

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	359200
Number of Logic Elements/Cells	952000
Total RAM Bits	53248000
Number of I/O	696
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-HBGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxeabk2h40c2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

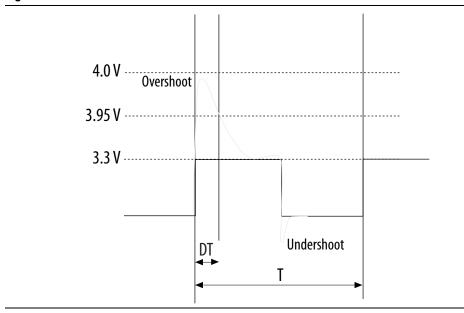

Page 4 Electrical Characteristics

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

Table 5. Maximum Allowed Overshoot During Transitions

Symbol	Description	Condition (V)	Overshoot Duration as % @ T _J = 100°C	Unit
		3.8	100	%
		3.85	64	%
		3.9	36	%
		3.95	21	%
Vi (AC)	AC input voltage	4	12	%
		4.05	7	%
		4.1	4	%
		4.15	2	%
		4.2	1	%

Figure 1. Stratix V Device Overshoot Duration

Electrical Characteristics Page 5

Recommended Operating Conditions

This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
	Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades)	_	0.87	0.9	0.93	V
V _{CC}	Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) (3)	_	0.82	0.85	0.88	V
V _{CCPT}	Power supply for programmable power technology	_	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	_	2.375	2.5	2.625	V
V (1)	I/O pre-driver (3.0 V) power supply		2.85	3.0	3.15	V
V _{CCPD} ⁽¹⁾	I/O pre-driver (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	٧
	I/O buffers (2.5 V) power supply	_	2.375	2.5	2.625	V
	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	٧
V_{CCIO}	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply		1.283	1.35	1.45	V
	I/O buffers (1.25 V) power supply		1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply		2.85	3.0	3.15	V
V_{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply		2.375	2.5	2.625	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply		1.45	1.5	1.55	V
V _{CCBAT} (2)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.0	V
V _I	DC input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
т.	Operating junction temperature	Commercial	0	_	85	°C
T _J	Operating junction temperature	Industrial	-40	_	100	°C

Page 12 Electrical Characteristics

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1)

Symbol	Description	V _{CCIO} (V)	Typical	Unit
		3.0	0.189	
	OCT variation with temperature without recalibration	2.5	0.208	
dR/dT		1.8	0.266	%/°C
	Willout recalibration	1.5	0.273	1
		1.2	0.317	

Note to Table 13:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$

Pin Capacitance

Table 14 lists the Stratix V device family pin capacitance.

Table 14. Pin Capacitance for Stratix V Devices

Symbol	Description	Value	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	6	pF

Hot Socketing

Table 15 lists the hot socketing specifications for Stratix V devices.

Table 15. Hot Socketing Specifications for Stratix V Devices

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Note to Table 15:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 2 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Spread-spectrum downspread	PCle	_	0 to -0.5	_	_	0 to -0.5	_	_	0 to -0.5	_	%
On-chip termination resistors (21)	_	_	100	_	_	100	_	_	100	_	Ω
Absolute V _{MAX} ⁽⁵⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_	_	1.2	_	_	1.2	_	_	1.2	
Absolute V _{MIN}	_	-0.4		_	-0.4	_		-0.4	_	1	V
Peak-to-peak differential input voltage	_	200	_	1600	200		1600	200	_	1600	mV
V _{ICM} (AC coupled) (3)	Dedicated reference clock pin	1050/	1000/90	00/850 ⁽²⁾	1050/1000/900/850 (2)			1050/1000/900/850 (2)			mV
coupled) (9	RX reference clock pin	1.	.0/0.9/0	.85 ⁽⁴⁾	1.	0/0.9/0	.85 ⁽⁴⁾	1.0/0.9/0.85 (4)			V
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
	100 Hz	_	_	-70	_	_	-70	_	_	-70	dBc/Hz
Transmitter	1 kHz	_	_	-90	_	_	-90	_	_	-90	dBc/Hz
REFCLK Phase Noise	10 kHz		_	-100	_	_	-100	_	_	-100	dBc/Hz
(622 MHz) ⁽²⁰⁾	100 kHz	_	_	-110	_	_	-110	_	_	-110	dBc/Hz
	≥1 MHz	_	_	-120	_	_	-120	_	_	-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) (17)	10 kHz to 1.5 MHz (PCle)	_	_	3	_	_	3	_	_	3	ps (rms)
R _{REF} (19)	_	_	1800 ±1%	_	_	1800 ±1%	_	_	180 0 ±1%	_	Ω
Transceiver Clock	<u> </u>			_			_			_	
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	_	100 or 125	_	MHz

Page 22 Switching Characteristics

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7)

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	nsceive Grade	r Speed e 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	DC Gain Setting = 0	_	0	_	_	0	_	_	0	_	dB
	DC Gain Setting = 1	_	2	_	_	2	_	_	2	_	dB
Programmable DC gain	DC Gain Setting = 2		4	_	_	4		_	4	_	dB
	DC Gain Setting = 3		6		_	6	_	_	6	_	dB
	DC Gain Setting = 4	_	8		_	8		_	8	_	dB
Transmitter											
Supported I/O Standards	_	1.4-V and 1.5-V PCML									
Data rate (Standard PCS)	_	600	_	12200	600		12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS)	_	600	_	14100	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
	85-Ω setting	_	85 ± 20%	_	_	85 ± 20%	_	_	85 ± 20%	_	Ω
Differential on-	100-Ω setting		100 ± 20%	_	_	100 ± 20%		_	100 ± 20%	_	Ω
chip termination resistors	120-Ω setting	_	120 ± 20%	_	_	120 ± 20%	_	_	120 ± 20%	_	Ω
	150-Ω setting	_	150 ± 20%	_	_	150 ± 20%	_	_	150 ± 20%	_	Ω
V _{OCM} (AC coupled)	0.65-V setting	_	650	_	_	650	_	_	650	_	mV
V _{OCM} (DC coupled)	_	_	650	_	_	650	_	_	650	_	mV
Rise time (7)	20% to 80%	30	_	160	30	_	160	30		160	ps
Fall time ⁽⁷⁾	80% to 20%	30	_	160	30		160	30	_	160	ps
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps	_	_	15	_	_	15	_	_	15	ps
Intra-transceiver block transmitter channel-to- channel skew	x6 PMA bonded mode	_	_	120	_	_	120	_	_	120	ps

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 6 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed e 1	Trar	sceive Grade	r Speed 2	Tran	sceive Grade	er Speed e 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Inter-transceiver block transmitter channel-to- channel skew	xN PMA bonded mode	ı	ı	500	_	ı	500	_	_	500	ps
CMU PLL	CMU PLL										
Supported Data Range	_	600	_	12500	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
t _{pll_powerdown} (15)	_	1	_	_	1	_	_	1	_	_	μs
t _{pll_lock} (16)	_	_	_	10	_	_	10	_	_	10	μs
ATX PLL											
	VCO post-divider L=2	8000		14100	8000		12500	8000	_	8500/ 10312.5 (24)	Mbps
Currented Date	L=4	4000	_	7050	4000	_	6600	4000	_	6600	Mbps
Supported Data Rate Range	L=8	2000	_	3525	2000	_	3300	2000	_	3300	Mbps
G	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	1000	_	1762.5	Mbps
t _{pll_powerdown} (15)	_	1	_	_	1	_	_	1	_	_	μs
t _{pll_lock} (16)	_		_	10	_	_	10	_	_	10	μs
fPLL											
Supported Data Range	_	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	Mbps
t _{pll_powerdown} (15)	_	1	_		1	_		1			μs

Page 24 Switching Characteristics

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 7 of 7)

Symbol/ Description	Conditions	Transceiver Speed Grade 1		Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{pll_lock} (16)	_	_	_	10	_	_	10	_	_	10	μs

Notes to Table 23:

- (1) Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*.
- (2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
- (3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V.
- (4) This supply follows VCCR_GXB.
- (5) The device cannot tolerate prolonged operation at this absolute maximum.
- (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (8) The input reference clock frequency options depend on the data rate and the device speed grade.
- (9) The line data rate may be limited by PCS-FPGA interface speed grade.
- (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (12) t_{I TD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (14) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (15) $t_{pll\ powerdown}$ is the PLL powerdown minimum pulse width.
- (16) t_{nll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (17) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (19) For ES devices, R_{REF} is 2000 Ω ±1%.
- (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (22) Refer to Figure 2.
- (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (24) I3YY devices can achieve data rates up to 10.3125 Gbps.
- (25) When you use fPLL as a TXPLL of the transceiver.
- (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification.
- (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Page 26 Switching Characteristics

Table 25 shows the approximate maximum data rate using the standard PCS.

Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3)

Mada (2)	Transceiver	PMA Width	20	20	16	16	10	10	8	8
Mode ⁽²⁾	Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8
	1	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.5	5.8	5.2	4.72
	2	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.5	5.8	5.2	4.72
FIFO	C3, I3, I3L core speed grade	9.8	9.0	7.84	7.2	5.3	4.7	4.24	3.76	
	C1, C2, C2L, I2, I2L core speed grade	8.5	8.5	8.5	8.5	6.5	5.8	5.2	4.72	
	3	I3YY core speed grade	10.3125	10.3125	7.84	7.2	5.3	4.7	4.24	3.76
		C3, I3, I3L core speed grade	8.5	8.5	7.84	7.2	5.3	4.7	4.24	3.76
		C4, I4 core speed grade	8.5	8.2	7.04	6.56	4.8	4.2	3.84	3.44
	1	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.1	5.7	4.88	4.56
	2	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.1	5.7	4.88	4.56
	2	C3, I3, I3L core speed grade	9.8	9.0	7.92	7.2	4.9	4.5	3.96	3.6
Register		C1, C2, C2L, I2, I2L core speed grade	10.3125	10.3125	10.3125	10.3125	6.1	5.7	4.88	4.56
	2	I3YY core speed grade	10.3125	10.3125	7.92	7.2	4.9	4.5	3.96	3.6
	3	C3, I3, I3L core speed grade	8.5	8.5	7.92	7.2	4.9	4.5	3.96	3.6
		C4, I4 core speed grade	8.5	8.2	7.04	6.56	4.4	4.1	3.52	3.28

Notes to Table 25:

⁽¹⁾ The maximum data rate is in Gbps.

⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

⁽³⁾ The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade.

Page 28 Switching Characteristics

Table 27 shows the $\ensuremath{V_{OD}}$ settings for the GX channel.

Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$

Symbol	V _{OD} Setting	V _{op} Value (mV)	V _{op} Setting	V _{op} Value (mV)
	0 (1)	0	32	640
	1 (1)	20	33	660
	2 (1)	40	34	680
	3 (1)	60	35	700
	4 (1)	80	36	720
	5 ⁽¹⁾	100	37	740
	6	120	38	760
	7	140	39	780
	8	160	40	800
	9	180	41	820
	10	200	42	840
	11	220	43	860
	12	240	44	880
	13	260	45	900
	14	280	46	920
V op differential peak to peak	15	300	47	940
typical ⁽³⁾	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

Note to Table 27:

- (1) If TX termination resistance = 100Ω , this VOD setting is illegal.
- (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below.
- (3) Refer to Figure 2.

Figure 2 shows the differential transmitter output waveform.

Figure 2. Differential Transmitter Output Waveform

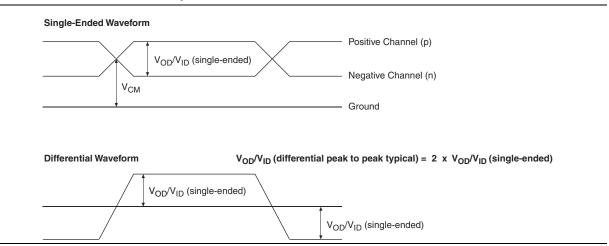


Figure 3 shows the Stratix V AC gain curves for GX channels.

Figure 3. AC Gain Curves for GX Channels (full bandwidth)

Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23.

Table 28 lists the Stratix V GT transceiver specifications.

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5) $^{(1)}$

Symbol/	Conditions	S	Transceive peed Grade			Transceive Deed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	1
	100 Hz	_	_	-70	_	_	-70	
Transmitter REFCLK	1 kHz	_	_	-90		_	-90	
Phase Noise (622	10 kHz	_	_	-100	_	_	-100	dBc/Hz
MHz) ⁽¹⁸⁾	100 kHz	_	_	-110	_	_	-110	
	≥1 MHz		_	-120	_		-120	1
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁵⁾	10 kHz to 1.5 MHz (PCle)	_	_	3	_	_	3	ps (rms)
RREF (17)	_	_	1800 ± 1%	_	_	1800 ± 1%	_	Ω
Transceiver Clocks								
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_clk) frequency		100	_	125	100		125	MHz
Receiver								
Supported I/O Standards	_		1.4-V PCML	, 1.5-V PCML	_, 2.5-V PCI	ML, LVPEC	L, and LVDS	6
Data rate (Standard PCS) (21)	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS) (21)	GX channels	600	_	12,500	600	_	12,500	Mbps
Data rate	GT channels	19,600	_	28,050	19,600	_	25,780	Mbps
Absolute V _{MAX} for a receiver pin ⁽³⁾	GT channels	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	GT channels	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak	GT channels		_	1.6	_		1.6	V
differential input voltage V _{ID} (diff p-p) before device configuration ⁽²⁰⁾	GX channels				(8)			
	GT channels							
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration (16), (20)	$V_{CCR_GTB} = 1.05 \text{ V} $ $(V_{ICM} = 0.65 \text{ V})$	_	_	2.2	_	_	2.2	V
oomiguration ', ' /	GX channels			<u> </u>	(8)		•	•
Minimum differential	GT channels	200	_	_	200		_	mV
eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾	GX channels				(8)			

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$

Symbol/	Conditions		Transceive peed Grade			Transceive Deed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	
Data rate	GT channels	19,600	_	28,050	19,600	_	25,780	Mbps
Differential on-chip	GT channels	_	100	_	_	100	_	Ω
termination resistors	GX channels				(8)		'	
\/ (AO a a a d\)	GT channels	_	500	_	_	500	_	mV
V _{OCM} (AC coupled)	GX channels				(8)		'	
D'a a /Fall d'acc	GT channels	_	15	_	_	15	_	ps
Rise/Fall time	GX channels		<u>I</u>		(8)	I		
Intra-differential pair skew	GX channels				(8)			
Intra-transceiver block transmitter channel-to- channel skew	GX channels				(8)			
Inter-transceiver block transmitter channel-to-channel skew GX channels (8)								
CMU PLL								
Supported Data Range	_	600	_	12500	600	_	8500	Mbps
t _{pll_powerdown} (13)	_	1	_	_	1	_	_	μs
t _{pll_lock} (14)	_	_	_	10	_	_	10	μs
ATX PLL								
	VCO post- divider L=2	8000	_	12500	8000	_	8500	Mbps
	L=4	4000	_	6600	4000	_	6600	Mbps
Supported Data Rate	L=8	2000	_	3300	2000	_	3300	Mbps
Range for GX Channels	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	Mbps
Supported Data Rate Range for GT Channels	VCO post- divider L=2	9800	_	14025	9800	_	12890	Mbps
t _{pll_powerdown} (13)	_	1	_	_	1	_	-	μs
t _{pll_lock} (14)	_	_	_	10	_	_	10	μs
fPLL			•					
Supported Data Range	_	600	_	3250/ 3.125 ⁽²³⁾	600	_	3250/ 3.125 ⁽²³⁾	Mbps
t _{pll_powerdown} (13)	_	1	_	<u> </u>	1	_	_	μs

Page 34 Switching Characteristics

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 5 of 5) (1)

Symbol/ Description	Conditions		Transceivei peed Grade		T Sp	Unit		
Description		Min	Тур	Max	Min	Тур	Max	
t _{pll_lock} (14)	_	_	_	10	_	_	10	μs

Notes to Table 28:

- (1) Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*.
- (2) The reference clock common mode voltage is equal to the VCCR_GXB power supply level.
- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The differential eye opening specification at the receiver input pins assumes that receiver equalization is disabled. If you enable receiver equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (5) Refer to Figure 5 for the GT channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (6) Refer to Figure 6 for the GT channel DC gain curves.
- (7) CFP2 optical modules require the host interface to have the receiver data pins differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (8) Specifications for this parameter are the same as for Stratix V GX and GS devices. See Table 23 for specifications.
- (9) t_{LTB} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (10) tLTD is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high.
- (11) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (12) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (13) tpll powerdown is the PLL powerdown minimum pulse width.
- (14) tpll lock is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (15) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (16) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (17) For ES devices, RREF is 2000 Ω ±1%.
- (18) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (19) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (20) Refer to Figure 4.
- (21) For oversampling design to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (22) This supply follows VCCR_GXB for both GX and GT channels.
- (23) When you use fPLL as a TXPLL of the transceiver.

PLL Specifications

Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85°C) and the industrial junction temperature range (-40° to 100° C).

Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (C1, C2, C2L, I2, and I2L speed grades)	5	_	800 (1)	MHz
f _{IN}	Input clock frequency (C3, I3, I3L, and I3YY speed grades)	5	_	800 (1)	MHz
	Input clock frequency (C4, I4 speed grades)	5	_	650 ⁽¹⁾	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
FINPFD	Fractional Input clock frequency to the PFD	50	_	160	MHz
	PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades)	600	_	1600	MHz
f _{vco} ⁽⁹⁾	PLL VCO operating range (C3, I3, I3L, I3YY speed grades)	600	_	1600	MHz
	PLL VCO operating range (C4, I4 speed grades)	600	_	1300	MHz
EINDUTY	Input clock or external feedback clock input duty cycle	40	_	60	%
	Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades)	_	_	717 (2)	MHz
Гоит	Output frequency for an internal global or regional clock (C3, I3, I3L speed grades)	_	_	650 ⁽²⁾	MHz
	Output frequency for an internal global or regional clock (C4, I4 speed grades)	_	_	580 ⁽²⁾	MHz
	Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades)	_	_	800 (2)	MHz
f _{OUT_EXT}	Output frequency for an external clock output (C3, I3, I3L speed grades)	_	_	667 (2)	MHz
	Output frequency for an external clock output (C4, I4 speed grades)	_	_	553 ⁽²⁾	MHz
t _{оитриту}	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
FCOMP	External feedback clock compensation time	_	_	10	ns
DYCONFIGCLK	Dynamic Configuration Clock used for mgmt_clk and scanclk	_	_	100	MHz
Lock	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
DLOCK	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth		0.3		MHz
: CLBW	PLL closed-loop medium bandwidth		1.5		MHz
	PLL closed-loop high bandwidth (7)	_	4	_	MHz
PLL_PSERR	Accuracy of PLL phase shift		_	±50	ps
ARESET	Minimum pulse width on the areset signal	10	_	_	ns

Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 2 of 2)

		Resour	ces Used			Pe	erforman	ce			
Memory	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, 12L	13, 13L, 13YY	14	Unit
	Single-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	525	525	455	400	525	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512 × 32	0	1	450	450	400	350	450	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	600	600	500	450	600	500	450	MHz
	True dual port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	ROM, all supported widths	0	1	700	700	650	550	700	500	450	MHz

Notes to Table 33:

Temperature Sensing Diode Specifications

Table 34 lists the internal TSD specification.

Table 34. Internal Temperature Sensing Diode Specification

Tei	mperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°	°C to 100°C	±8°C	No	1 MHz, 500 KHz	< 100 ms	8 bits	8 bits

Table 35 lists the specifications for the Stratix V external temperature sensing diode.

Table 35. External Temperature Sensing Diode Specifications for Stratix V Devices

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	_	200	μΑ
V _{bias,} voltage across diode	0.3	_	0.9	V
Series resistance	_	_	<1	Ω
Diode ideality factor	1.006	1.008	1.010	_

⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

⁽³⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled.

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 2 of 4)

Cumbal	Conditions		C1		C2,	C2L, I	2, I2L	C3,	I3, I3I	., I3YY		C4,I4	4	II.a.i.k
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Transmitter														
	SERDES factor J = 3 to 10 (9), (11), (12), (13), (14), (15), (16)	(6)	_	1600	(6)	_	1434	(6)	_	1250	(6)	_	1050	Mbps
True Differential I/O Standards - fusne (data	SERDES factor J ≥ 4 LVDS TX with DPA (12), (14), (15), (16)	(6)	_	1600	(6)	_	1600	(6)	_	1600	(6)		1250	Mbps
- f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (10)	SERDES factor J = 4 to 10 (17)	(6)	_	1100	(6)	_	1100	(6)	_	840	(6)		840	Mbps
t _{x Jitter} - True Differential	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	160	_	_	160	_	_	160	_	_	160	ps
I/O Standards	Total Jitter for Data Rate < 600 Mbps	_	_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - Emulated Differential I/O Standards	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	300	_	_	300	_	_	300	_	_	325	ps
with Three External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_	_	0.2	_	_	0.2	_	_	0.2	_	_	0.25	UI

Page 64 I/O Timing

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specifications

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} (1)	250	_	ns
t _{RU_nRSTIMER} (2)	250	_	ns

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum	Typical	Maximum	Units
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Doromotor	Avoilable	Min	Fast	Model				Slow M	/ Model				
Parameter (1)	Available Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit	
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns	
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns	

Glossary Page 65

Table 58. IOE Programmable Delay for Stratix V Devices (Part 2 of 2)

Parameter	Available	Min	Fast	Model				Slow M	Slow Model					
(1)	Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit		
D3	8	0	1.587	1.699	2.793	2.793	2.992	3.192	2.811	3.047	3.257	ns		
D4	64	0	0.464	0.492	0.838	0.838	0.924	1.011	0.843	0.920	1.006	ns		
D5	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns		
D6	32	0	0.229	0.244	0.415	0.415	0.458	0.503	0.418	0.456	0.499	ns		

Notes to Table 58:

- (1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor.
- (2) Minimum offset does not include the intrinsic delay.

Programmable Output Buffer Delay

Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

Table 59. Programmable Output Buffer Delay for Stratix V Devices (1)

Symbol	Parameter	Typical	Unit
	Rising and/or falling edge delay	0 (default)	ps
D		25	ps
D _{OUTBUF}		50	ps
		75	ps

Note to Table 59:

Glossary

Table 60 lists the glossary for this chapter.

Table 60. Glossary (Part 1 of 4)

Letter	Subject	Definitions	
Α			
В	_	_	
С			
D	_	_	
E	_	_	
	f _{HSCLK}	Left and right PLL input clock frequency.	
F	f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.	
	f _{HSDRDPA}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.	

⁽¹⁾ You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

Page 66 Glossary

Table 60. Glossary (Part 2 of 4)

Letter	Subject	Definitions	
G			
Н	_	_	
1			
J	JTAG Timing Specifications	High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS TDI TCK TJPSU TJ	
K L M N	_		
P	PLL Specifications	Diagram of PLL Specifications (1) Switchover CLKOUT Pins Four Core Clock Reconfigurable in User Mode External Feedback Note: (1) Core Clock can only be fed by dedicated clock input pins or PLL outputs.	
Q	_	<u> </u>	
R	R _L	Receiver differential input discrete resistor (external to the Stratix V device).	
	L		

Page 68 Glossary

Table 60. Glossary (Part 4 of 4)

Letter	Subject	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
	V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
	V _{IH(AC)}	High-level AC input voltage
	V _{IH(DC)}	High-level DC input voltage
V	V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
	V _{IL(AC)}	Low-level AC input voltage
	V _{IL(DC)}	Low-level DC input voltage
	V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
	V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
	V _{SWING}	Differential input voltage
	V _X	Input differential cross point voltage
	V _{OX}	Output differential cross point voltage
W	W	High-speed I/O block—clock boost factor
Χ		
Υ		_
Z		