E·XFL

Intel - 5SGXEA9N3F45I3LN Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	317000
Number of Logic Elements/Cells	840000
Total RAM Bits	53248000
Number of I/O	840
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1932-BBGA, FCBGA
Supplier Device Package	1932-FBGA, FC (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxea9n3f45i3ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V
VI	DC input voltage	-0.5	3.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2)

Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices.

Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices

Symbol	Description	Devices	Minimum	Maximum	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	GX, GS, GT	-0.5	3.75	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	GX, GS	-0.5	3.75	V
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHIP_R}	Transceiver hard IP power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCL_GTBR}	Transmitter clock network power supply (right side)	GT	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
+	Power supply ramp time	Standard POR	200 µs	_	100 ms	—
IRAMP	Power supply ramp time	Fast POR	200 µs		4 ms	_

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2)

Notes to Table 6:

(1) V_{CCPD} must be 2.5 V when V_{CCI0} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCI0} is 3.0 V.

(2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low.

(3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades.

(4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices.

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2)

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left	GX, GS, GT	2.85	3.0	3.15	V
(1), (3)	side)	un, uo, ui	2.375	2.5	2.625	v
V _{CCA_GXBR}	Transceiver channel PLL power supply (right	GX, GS	2.85	3.0	3.15	V
(1), (3)	side)	ux, us	2.375	2.5	2.625	v
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	2.85	3.0	3.15	V
	Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHIP_R}	Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
	Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V
			0.82	0.85	0.88	- V
V _{CCR_GXBL}	Pacaivar analog powar supply (left side)		0.87	0.90	0.93	
(2)	Receiver analog power supply (left side)	GX, GS, GT	0.97	1.0	1.03	
			1.03	1.05	1.07	

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
			0.82	0.85	0.88	
V _{CCR_GXBR}	Receiver analog power supply (right side)		0.87	0.90	0.93	v
(2)	Receiver analog power supply (right side)	GX, GS, GT	0.97	1.0	1.03	v
			1.03	1.05	1.07	
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
			0.82	0.85	0.88	
V _{CCT_GXBL}	Transmitter analog power supply (left side)	GX, GS, GT	0.87	0.90	0.93	V
	Transmitter analog power supply (left side)		0.97	1.0	1.03	
			1.03	1.05	1.07	
		GX, GS, GT	0.82	0.85	0.88	V
V _{CCT_GXBR}	Transmitter angles nower supply (right side)		0.87	0.90	0.93	
(2)	Transmitter analog power supply (right side)		0.97	1.0	1.03	
			1.03	1.05	1.07	
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
V_{CCL_GTBR}	Transmitter clock network power supply	GT	1.02	1.05	1.08	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	1.425	1.5	1.575	V

Table 7.	Recommended Transceiver Power Supply Operating Conditions for Stratix V GX,	GS, and GT Devices
(Part 2	of 2)	

Notes to Table 7:

(1) This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

(2) Refer to Table 8 to select the correct power supply level for your design.

(3) When using ATX PLLs, the supply must be 3.0 V.

(4) This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

I/O Standard	V _{IL(DI}	_{c)} (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{ol} (V)	V _{oh} (V)	I (mA)	I _{oh}
i/U Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	l _{oi} (mA)	(mA)
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	$V_{REF} - 0.2$	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCI0}	0.75* V _{CCI0}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCI0}	16	-16
HSUL-12	_	V _{REF} – 0.13	V _{REF} + 0.13	_	V _{REF} – 0.22	V _{REF} + 0.22	0.1* V _{CCIO}	0.9* V _{CCI0}	_	_

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 2 of 2)

Table 20. Differential SSTL I/O Standards for Stratix V Devices

I/O Standard		V _{CCIO} (V)			V _{SWING(DC)} (V)		V _{X(AC)} (V)			V _{SWING(AC)} (V)	
ijo Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCI0} + 0.6	V _{CCI0} /2- 0.2	_	V _{CCI0} /2 + 0.2	0.62	V _{CCI0} + 0.6	
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCI0} + 0.6	V _{CCI0} /2- 0.175	_	V _{CCI0} /2 + 0.175	0.5	V _{CCI0} + 0.6	
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(1)	V _{CCI0} /2- 0.15	_	V _{CCI0} /2 + 0.15	0.35	_	
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(1)	V _{CCI0} /2- 0.15	V _{CCI0} /2	V _{CCI0} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	2(V _{IL(AC)} - V _{REF})	
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(1)	V _{CCI0} /2- 0.15	V _{CCI0} /2	V _{CCI0} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_	
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	_	V _{REF} -0.15	V _{CCI0} /2	V _{REF} + 0.15	-0.30	0.30	

Note to Table 20:

(1) The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits $(V_{IH(DC)} \text{ and } V_{IL(DC)})$.

I/O V _{ccio} (V)		V _{CCIO} (V) V _{DIF(DC)} (V)			V _{X(AC)} (V)			V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78	_	1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68	_	0.9	0.68	_	0.9	0.4	_

Symbol/	Conditions	5	Transceiver Speed Grade			Transceive peed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	
Differential on-chip termination resistors ⁽⁷⁾	GT channels		100	_	_	100	_	Ω
	85- Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-chip termination resistors	100-Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	Ω
for GX channels ⁽¹⁹⁾	120-Ω setting	_	120 ± 30%	_	_	120 ± 30%	_	Ω
	150-Ω setting		150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC coupled)	GT channels		650		—	650	—	mV
	VCCR_GXB = 0.85 V or 0.9 V		600	_	_	600		mV
VICM (AC and DC coupled) for GX Channels	VCCR_GXB = 1.0 V full bandwidth	_	700	_	_	700	_	mV
	VCCR_GXB = 1.0 V half bandwidth		750	_	_	750	_	mV
t _{LTR} ⁽⁹⁾	—	—	—	10	—	—	10	μs
t _{LTD} ⁽¹⁰⁾		4			4			μs
t _{LTD_manual} ⁽¹¹⁾	—	4	—	—	4	—	_	μs
t _{LTR_LTD_manual} ⁽¹²⁾	_	15			15	—		μs
Run Length	GT channels	_	_	72	—	—	72	CID
nun Lengin	GX channels				(8)			
CDR PPM	GT channels			1000	_	—	1000	± PPM
	GX channels				(8)			
Programmable	GT channels	_	_	14	—	—	14	dB
equalization (AC Gain) ⁽⁵⁾	GX channels				(8)			
Programmable	GT channels	_	—	7.5	—	—	7.5	dB
DC gain ⁽⁶⁾	GX channels				(8)			
Differential on-chip termination resistors ⁽⁷⁾	GT channels	_	100	_	_	100	_	Ω
Transmitter	·1							
Supported I/O Standards	_	1.4-V and 1.5-V PCML						
Data rate (Standard PCS)	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS)	GX channels	600		12,500	600	_	12,500	Mbps

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5)⁽¹⁾

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) ⁽¹⁾
--

Symbol/	Conditions		Transceive peed Grade			er e 3	Unit	
Description		Min	Тур	Max	Min	Тур	Max	
Data rate	GT channels	19,600		28,050	19,600		25,780	Mbps
Differential on-chip	GT channels		100	_		100		Ω
termination resistors	GX channels		1	1	(8)		11	
	GT channels		500	_		500	—	mV
V_{OCM} (AC coupled)	GX channels		1	1	(8)		11	
Dies/Fall times	GT channels	_	15	_		15	—	ps
Rise/Fall time	GX channels				(8)		1	
Intra-differential pair skew	GX channels				(8)			
Intra-transceiver block transmitter channel-to- channel skew	GX channels				(8)			
Inter-transceiver block transmitter channel-to- channel skew	GX channels				(8)			
CMU PLL	· · · · · ·							
Supported Data Range	—	600	—	12500	600	—	8500	Mbps
t _{pll_powerdown} (13)	—	1	—	—	1	_	—	μs
t _{pll_lock} ⁽¹⁴⁾	—	_	—	10	—	_	10	μs
ATX PLL								
	VCO post- divider L=2	8000	_	12500	8000	_	8500	Mbps
	L=4	4000		6600	4000	_	6600	Mbps
Supported Data Rate	L=8	2000	—	3300	2000	-	3300	Mbps
Range for GX Channels	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	Mbps
Supported Data Rate Range for GT Channels	VCO post- divider L=2	9800	_	14025	9800	_	12890	Mbps
t _{pll_powerdown} ⁽¹³⁾	—	1	—	—	1	—	—	μs
t _{pll_lock} ⁽¹⁴⁾	—		—	10	—	—	10	μs
fPLL							· ·	
Supported Data Range	_	600		3250/ 3.125 ⁽²³⁾	600	_	3250/ 3.125 ⁽²³⁾	Mbps
t _{pll_powerdown} (13)		1	_		1			μs

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 5 of 5) (Fransceiver Specifications for Stratix V GT Devices (Part 5 of 5) ⁽¹⁾
---	--

Symbol/ Description	Conditions	TransceiverTransceiverSpeed Grade 2Speed Grade 3				Unit		
Description		Min	Тур	Max	Min	Тур	Max	
t _{pll_lock} ⁽¹⁴⁾	—	—	_	10	—	—	10	μs

Notes to Table 28:

- (1) Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Stratix V Device Overview.
- (2) The reference clock common mode voltage is equal to the VCCR_GXB power supply level.
- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The differential eye opening specification at the receiver input pins assumes that receiver equalization is disabled. If you enable receiver equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (5) Refer to Figure 5 for the GT channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (6) Refer to Figure 6 for the GT channel DC gain curves.
- (7) CFP2 optical modules require the host interface to have the receiver data pins differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (8) Specifications for this parameter are the same as for Stratix V GX and GS devices. See Table 23 for specifications.
- (9) t_{1 TR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (10) t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high.
- (11) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (12) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (13) tpll_powerdown is the PLL powerdown minimum pulse width.
- (14) tpll lock is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (15) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (16) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (17) For ES devices, RREF is 2000 $\Omega \pm 1\%$.
- (18) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (19) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (20) Refer to Figure 4.
- (21) For oversampling design to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (22) This supply follows VCCR_GXB for both GX and GT channels.
- (23) When you use fPLL as a TXPLL of the transceiver.

Figure 4 shows the differential transmitter output waveform.

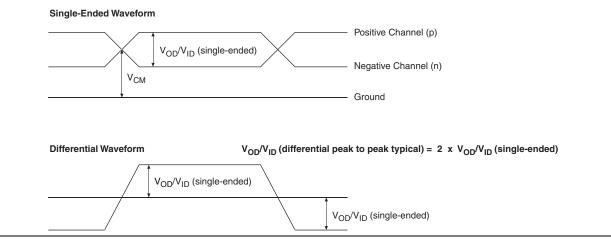


Figure 5 shows the Stratix V AC gain curves for GT channels.

Figure 5. AC Gain Curves for GT Channels

PLL Specifications

Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (-40° to 100° C).

Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (C1, C2, C2L, I2, and I2L speed grades)	5	_	800 (1)	MHz
f _{IN}	Input clock frequency (C3, I3, I3L, and I3YY speed grades)	5	_	800 (1)	MHz
	Input clock frequency (C4, I4 speed grades)	5	_	650 ⁽¹⁾	MHz
f _{INPFD}	Input frequency to the PFD	5	—	325	MHz
f _{finpfd}	Fractional Input clock frequency to the PFD	50	—	160	MHz
	PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades)	600	_	1600	MHz
f _{VCO}	PLL VCO operating range (C3, I3, I3L, I3YY speed grades)	600	_	1600	MHz
	PLL VCO operating range (C4, I4 speed grades)	600	—	1300	MHz
t _{einduty}	Input clock or external feedback clock input duty cycle	40		60	%
	Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades)	—	_	717 ⁽²⁾	MHz
f _{out}	Output frequency for an internal global or regional clock (C3, I3, I3L speed grades)	_	_	650 ⁽²⁾	MHz
	Output frequency for an internal global or regional clock (C4, I4 speed grades)	_	_	580 ⁽²⁾	MHz
	Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades)	_	_	800 (2)	MHz
f _{out_ext}	Output frequency for an external clock output (C3, I3, I3L speed grades)	_	_	667 ⁽²⁾	MHz
	Output frequency for an external clock output (C4, I4 speed grades)	_	_	553 ⁽²⁾	MHz
t _{outduty}	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	—	10	ns
f _{dyconfigclk}	Dynamic Configuration Clock used for <code>mgmt_clk</code> and <code>scanclk</code>	_	_	100	MHz
t _{LOCK}	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
t _{olock}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth		0.3	—	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	_	1.5		MHz
	PLL closed-loop high bandwidth (7)		4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift			±50	ps
t _{areset}	Minimum pulse width on the areset signal	10	_		ns

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load.

The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 36 lists high-speed I/O timing for Stratix V devices.

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 1 of 4)

Sumbol	Conditiono		C1		C2,	C2L, I	2, I2L	C3,	13, 13L	., I 3YY	C4,14			Ilmit
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards	Clock boost factor W = 1 to 40 $^{(4)}$	5		800	5		800	5		625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards ⁽³⁾	Clock boost factor W = 1 to 40 $^{(4)}$	5		800	5	_	800	5		625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(4)}$	5		520	5		520	5		420	5		420	MHz
f _{HSCLK_OUT} (output clock frequency)	_	5	_	800	5	_	800	5	_	625 (5)	5	_	525 (5)	MHz

i ani o o o i i i i gii	-Speed I/U Specifica		C1				2, I2L		-	., I3YY		C4,I	A	
Symbol	Conditions				-	-	-		-	-		-		Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{duty}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards	_	_	160	_	_	160	_	_	200	_	_	200	ps
t _{rise} & t _{fall}	Emulated Differential I/O Standards with three external output resistor networks			250			250			250			300	ps
TCCS	True Differential I/O Standards	_	_	150	_	_	150	_	_	150	_	_	150	ps
	Emulated Differential I/O Standards	_		300	_	_	300	_	_	300	_	_	300	ps
Receiver														
	SERDES factor J = 3 to 10 (11), (12), (13), (14), (15), (16)	150		1434	150	_	1434	150	_	1250	150	_	1050	Mbps
True Differential I/O Standards	SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16)	150		1600	150		1600	150		1600	150		1250	Mbps
I/O Standards - f _{HSDRDPA} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)		(7)	(6)		(7)	(6)		(7)	(6)		(7)	Mbps

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4)

Clock Network			C	1	C2, C2L	, 12, 12L	C3, I3 I3		C4	,14	Unit
NELWURK		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	$t_{JIT(per)}$	-25	25	-25	25	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	$t_{\text{JIT(cc)}}$	-50	50	-50	50	-60	60	-70	70	ps
	Duty cycle jitter	$t_{\text{JIT}(\text{duty})}$	-37.5	37.5	-37.5	37.5	-45	45	-56	56	ps

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3)

Notes to Table 42:

(1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

(2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

(3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

OCT Calibration Block Specifications

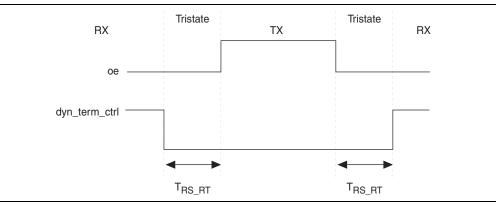

Table 43 lists the OCT calibration block specifications for Stratix V devices.

Table 43. OCT Calibration Block Specifications for Stratix V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks		_	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT $\rm R_S/R_T$ calibration	_	1000	_	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	—	32	_	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10)	_	2.5		ns

Figure 10 shows the timing diagram for the oe and dyn_term_ctrl signals.

Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals

Duty Cycle Distortion (DCD) Specifications

Table 44 lists the worst-case DCD for Stratix V devices.

Table 44. Worst-Case DCD on Stratix V I/O Pins (1)

Symbol	C1		C2, C2	L, 12, 12L		3, I3L, Syy	C4	4,14	Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
Output Duty Cycle	45	55	45	55	45	55	45	55	%

Note to Table 44:

(1) The DCD numbers do not cover the core clock network.

Configuration Specification

POR Delay Specification

Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration.

For more information about the POR delay, refer to the *Hot Socketing and Power-On Reset in Stratix V Devices* chapter.

Table 45 lists the fast and standard POR delay specification.

Table 45. Fast and Standard POR Delay Specification (1)

POR Delay	Minimum	Maximum
Fast	4 ms	12 ms
Standard	100 ms	300 ms

Note to Table 45:

(1) You can select the POR delay based on the MSEL settings as described in the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

JTAG Configuration Specifications

Table 46 lists the JTAG timing parameters and values for Stratix V devices.

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period ⁽²⁾	30	—	ns
t _{JCP}	TCK clock period ⁽²⁾	167	—	ns
t _{JCH}	TCK clock high time ⁽²⁾	14	—	ns
t _{JCL}	TCK clock low time ⁽²⁾	14	—	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	—	ns

Variant	Member Code	Active Serial ⁽¹⁾		Fast Passive Parallel ⁽²⁾			
		Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)
	D3	4	100	0.344	32	100	0.043
	D4 D5	4	100	0.534	32	100	0.067
GS		4	100	0.344	32	100	0.043
65		4	100	0.534	32	100	0.067
	D6	4	100	0.741	32	100	0.093
	D8	4	100	0.741	32	100	0.093
Е	E9	4	100	0.857	32	100	0.107
C	EB	4	100	0.857	32	100	0.107

Table 48. Minimum Configuration Time Estimation for Stratix V Devices

Notes to Table 48:

(1) DCLK frequency of 100 MHz using external CLKUSR.

(2) Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Fast Passive Parallel Configuration Timing

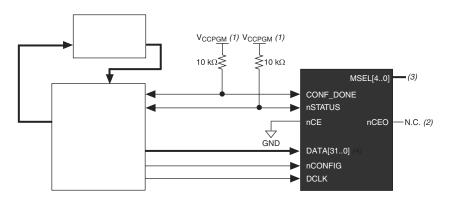
This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices.

DCLK-to-DATA[] Ratio for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[]ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[]ratio for each combination.

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FPP ×8	Disabled	Enabled	1
FFF X0	Enabled	Disabled	2
	Enabled	Enabled	2
	Disabled	Disabled	1
FPP ×16	Disabled	Enabled	2
	Enabled	Disabled	4
	Enabled	Enabled	4

 Table 49. DCLK-to-DATA[] Ratio ⁽¹⁾ (Part 1 of 2)


Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FPP ×32	Disabled	Enabled	4
FFF X02	Enabled	Disabled	8
	Enabled	Enabled	8

Note to Table 49:

(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.

Figure 11. Single Device FPP Configuration Using an External Host

Notes to Figure 11:

- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM} .
- (2) You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device's nCE pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP ×8, use DATA [7..0]. If you use FPP ×16, use DATA [15..0].

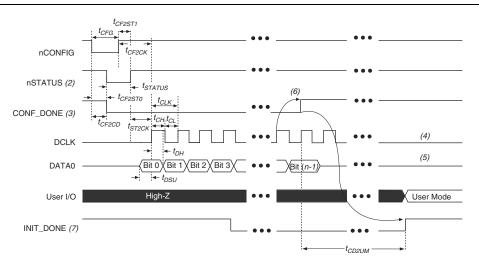
IF the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio – 1) clock cycles after the last data is latched into the Stratix V device.

Symbol	Parameter	Minimum	Maximum	Units
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{cd2cu} + (8576 × clkusr period)	_	—

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 53:

(1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.


(2) t_{CF2CD}, t_{CF2ST0}, t_{CF2ST0}, t_{CF6}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63.

(3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

Passive Serial Configuration Timing

Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Figure 15. PS Configuration Timing Waveform ⁽¹⁾

Notes to Figure 15:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power-up, the Stratix V device holds <code>nSTATUS</code> low for the time of the POR delay.
- (3) After power-up, before and during configuration, CONF DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**.
- (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Table 60.	Glossary	(Part 3 of 4)
-----------	----------	---------------

Letter	Subject	Definitions				
	SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS RSKM				
S	Single-ended voltage Single-ended voltage Single-ended voltage Voltage Referenced I/O standard Voltage Voltage Voltage Voltage					
	t _C	High-speed receiver and transmitter input and output clock period.				
	TCCS (channel- to-channel-skew)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table).				
	t _{DUTY}	High-speed I/O block—Duty cycle on the high-speed transmitter output clock.				
Т		Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{receiver input clock frequency multiplication factor}) = t_c/w)$				
	t _{FALL}	Signal high-to-low transition time (80-20%)				
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.				
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.				
	t _{outpj_dc}	Period jitter on the dedicated clock output driven by a PLL.				
	t _{RISE}	Signal low-to-high transition time (20-80%)				
U	_	_				

Document Revision History

Table 61 lists the revision history for this chapter.

 Table 61. Document Revision History (Part 1 of 3)

Date	Version	Changes	
June 2018	3.9	 Added the "Stratix V Device Overshoot Duration" figure. 	
		 Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. 	
		 Changed the minimum value for t_{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. 	
		 Changed the condition for 100-Ω R_D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. 	
April 2017	3.8	 Changed the minimum value for t_{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table 	
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 	
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 	
		 Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. 	
June 2016	3.7	 Added the V_{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table 	
Julie 2010		 Added the I_{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. 	
December 2015	3.6	Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.	
December 2015	3.5	 Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 	
December 2015		 Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. 	
		• Changed the data rate specification for transceiver speed grade 3 in the following tables:	
		 "Transceiver Specifications for Stratix V GX and GS Devices" 	
		 "Stratix V Standard PCS Approximate Maximum Date Rate" 	
		 "Stratix V 10G PCS Approximate Maximum Data Rate" 	
July 2015	3.4	 Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. 	
		 Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 	
		 Changed the t_{co} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. 	
		 Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. 	

Table 61. Document Revision History (Part 2 of 3)

Date	Version	Changes
		Added the I3YY speed grade and changed the data rates for the GX channel in Table 1.
		 Added the I3YY speed grade to the V_{CC} description in Table 6.
		 Added the I3YY speed grade to V_{CCHIP_L}, V_{CCHIP_R}, V_{CCHSSI_L}, and V_{CCHSSI_R} descriptions in Table 7.
		■ Added 240-Ω to Table 11.
		Changed CDR PPM tolerance in Table 23.
		 Added additional max data rate for fPLL in Table 23.
		 Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25.
		 Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26.
		Changed CDR PPM tolerance in Table 28.
		 Added additional max data rate for fPLL in Table 28.
		Changed the mode descriptions for MLAB and M20K in Table 33.
		• Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36.
November 2014	3.3	 Changed the frequency ranges for C1 and C2 in Table 39.
		Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47.
		 Added note about nSTATUS to Table 50, Table 51, Table 54.
		 Changed the available settings in Table 58.
		 Changed the note in "Periphery Performance".
		 Updated the "I/O Standard Specifications" section.
		 Updated the "Raw Binary File Size" section.
		 Updated the receiver voltage input range in Table 22.
		 Updated the max frequency for the LVDS clock network in Table 36.
		 Updated the DCLK note to Figure 11.
		 Updated Table 23 VO_{CM} (DC Coupled) condition.
		 Updated Table 6 and Table 7.
		■ Added the DCLK specification to Table 55.
		 Updated the notes for Table 47.
		 Updated the list of parameters for Table 56.
November 2013	3.2	Updated Table 28
November 2013	3.1	Updated Table 33
November 2013	3.0	Updated Table 23 and Table 28
October 2013	2.9	 Updated the "Transceiver Characterization" section
		 Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59
October 2013	2.8	 Added Figure 1 and Figure 3
		 Added the "Transceiver Characterization" section
		 Removed all "Preliminary" designations.

Table 61. Document Revision History (Part 3 of 3)

Date	Version	Changes
		■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60
May 2013	2.7	■ Added Table 24, Table 48
		 Updated Figure 9, Figure 10, Figure 11, Figure 12
February 2013	2.6	 Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46
		 Updated "Maximum Allowed Overshoot and Undershoot Voltage"
		 Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35
		Added Table 33
		 Added "Fast Passive Parallel Configuration Timing"
December 0010	0.5	 Added "Active Serial Configuration Timing"
December 2012	2.5	 Added "Passive Serial Configuration Timing"
		 Added "Remote System Upgrades"
		 Added "User Watchdog Internal Circuitry Timing Specification"
		 Added "Initialization"
		 Added "Raw Binary File Size"
		 Added Figure 1, Figure 2, and Figure 3.
June 2012	2.4	 Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59.
		 Various edits throughout to fix bugs.
		 Changed title of document to Stratix V Device Datasheet.
		 Removed document from the Stratix V handbook and made it a separate document.
February 2012	2.3	■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31.
December 2011	2.2	■ Added Table 2–31.
		■ Updated Table 2–28 and Table 2–34.
Neurometren 0011	2.1	 Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices.
November 2011		■ Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25.
		 Various edits throughout to fix SPRs.
		 Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24.
May 2011	2.0	 Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title.
		 Chapter moved to Volume 1.
		 Minor text edits.
		■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23.
December 2010	1.1	 Converted chapter to the new template.
		 Minor text edits.
July 2010	1.0	Initial release.