Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 359200 | | Number of Logic Elements/Cells | 952000 | | Total RAM Bits | 53248000 | | Number of I/O | 696 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-HBGA (45x45) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxeabk2h40c2ln | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Page 6 Electrical Characteristics Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2) | Symbol | Description | Condition | Min ⁽⁴⁾ | Тур | Max ⁽⁴⁾ | Unit | |-------------------|------------------------|--------------|--------------------|-----|--------------------|------| | t | Power cupply ramp time | Standard POR | 200 μs | _ | 100 ms | _ | | t _{RAMP} | Power supply ramp time | Fast POR | 200 μs | _ | 4 ms | _ | #### Notes to Table 6: - (1) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. - (2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low. - (3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades. - (4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices. Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | | |-----------------------|---|------------|------------------------|---------|------------------------|------|--| | V _{CCA_GXBL} | Transceiver channel PLL power supply (left | GX, GS, GT | 2.85 | 3.0 | 3.15 | V | | | (1), (3) | side) | ७४, ७७, ७१ | 2.375 | 2.5 | 2.625 | V | | | V _{CCA_GXBR} | Transceiver channel PLL power supply (right | GX, GS | 2.85 | 3.0 | 3.15 | V | | | $(1), (\overline{3})$ | side) | রম, রহ | 2.375 | 2.5 | 2.625 | V | | | V _{CCA_GTBR} | Transceiver channel PLL power supply (right side) | GT | 2.85 | 3.0 | 3.15 | V | | | | Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V _{CCHIP_L} | Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V_{CCHIP_R} | Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V _{CCHSSI_L} | Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades) | GX, GS, GT | 0.87 | 0.9 | 0.93 | V | | | V _{CCHSSI_R} | Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | | | | | 0.82 | 0.85 | 0.88 | | | | V _{CCR_GXBL} | Receiver analog power supply (left side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | | (2) | Treceiver arialog power supply (left side) | un, us, ui | 0.97 | 1.0 | 1.03 | V | | | | | | 1.03 | 1.05 | 1.07 | | | Page 10 Electrical Characteristics Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 2 of 2) | | | | Calibration Accuracy | | | | | | |--|--|--|----------------------|------------|----------------|------------|------|--| | Symbol | Description | Conditions | C1 | C2,I2 | C3,I3,
I3YY | C4,I4 | Unit | | | 50-Ω R _S | Internal series termination with calibration (50- Ω setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | | $34\text{-}\Omega$ and $40\text{-}\Omega$ R_S | Internal series termination with calibration (34- Ω and 40- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | | 48 - Ω , 60 - Ω , 80 - Ω , and 240 - Ω R _S | Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting) | V _{CCIO} = 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | | 50-Ω R _T | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 2.5, 1.8,
1.5, 1.2 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | | $\begin{array}{c} 20\text{-}\Omega,30\text{-}\Omega,\\ 40\text{-}\Omega,60\text{-}\Omega,\\ \text{and}\\ 120\text{-}\OmegaR_T \end{array}$ | Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | | 60- Ω and 120- Ω R _T | Internal parallel termination with calibration (60- Ω and 120- Ω setting) | V _{CCIO} = 1.2 | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | | $\begin{array}{c} \textbf{25-}\Omega \\ \textbf{R}_{S_left_shift} \end{array}$ | Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | ### Note to Table 11: Table 12 lists the Stratix V OCT without calibration resistance tolerance to PVT changes. Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 1 of 2) | | | | Resistance Tolerance | | | | | |-----------------------------|--|-----------------------------------|----------------------|-------|-----------------|--------|------| | Symbol | Description | Conditions | C 1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | 25-Ω R, 50-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 3.0 and 2.5 V | ±30 | ±30 | ±40 | ±40 | % | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | ⁽¹⁾ OCT calibration accuracy is valid at the time of calibration only. Electrical Characteristics Page 11 | | | | Resistance Tolerance | | | | | |----------------------|--|-----------------------------------|----------------------|-------|-----------------|--------|------| | Symbol | Description | Conditions | C1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | | 100-Ω R _D | Internal differential termination (100-Ω setting) | V _{CCPD} = 2.5 V | ±25 | ±25 | ±25 | ±25 | % | Calibration accuracy for the calibrated series and parallel OCTs are applicable at the moment of calibration. When voltage and temperature conditions change after calibration, the tolerance may change. OCT calibration is automatically performed at power-up for OCT-enabled I/Os. Table 13 lists the OCT variation with temperature and voltage after power-up calibration. Use Table 13 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration. Equation 1. OCT Variation Without Recalibration for Stratix V Devices (1), (2), (3), (4), (5), (6) $$R_{OCT} = R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$ ### Notes to Equation 1: - (1) The R_{OCT} value shows the range of OCT resistance with the variation of temperature and V_{CCIO} . - (2) R_{SCAL} is the OCT resistance value at power-up. - (3) ΔT is the variation of temperature with respect to the temperature at power-up. - (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power-up. - (5) dR/dT is the percentage change of R_{SCAL} with temperature. - (6) dR/dV is the percentage change of R_{SCAL} with voltage. Table 13 lists the on-chip termination variation after power-up calibration. Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 1 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | |--------|--|-----------------------|---------|------| | | | 3.0 | 0.0297 | | | | OCT variation with voltage without recalibration | 2.5 | 0.0344 | | | dR/dV | | 1.8 | 0.0499 | %/mV | | | | 1.5 | 0.0744 | | | | | 1.2 | 0.1241 | | Switching Characteristics Page 27 Table 26 shows the approximate maximum data rate using the 10G PCS. Table 26. Stratix V 10G PCS Approximate Maximum Data Rate (1) | Mode ⁽²⁾ | Transceiver | PMA Width | 64 | 40 | 40 | 40 | 32 | 32 | |---------------------|-------------|--|--------------|-------|-------|------|----------|-------| | Widue (2) | Speed Grade | PCS Width | 64 | 66/67 | 50 | 40 | 64/66/67 | 32 | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 14.1 | 14.1 | 10.69 | 14.1 | 13.6 | 13.6 | | | 2 | C1, C2, C2L, I2, I2L
core speed grade | 12.5 | 12.5 | 10.69 | 12.5 | 12.5 | 12.5 | | | 2 | C3, I3, I3L
core speed grade | 12.5 | 12.5 | 10.69 | 12.5 | 10.88 | 10.88 | | FIFO or
Register | 3 | C1, C2, C2L, I2, I2L
core speed grade | | | | | | | | | | C3, I3, I3L
core speed grade | 10.3125 Ghns | | | | | | | | | C4, I4
core speed grade | | | | | | | | | | I3YY
core speed grade | | | | | | | #### Notes to Table 26: ⁽¹⁾ The maximum data rate is in Gbps. ⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency. Switching Characteristics Page 29 Figure 2 shows the differential transmitter output waveform. Figure 2. Differential Transmitter Output Waveform Figure 3 shows the Stratix V AC gain curves for GX channels. Figure 3. AC Gain Curves for GX Channels (full bandwidth) Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23. Table 28 lists the Stratix V GT transceiver specifications. Page 30 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$ | Symbol/ | Conditions | 5 | Transceive
Speed Grade | | | Transceive
peed Grade | | Unit | |--|--|-----------------------------|---------------------------|-----------------------------|------------------------|--------------------------|--------------|------------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Reference Clock | • | • | • | • | • | • | • | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V PCN | /IL, 1.4-V PC | ML, 1.5-V P | CML, 2.5-V
and HCSL | PCML, Diffe | rential LVPE | ECL, LVDS, | | Standards | RX reference clock pin | | 1.4-V PCML | ., 1.5-V PCN | IL, 2.5-V PC | ML, LVPEC | L, and LVDS | ; | | Input Reference Clock
Frequency (CMU
PLL) ⁽⁶⁾ | _ | 40 | _ | 710 | 40 | _ | 710 | MHz | | Input Reference Clock
Frequency (ATX PLL) (6) | _ | 100 | _ | 710 | 100 | _ | 710 | MHz | | Rise time | 20% to 80% | _ | _ | 400 | _ | _ | 400 | ps | | Fall time | 80% to 20% | _ | _ | 400 | _ | <u> </u> | 400 | | | Duty cycle | _ | 45 | _ | 55 | 45 | _ | 55 | % | | Spread-spectrum
modulating clock
frequency | PCI Express
(PCIe) | 30 | _ | 33 | 30 | _ | 33 | kHz | | Spread-spectrum
downspread | PCle | _ | 0 to -0.5 | _ | _ | 0 to -0.5 | _ | % | | On-chip termination resistors (19) | _ | _ | 100 | _ | _ | 100 | _ | Ω | | Absolute V _{MAX} (3) | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | V | | | RX reference
clock pin | _ | _ | 1.2 | _ | _ | 1.2 | | | Absolute V _{MIN} | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | _ | 1600 | mV | | V _{ICM} (AC coupled) | Dedicated
reference
clock pin | ce 1050/1000 ⁽²⁾ | | 1050/1000 (2) 1050/1000 (2) | | 2) | mV | | | | RX reference clock pin | 1 | .0/0.9/0.85 | (22) | 1 | .0/0.9/0.85 | (22) | V | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | mV | Switching Characteristics Page 35 Table 29 shows the $\ensuremath{V_{\text{OD}}}$ settings for the GT channel. Table 29. Typical V_{0D} Setting for GT Channel, TX Termination = 100 Ω | Symbol | V _{op} Setting | V _{op} Value (mV) | |---|-------------------------|----------------------------| | | 0 | 0 | | | 1 | 200 | | V differential peak to peak tunical (1) | 2 | 400 | | V _{OD} differential peak to peak typical ⁽¹⁾ | 3 | 600 | | | 4 | 800 | | | 5 | 1000 | ### Note: (1) Refer to Figure 4. Page 40 Switching Characteristics Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3) | Symbol | Parameter | Min | Тур | Max | Unit | |--|---|------|---------|--|-----------| | → (3) (4) | Input clock cycle-to-cycle jitter (f _{REF} ≥ 100 MHz) | _ | _ | 0.15 | UI (p-p) | | t _{INCCJ} (3), (4) | Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz) | -750 | | +750 | ps (p-p) | | t _{OUTPJ_DC} (5) | Period Jitter for dedicated clock output ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 175 ⁽¹⁾ | ps (p-p) | | | Period Jitter for dedicated clock output (f _{OUT} < 100 MHz) | _ | _ | 17.5 ⁽¹⁾ | mUI (p-p) | | · (5) | Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 250 ⁽¹¹⁾ ,
175 ⁽¹²⁾ | ps (p-p) | | t _{FOUTPJ_DC} (5) | Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz) | _ | _ | 25 ⁽¹¹⁾ ,
17.5 ⁽¹²⁾ | mUI (p-p) | | + (5) | Cycle-to-Cycle Jitter for a dedicated clock output $(f_{OUT} \ge 100 \text{ MHz})$ | _ | _ | 175 | ps (p-p) | | t _{outccj_dc} (5) | Cycle-to-Cycle Jitter for a dedicated clock output (f _{OUT} < 100 MHz) | _ | _ | 17.5 | mUI (p-p) | | + (5) | Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 250 ⁽¹¹⁾ ,
175 ⁽¹²⁾ | ps (p-p) | | t _{FOUTCCJ_DC} ⁽⁵⁾ | Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)+ | _ | _ | 25 ⁽¹¹⁾ ,
17.5 ⁽¹²⁾ | mUI (p-p) | | t _{OUTPJ_IO} (5), | Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100$ MHz) | _ | _ | 600 | ps (p-p) | | (8) | Period Jitter for a clock output on a regular I/O (f _{OUT} < 100 MHz) | _ | _ | 60 | mUI (p-p) | | t _{FOUTPJ 10} (5), | Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 600 (10) | ps (p-p) | | (8), (11) | Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz) | _ | _ | 60 (10) | mUI (p-p) | | t _{outccj_10} (5), | Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100$ MHz) | _ | _ | 600 | ps (p-p) | | (8) | Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz) | _ | _ | 60 (10) | mUI (p-p) | | t _{ғоитссу_10} | Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100$ MHz) | _ | _ | 600 (10) | ps (p-p) | | (8), (11) | Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz) | _ | _ | 60 | mUI (p-p) | | t _{CASC_OUTPJ_DC} | Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 175 | ps (p-p) | | (5), (6) | Period Jitter for a dedicated clock output in cascaded PLLs (f _{OUT} < 100 MHz) | _ | _ | 17.5 | mUI (p-p) | | f _{DRIFT} | Frequency drift after PFDENA is disabled for a duration of 100 μs | _ | _ | ±10 | % | | dK _{BIT} | Bit number of Delta Sigma Modulator (DSM) | 8 | 24 | 32 | Bits | | k _{VALUE} | Numerator of Fraction | 128 | 8388608 | 2147483648 | _ | Page 44 Switching Characteristics # **Periphery Performance** This section describes periphery performance, including high-speed I/O and external memory interface. I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load. The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system. ### **High-Speed I/O Specification** Table 36 lists high-speed I/O timing for Stratix V devices. Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 1 of 4) | _ | | | | | | | | | | | | | | | |--|---------------------------------------|-----|-----|-----|-----|--------|--------|-----|---------|------------|-------|-----|------------|-------| | Cumbal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | 13, I3L | ., I3YY | C4,14 | | Unit | | | Symbol | Conuntions | Min | Тур | Max | UIIIL | | f _{HSCLK_in} (input
clock
frequency)
True
Differential
I/O Standards | Clock boost factor
W = 1 to 40 (4) | 5 | | 800 | 5 | _ | 800 | 5 | | 625 | 5 | | 525 | MHz | | f _{HSCLK_in} (input
clock
frequency)
Single Ended
I/O
Standards ⁽³⁾ | Clock boost factor
W = 1 to 40 (4) | 5 | | 800 | 5 | _ | 800 | 5 | | 625 | 5 | | 525 | MHz | | f _{HSCLK_in} (input
clock
frequency)
Single Ended
I/O Standards | Clock boost factor
W = 1 to 40 (4) | 5 | | 520 | 5 | _ | 520 | 5 | | 420 | 5 | | 420 | MHz | | f _{HSCLK_OUT}
(output clock
frequency) | _ | 5 | | 800 | 5 | _ | 800 | 5 | | 625
(5) | 5 | | 525
(5) | MHz | Switching Characteristics Page 47 Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 4 of 4) | Cumbal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | I3, I3I | ., I3YY | | C4,I4 | 4 | II-ni4 | |----------------------------------|--|-----|-----|-----------|-----|--------|-----------|-----|---------|-----------|-----|-------|-----------|----------| | Symbol | Symbol Conditions - | | Тур | Max | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | | SERDES factor J
= 3 to 10 | (6) | _ | (8) | (6) | _ | (8) | (6) | _ | (8) | (6) | _ | (8) | Mbps | | f _{HSDR} (data
rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | Mbps | | DPA Mode | | | | | | | | | | | | | | | | DPA run
length | _ | _ | _ | 1000
0 | _ | | 1000
0 | _ | _ | 1000
0 | _ | _ | 1000
0 | UI | | Soft CDR mod | e | | | | | | | | | | | | | | | Soft-CDR
PPM
tolerance | _ | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | ±
PPM | | Non DPA Mode | е | | | | | | | | | | | | | | | Sampling
Window | _ | _ | | 300 | | | 300 | _ | | 300 | _ | | 300 | ps | ### Notes to Table 36: - (1) When J = 3 to 10, use the serializer/deserializer (SERDES) block. - (2) When J = 1 or 2, bypass the SERDES block. - (3) This only applies to DPA and soft-CDR modes. - (4) Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate. - (5) This is achieved by using the **LVDS** clock network. - (6) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate. - (7) The maximum ideal frequency is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean. - (8) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported. - (9) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps. - (10) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin. - (11) The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design-dependent and requires timing analysis. - (12) Stratix V RX LVDS will need DPA. For Stratix V TX LVDS, the receiver side component must have DPA. - (13) Stratix V LVDS serialization and de-serialization factor needs to be x4 and above. - (14) Requires package skew compensation with PCB trace length. - (15) Do not mix single-ended I/O buffer within LVDS I/O bank. - (16) Chip-to-chip communication only with a maximum load of 5 pF. - (17) When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported. Page 48 Switching Characteristics Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled. Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled Table 37 lists the DPA lock time specifications for Stratix V devices. Table 37. DPA Lock Time Specifications for Stratix V GX Devices Only (1), (2), (3) | Standard | Training Pattern | Number of Data
Transitions in One
Repetition of the
Training Pattern | Number of
Repetitions per 256
Data Transitions ⁽⁴⁾ | Maximum | |--------------------|----------------------|---|---|----------------------| | SPI-4 | 00000000001111111111 | 2 | 128 | 640 data transitions | | Parallel Rapid I/O | 00001111 | 2 | 128 | 640 data transitions | | Faranei napiu 1/0 | 10010000 | 4 | 64 | 640 data transitions | | Miscellaneous | 10101010 | 8 | 32 | 640 data transitions | | IVIISCEIIAITEOUS | 01010101 | 8 | 32 | 640 data transitions | #### Notes to Table 37: - (1) The DPA lock time is for one channel. - (2) One data transition is defined as a 0-to-1 or 1-to-0 transition. - (3) The DPA lock time stated in this table applies to both commercial and industrial grade. - (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions. Figure 8 shows the **LVDS** soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Figure 8. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate \geq 1.25 Gbps LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification 25 8.5 0.35 0.1 F1 F2 F3 F4 Jitter Frequency (Hz) Configuration Specification Page 53 | Table 46. | JTAG Timino | Parameters a | nd Values | for Stratix V Devices | |-----------|-------------|--------------|-----------|-----------------------| |-----------|-------------|--------------|-----------|-----------------------| | Symbol | Description | Min | Max | Unit | |-------------------|--|-----|-------------------|------| | t _{JPH} | JTAG port hold time | 5 | _ | ns | | t _{JPCO} | JTAG port clock to output | _ | 11 ⁽¹⁾ | ns | | t _{JPZX} | JTAG port high impedance to valid output | _ | 14 ⁽¹⁾ | ns | | t _{JPXZ} | JTAG port valid output to high impedance | _ | 14 ⁽¹⁾ | ns | #### Notes to Table 46: - (1) A 1 ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, t_{JPCO} = 12 ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V. - (2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming. # **Raw Binary File Size** For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices". Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices. Table 47. Uncompressed .rbf Sizes for Stratix V Devices | Family | Device | Package | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) (4), (5) | |--------------|--------|------------------------------|--------------------------------|---------------------------------| | | ECCVAO | H35, F40, F35 ⁽²⁾ | 213,798,880 | 562,392 | | | 5SGXA3 | H29, F35 ⁽³⁾ | 137,598,880 | 564,504 | | | 5SGXA4 | _ | 213,798,880 | 563,672 | | | 5SGXA5 | _ | 269,979,008 | 562,392 | | | 5SGXA7 | _ | 269,979,008 | 562,392 | | Stratix V GX | 5SGXA9 | _ | 342,742,976 | 700,888 | | | 5SGXAB | _ | 342,742,976 | 700,888 | | | 5SGXB5 | _ | 270,528,640 | 584,344 | | | 5SGXB6 | _ | 270,528,640 | 584,344 | | | 5SGXB9 | _ | 342,742,976 | 700,888 | | | 5SGXBB | _ | 342,742,976 | 700,888 | | Chrotin V CT | 5SGTC5 | _ | 269,979,008 | 562,392 | | Stratix V GT | 5SGTC7 | _ | 269,979,008 | 562,392 | | | 5SGSD3 | _ | 137,598,880 | 564,504 | | | FCCCD4 | F1517 | 213,798,880 | 563,672 | | Ctrativ V CC | 5SGSD4 | _ | 137,598,880 | 564,504 | | Stratix V GS | 5SGSD5 | _ | 213,798,880 | 563,672 | | | 5SGSD6 | _ | 293,441,888 | 565,528 | | | 5SGSD8 | _ | 293,441,888 | 565,528 | Page 56 Configuration Specification Table 49. DCLK-to-DATA[] Ratio (1) (Part 2 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | | Disabled | Disabled | 1 | | EDD22 | Disabled | Enabled | 4 | | FPP ×32 | Enabled | Disabled | 8 | | | Enabled | Enabled | 8 | #### Note to Table 49: (1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data. If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio -1) clock cycles after the last data is latched into the Stratix V device. Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration. Figure 11. Single Device FPP Configuration Using an External Host ### Notes to Figure 11: - (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM}. - (2) You can leave the nceo pin unconnected or use it as a user I/O pin when it does not feed another device's nce pin. - (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (4) If you use FPP $\times 8$, use DATA [7..0]. If you use FPP $\times 16$, use DATA [15..0]. Configuration Specification Page 59 Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2) #### Notes to Figure 13: - (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55. - (2) The beginning of this waveform shows the device in user mode. In user mode, nconfig, nstatus, and conf_done are at logic high levels. When nconfig is pulled low, a reconfiguration cycle begins. - (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay. - (4) After power-up, before and during configuration, CONF DONE is low. - (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (6) "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55. - (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge. - (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Page 60 Configuration Specification Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA [] ratio is more than 1. Table 51. FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1 $^{(1)}$ | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nconfig low to conf_done low | _ | 600 | ns | | t _{CF2ST0} | nconfig low to nstatus low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | _ | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽²⁾ | μS | | t _{CF2ST1} | nconfig high to nstatus high | _ | 1,506 ⁽²⁾ | μS | | t _{CF2CK} (5) | nconfig high to first rising edge on DCLK | 1,506 | _ | μS | | t _{ST2CK} (5) | nstatus high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | N-1/f _{DCLK} ⁽⁵⁾ | _ | S | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f | DCLK frequency (FPP ×8/×16) | _ | 125 | MHz | | f _{MAX} | DCLK frequency (FPP ×32) | _ | 100 | MHz | | t _R | Input rise time | _ | 40 | ns | | t _F | Input fall time | _ | 40 | ns | | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t _{CD2CU} +
(8576 × CLKUSR
period) ⁽⁴⁾ | _ | _ | #### Notes to Table 51: - (1) Use these timing parameters when you use the decompression and design security features. - (2) You can obtain this value if you do not delay configuration by extending the nconfig or nstatus low pulse width. - (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device. - (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (5) N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating. - (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. Configuration Specification Page 61 # **Active Serial Configuration Timing** Table 52 lists the DCLK frequency specification in the AS configuration scheme. Table 52. DCLK Frequency Specification in the AS Configuration Scheme (1), (2) | Minimum | Typical | Maximum | Unit | |---------|---------|---------|------| | 5.3 | 7.9 | 12.5 | MHz | | 10.6 | 15.7 | 25.0 | MHz | | 21.3 | 31.4 | 50.0 | MHz | | 42.6 | 62.9 | 100.0 | MHz | #### Notes to Table 52: - (1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source. - (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz. Figure 14 shows the single-device configuration setup for an AS ×1 mode. Figure 14. AS Configuration Timing ### Notes to Figure 14: - (1) If you are using AS ×4 mode, this signal represents the AS_DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle. - (2) The initialization clock can be from internal oscillator or ${\tt CLKUSR}$ pin. - (3) After the option bit to enable the $INIT_DONE$ pin is configured into the device, the $INIT_DONE$ goes low. Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices. Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 1 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |-----------------|---|---------|---------|-------| | t _{CO} | DCLK falling edge to AS_DATAO/ASDO output | _ | 2 | ns | | t _{SU} | Data setup time before falling edge on DCLK | 1.5 | _ | ns | | t _H | Data hold time after falling edge on DCLK | 0 | _ | ns | Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ## **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) #### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Page 64 I/O Timing # **Remote System Upgrades** Table 56 lists the timing parameter specifications for the remote system upgrade circuitry. **Table 56. Remote System Upgrade Circuitry Timing Specifications** | Parameter | Minimum | Maximum | Unit | |------------------------------|---------|---------|------| | t _{RU_nCONFIG} (1) | 250 | _ | ns | | t _{RU_nRSTIMER} (2) | 250 | _ | ns | #### Notes to Table 56: - (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. # **User Watchdog Internal Circuitry Timing Specification** Table 57 lists the operating range of the 12.5-MHz internal oscillator. **Table 57. 12.5-MHz Internal Oscillator Specifications** | Minimum | Typical | Maximum | Units | | |---------|---------|---------|-------|--| | 5.3 | 7.9 | 12.5 | MHz | | # I/O Timing Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer. Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route. You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page. # **Programmable IOE Delay** Table 58 lists the Stratix V IOE programmable delay settings. Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2) | Doromotor | Avoilable | Available Min | | Fast Model | | Slow Model | | | | | | | |---------------|-----------------------|---------------|------------|------------|-------|------------|-------|-------|-------|-------------|-------|------| | Parameter (1) | Available Of Settings | Offset
(2) | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | D1 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D2 | 32 | 0 | 0.230 | 0.244 | 0.415 | 0.415 | 0.459 | 0.503 | 0.417 | 0.456 | 0.500 | ns | Page 66 Glossary Table 60. Glossary (Part 2 of 4) | Letter | Subject | Definitions | | | |------------------|-------------------------------|--|--|--| | G | | | | | | Н | _ | _ | | | | 1 | | | | | | J | JTAG Timing
Specifications | High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS TDI TCK TJPSU TJ | | | | K
L
M
N | _ | | | | | P | PLL
Specifications | Diagram of PLL Specifications (1) Switchover CLKOUT Pins Four Core Clock Reconfigurable in User Mode External Feedback Note: (1) Core Clock can only be fed by dedicated clock input pins or PLL outputs. | | | | Q | _ | <u> </u> | | | | R | R _L | Receiver differential input discrete resistor (external to the Stratix V device). | | | | | L | ricceiver differential input discrete resistor (external to the Straux v device). | | | Page 70 Document Revision History Table 61. Document Revision History (Part 2 of 3) | Date | Version | Changes | |---------------|---------|---| | | | ■ Added the I3YY speed grade and changed the data rates for the GX channel in Table 1. | | | | ■ Added the I3YY speed grade to the V _{CC} description in Table 6. | | | | ■ Added the I3YY speed grade to V _{CCHIP_L} , V _{CCHIP_R} , V _{CCHSSI_L} , and V _{CCHSSI_R} descriptions in Table 7. | | | | ■ Added 240-Ω to Table 11. | | | | ■ Changed CDR PPM tolerance in Table 23. | | | | ■ Added additional max data rate for fPLL in Table 23. | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25. | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26. | | | | ■ Changed CDR PPM tolerance in Table 28. | | | | ■ Added additional max data rate for fPLL in Table 28. | | | | ■ Changed the mode descriptions for MLAB and M20K in Table 33. | | | | ■ Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36. | | November 2014 | 3.3 | ■ Changed the frequency ranges for C1 and C2 in Table 39. | | | | ■ Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47. | | | | ■ Added note about nSTATUS to Table 50, Table 51, Table 54. | | | | ■ Changed the available settings in Table 58. | | | | ■ Changed the note in "Periphery Performance". | | | | ■ Updated the "I/O Standard Specifications" section. | | | | ■ Updated the "Raw Binary File Size" section. | | | | ■ Updated the receiver voltage input range in Table 22. | | | | ■ Updated the max frequency for the LVDS clock network in Table 36. | | | | ■ Updated the DCLK note to Figure 11. | | | | ■ Updated Table 23 VO _{CM} (DC Coupled) condition. | | | | ■ Updated Table 6 and Table 7. | | | | ■ Added the DCLK specification to Table 55. | | | | ■ Updated the notes for Table 47. | | | | ■ Updated the list of parameters for Table 56. | | November 2013 | 3.2 | ■ Updated Table 28 | | November 2013 | 3.1 | ■ Updated Table 33 | | November 2013 | 3.0 | ■ Updated Table 23 and Table 28 | | October 2013 | 2.9 | ■ Updated the "Transceiver Characterization" section | | | | ■ Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59 | | October 2013 | 2.8 | ■ Added Figure 1 and Figure 3 | | | | ■ Added the "Transceiver Characterization" section | | | | ■ Removed all "Preliminary" designations. |