCLK_in} (input
clock
frequency)
Single Ended
I/O
Standards ⁽³⁾ | Clock boost factor
W = 1 to 40 (4) | 5 | | 800 | 5 | _ | 800 | 5 | | 625 | 5 | | 525 | MHz | | f _{HSCLK_in} (input
clock
frequency)
Single Ended
I/O Standards | Clock boost factor
W = 1 to 40 (4) | 5 | | 520 | 5 | _ | 520 | 5 | | 420 | 5 | | 420 | MHz | | f _{HSCLK_OUT}
(output clock
frequency) | _ | 5 | | 800 | 5 | _ | 800 | 5 | | 625
(5) | 5 | | 525
(5) | MHz | Table 38. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate \geq 1.25 Gbps | Jitter F | requency (Hz) | Sinusoidal Jitter (UI) | |----------|---------------|------------------------| | F1 | 10,000 | 25.000 | | F2 | 17,565 | 25.000 | | F3 | 1,493,000 | 0.350 | | F4 | 50,000,000 | 0.350 | Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps. Figure 9. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate < 1.25 Gbps ### DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices. Table 39. DLL Range Specifications for Stratix V Devices (1) | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |---------|------------------|-------------------|---------|------| | 300-933 | 300-933 | 300-890 | 300-890 | MHz | ### Note to Table 39: (1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL. Table 40 lists the DQS phase offset delay per stage for Stratix V devices. Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 1 of 2) | Speed Grade | Min | Max | Unit | |------------------|-----|-----|------| | C1 | 8 | 14 | ps | | C2, C2L, I2, I2L | 8 | 14 | ps | | C3,I3, I3L, I3YY | 8 | 15 | ps | Page 50 Switching Characteristics Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 2 of 2) | Speed Grade | Min | Max | Unit | |-------------|-----|-----|------| | C4,I4 | 8 | 16 | ps | ### Notes to Table 40: - (1) The typical value equals the average of the minimum and maximum values. - (2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps. Table 41 lists the DQS phase shift error for Stratix V devices. Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices (1) | Number of DQS Delay
Buffers | | | | | | | Unit | |--------------------------------|-----|-----|-----|-----|----|--|------| | 1 | 28 | 28 | 30 | 32 | ps | | | | 2 | 56 | 56 | 60 | 64 | ps | | | | 3 | 84 | 84 | 90 | 96 | ps | | | | 4 | 112 | 112 | 120 | 128 | ps | | | #### Notes to Table 41: Table 42 lists the memory output clock jitter specifications for Stratix V devices. Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 1 of 2) (2), (3) | Clock
Network | Parameter | Parameter Symbol | | C | C1 C2, C2L, I2, I2L | | , I2, I2L | C3, I3, I3L,
I3YY | | C4,I4 | | Unit | |------------------|------------------------------|------------------------|-----------------|-----|---------------------|-----|-----------|----------------------|-------|-------|----|------| | | | | Min | Max | Min | Max | Min | Max | Min | Мах | | | | Regional | Clock period jitter | t _{JIT(per)} | -50 | 50 | -50 | 50 | -55 | 55 | -55 | 55 | ps | | | | Cycle-to-cycle period jitter | t _{JIT(cc)} | -100 | 100 | -100 | 100 | -110 | 110 | -110 | 110 | ps | | | | Duty cycle jitter | $t_{JIT(duty)}$ | -50 | 50 | -50 | 50 | -82.5 | 82.5 | -82.5 | 82.5 | ps | | | | Clock period jitter | t _{JIT(per)} | -75 | 75 | -75 | 75 | -82.5 | 82.5 | -82.5 | 82.5 | ps | | | Global | Cycle-to-cycle period jitter | t _{JIT(cc)} | -150 | 150 | -150 | 150 | -165 | 165 | -165 | 165 | ps | | | | Duty cycle jitter | t _{JIT(duty)} | - 75 | 75 | - 75 | 75 | -90 | 90 | -90 | 90 | ps | | ⁽¹⁾ This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a −2 speed grade is ±78 ps or ±39 ps. Configuration Specification Page 53 | Table 46. | JTAG Timino | Parameters a | nd Values | for Stratix V Devices | |-----------|-------------|--------------|-----------|-----------------------| |-----------|-------------|--------------|-----------|-----------------------| | Symbol | Description | Min | Max | Unit | |-------------------|--|-----|-------------------|------| | t _{JPH} | JTAG port hold time | 5 | _ | ns | | t _{JPCO} | JTAG port clock to output | _ | 11 ⁽¹⁾ | ns | | t _{JPZX} | JTAG port high impedance to valid output | _ | 14 ⁽¹⁾ | ns | | t _{JPXZ} | JTAG port valid output to high impedance | _ | 14 ⁽¹⁾ | ns | #### Notes to Table 46: - (1) A 1 ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, t_{JPCO} = 12 ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V. - (2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming. # **Raw Binary File Size** For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices". Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices. Table 47. Uncompressed .rbf Sizes for Stratix V Devices | Family | Device | Package | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) (4), (5) | |--------------|--------|------------------------------|--------------------------------|---------------------------------| | | 5SGXA3 | H35, F40, F35 ⁽²⁾ | 213,798,880 | 562,392 | | | | H29, F35 ⁽³⁾ | 137,598,880 | 564,504 | | | 5SGXA4 | _ | 213,798,880 | 563,672 | | | 5SGXA5 | _ | 269,979,008 | 562,392 | | | 5SGXA7 | _ | 269,979,008 | 562,392 | | Stratix V GX | 5SGXA9 | _ | 342,742,976 | 700,888 | | | 5SGXAB | _ | 342,742,976 | 700,888 | | | 5SGXB5 | _ | 270,528,640 | 584,344 | | | 5SGXB6 | _ | 270,528,640 | 584,344 | | | 5SGXB9 | _ | 342,742,976 | 700,888 | | | 5SGXBB | _ | 342,742,976 | 700,888 | | Ctuativ V CT | 5SGTC5 | _ | 269,979,008 | 562,392 | | Stratix V GT | 5SGTC7 | _ | 269,979,008 | 562,392 | | | 5SGSD3 | _ | 137,598,880 | 564,504 | | | 5SGSD4 | F1517 |
213,798,880 | 563,672 | | Stratix V GS | | _ | 137,598,880 | 564,504 | | | 5SGSD5 | _ | 213,798,880 | 563,672 | | | 5SGSD6 | _ | 293,441,888 | 565,528 | | | 5SGSD8 | _ | 293,441,888 | 565,528 | Page 56 Configuration Specification Table 49. DCLK-to-DATA[] Ratio (1) (Part 2 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | | Disabled | Disabled | 1 | | FPP ×32 | Disabled | Enabled | 4 | | 1FF ×32 | Enabled | Disabled | 8 | | | Enabled | Enabled | 8 | #### Note to Table 49: (1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data. If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio -1) clock cycles after the last data is latched into the Stratix V device. Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration. Figure 11. Single Device FPP Configuration Using an External Host ### Notes to Figure 11: - (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM}. - (2) You can leave the nceo pin unconnected or use it as a user I/O pin when it does not feed another device's nce pin. - (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (4) If you use FPP $\times 8$, use DATA [7..0]. If you use FPP $\times 16$, use DATA [15..0]. Configuration Specification Page 63 Table 54 lists the PS configuration timing parameters for Stratix V devices. Table 54. PS Timing Parameters for Stratix V Devices | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nCONFIG low to CONF_DONE low | _ | 600 | ns | | t _{CF2ST0} | nCONFIG low to nSTATUS low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽¹⁾ | μS | | t _{CF2ST1} | nCONFIG high to nSTATUS high | _ | 1,506 ⁽²⁾ | μS | | t _{CF2CK} (5) | nCONFIG high to first rising edge on DCLK | 1,506 | | μS | | t _{ST2CK} (5) | nstatus high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | 0 | _ | ns | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f _{MAX} | DCLK frequency | _ | 125 | MHz | | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μ\$ | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 × CLKUSR period) $^{(4)}$ | _ | _ | ### Notes to Table 54: - (1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width. - (2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low. - (3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section. - (5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. ### Initialization Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency. Table 55. Initialization Clock Source Option and the Maximum Frequency | Initialization Clock
Source | Configuration Schemes | Maximum
Frequency | Minimum Number of Clock
Cycles ⁽¹⁾ | |--------------------------------|-----------------------|----------------------|--| | Internal Oscillator | AS, PS, FPP | 12.5 MHz | | | CLKUSR | AS, PS, FPP (2) | 125 MHz | 8576 | | DCLK | PS, FPP | 125 MHz | | ### Notes to Table 55: - $(1) \quad \text{The minimum number of clock cycles required for device initialization}.$ - (2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box. Glossary Page 67 Table 60. Glossary (Part 3 of 4) | Letter | Subject | Definitions | | | | |--------|---|---|--|--|--| | | SW (sampling window) | Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window (SW) 0.5 x TCCS | | | | | S | Single-ended
voltage
referenced I/O
standard | The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard VCCCIQ VOH VOH VIL(DC) VOH VIL(DC) VIL(AC) VIL(AC) | | | | | | t _C | High-speed receiver and transmitter input and output clock period. | | | | | | TCCS (channel-
to-channel-skew) | The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table). | | | | | | | High-speed I/O block—Duty cycle on the high-speed transmitter output clock. | | | | | Т | t _{DUTY} | Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{receiver input clock frequency multiplication factor}) = t_c/w)$ | | | | | | t _{FALL} | Signal high-to-low transition time (80-20%) Cycle-to-cycle jitter tolerance on the PLL clock input. | | | | | | t _{INCCJ} | | | | | | | t _{OUTPJ_IO} | Period jitter on the general purpose I/O driven by a PLL. | | | | | | t _{OUTPJ_DC} | Period jitter on the dedicated clock output driven by a PLL. | | | | | | t _{RISE} | Signal low-to-high transition time (20-80%) | | | | | U | _ | _ | | | | Page 70 Document Revision History Table 61. Document Revision History (Part 2 of 3) | Date Version | | Changes | | |---------------|-----|---|--| | | | ■ Added the I3YY speed grade and changed the data rates for the GX channel in Table 1. | | | | | ■ Added the I3YY speed grade to the V _{CC} description in Table 6. | | | | | ■ Added the I3YY speed grade to V _{CCHIP_L} , V _{CCHIP_R} , V _{CCHSSI_L} , and V _{CCHSSI_R} descriptions in Table 7. | | | | | ■ Added 240-Ω to Table 11. | | | | | ■ Changed CDR PPM tolerance in Table 23. | | | | | ■ Added additional max data rate for fPLL in Table 23. | | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25. | | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26. | | | | | ■ Changed CDR PPM tolerance in Table 28. | | | | | ■ Added additional max data rate for fPLL in Table 28. | | | | | ■ Changed the mode descriptions for MLAB and M20K in Table 33. | | | | | ■ Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36. | | | November 2014 | 3.3 | ■ Changed the frequency ranges for C1 and C2 in Table 39. | | | | | ■ Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47. | | | | | ■ Added note about nSTATUS to Table 50, Table 51, Table 54. | | | | | ■ Changed the available
settings in Table 58. | | | | | ■ Changed the note in "Periphery Performance". | | | | | ■ Updated the "I/O Standard Specifications" section. | | | | | ■ Updated the "Raw Binary File Size" section. | | | | | ■ Updated the receiver voltage input range in Table 22. | | | | | ■ Updated the max frequency for the LVDS clock network in Table 36. | | | | | ■ Updated the DCLK note to Figure 11. | | | | | ■ Updated Table 23 VO _{CM} (DC Coupled) condition. | | | | | ■ Updated Table 6 and Table 7. | | | | | ■ Added the DCLK specification to Table 55. | | | | | ■ Updated the notes for Table 47. | | | | | ■ Updated the list of parameters for Table 56. | | | November 2013 | 3.2 | ■ Updated Table 28 | | | November 2013 | 3.1 | ■ Updated Table 33 | | | November 2013 | 3.0 | ■ Updated Table 23 and Table 28 | | | October 2013 | 2.9 | ■ Updated the "Transceiver Characterization" section | | | | | ■ Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59 | | | October 2013 | 2.8 | ■ Added Figure 1 and Figure 3 | | | | | ■ Added the "Transceiver Characterization" section | | | | | ■ Removed all "Preliminary" designations. | |