Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 359200 | | Number of Logic Elements/Cells | 952000 | | Total RAM Bits | 53248000 | | Number of I/O | 696 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-HBGA (45x45) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxeabk2h40i2l | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Page 2 Electrical Characteristics Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering (1), (2), (3) (Part 2 of 2) | Transceiver Speed | Core Speed Grade | | | | | | | | | | | |-----------------------|------------------|---------|-----|-----|---------|---------|--------------------|-----|--|--|--| | Grade | C1 | C2, C2L | C3 | C4 | 12, 12L | 13, 13L | I3YY | 14 | | | | | 3 GX channel—8.5 Gbps | _ | Yes | Yes | Yes | _ | Yes | Yes ⁽⁴⁾ | Yes | | | | #### Notes to Table 1: - (1) C = Commercial temperature grade; I = Industrial temperature grade. - (2) Lower number refers to faster speed grade. - (3) C2L, I2L, and I3L speed grades are for low-power devices. - (4) I3YY speed grades can achieve up to 10.3125 Gbps. Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices. Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering (1), (2) | Transacius Crad Crado | Core Speed Grade | | | | | | | | | |--|------------------|-----|-----|-----|--|--|--|--|--| | Transceiver Speed Grade | C1 | C2 | 12 | 13 | | | | | | | 2
GX channel—12.5 Gbps
GT channel—28.05 Gbps | Yes | Yes | _ | _ | | | | | | | 3
GX channel—12.5 Gbps
GT channel—25.78 Gbps | Yes | Yes | Yes | Yes | | | | | | #### Notes to Table 2: - (1) C = Commercial temperature grade; I = Industrial temperature grade. - (2) Lower number refers to faster speed grade. # **Absolute Maximum Ratings** Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions. Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device. Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 1 of 2) | Symbol | Description | Minimum | Maximum | Unit | |---------------------|--|---------|---------|------| | V _{CC} | Power supply for core voltage and periphery circuitry | -0.5 | 1.35 | V | | V _{CCPT} | Power supply for programmable power technology | -0.5 | 1.8 | V | | V _{CCPGM} | Power supply for configuration pins | -0.5 | 3.9 | V | | V _{CC_AUX} | Auxiliary supply for the programmable power technology | -0.5 | 3.4 | V | | V _{CCBAT} | Battery back-up power supply for design security volatile key register | -0.5 | 3.9 | V | | V _{CCPD} | I/O pre-driver power supply | -0.5 | 3.9 | V | | V _{CCIO} | I/O power supply | -0.5 | 3.9 | V | Electrical Characteristics Page 5 # **Recommended Operating Conditions** This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus. Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2) | Symbol | Description | Condition | Min ⁽⁴⁾ | Тур | Max ⁽⁴⁾ | Unit | |----------------------------------|--|------------|--------------------|------|--------------------|------| | | Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades) | _ | 0.87 | 0.9 | 0.93 | V | | V _{CC} | Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) (3) | _ | 0.82 | 0.85 | 0.88 | V | | V _{CCPT} | Power supply for programmable power technology | _ | 1.45 | 1.50 | 1.55 | V | | V _{CC_AUX} | Auxiliary supply for the programmable power technology | _ | 2.375 | 2.5 | 2.625 | V | | V (1) | I/O pre-driver (3.0 V) power supply | | 2.85 | 3.0 | 3.15 | V | | V _{CCPD} ⁽¹⁾ | I/O pre-driver (2.5 V) power supply | | 2.375 | 2.5 | 2.625 | V | | | I/O buffers (3.0 V) power supply | _ | 2.85 | 3.0 | 3.15 | ٧ | | | I/O buffers (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | I/O buffers (1.8 V) power supply | _ | 1.71 | 1.8 | 1.89 | ٧ | | V_{CCIO} | I/O buffers (1.5 V) power supply | _ | 1.425 | 1.5 | 1.575 | V | | V _{CCIO} | I/O buffers (1.35 V) power supply | | 1.283 | 1.35 | 1.45 | V | | | I/O buffers (1.25 V) power supply | | 1.19 | 1.25 | 1.31 | V | | | I/O buffers (1.2 V) power supply | _ | 1.14 | 1.2 | 1.26 | V | | | Configuration pins (3.0 V) power supply | | 2.85 | 3.0 | 3.15 | V | | V_{CCPGM} | Configuration pins (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | Configuration pins (1.8 V) power supply | _ | 1.71 | 1.8 | 1.89 | V | | V _{CCA_FPLL} | PLL analog voltage regulator power supply | | 2.375 | 2.5 | 2.625 | V | | V _{CCD_FPLL} | PLL digital voltage regulator power supply | | 1.45 | 1.5 | 1.55 | V | | V _{CCBAT} (2) | Battery back-up power supply (For design security volatile key register) | _ | 1.2 | _ | 3.0 | V | | V _I | DC input voltage | _ | -0.5 | _ | 3.6 | V | | V ₀ | Output voltage | _ | 0 | _ | V _{CCIO} | V | | т. | Operating junction temperature | Commercial | 0 | _ | 85 | °C | | T _J | Operating junction temperature | Industrial | -40 | _ | 100 | °C | Electrical Characteristics Page 7 Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | |-----------------------|--|------------|------------------------|---------|------------------------|------| | | | | 0.82 | 0.85 | 0.88 | | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | neceiver analog power supply (right side) | ux, us, u1 | 0.97 | 1.0 | 1.03 | V | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBL} | Transmitter analog newer cupply (left side) | CV CC CT | 0.87 | 0.90 | 0.93 | V | | (2) | Transmitter analog power supply (left side) | GX, GS, GT | 0.97 | 1.0 | 1.03 | v | | | | | 1.03 | 1.05 | 1.07 | | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBR} | Transmitter analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Transmitter analog power supply (right side) | | 0.97 | 1.0 | 1.03 | | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCL_GTBR} | Transmitter clock network power supply | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | #### Notes to Table 7: ⁽¹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V. ⁽²⁾ Refer to Table 8 to select the correct power supply level for your design. ⁽³⁾ When using ATX PLLs, the supply must be 3.0 V. ⁽⁴⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Page 8 Electrical Characteristics Table 8 shows the transceiver power supply voltage requirements for various conditions. **Table 8. Transceiver Power Supply Voltage Requirements** | Conditions | Core Speed Grade | VCCR_GXB & VCCT_GXB (2) | VCCA_GXB | VCCH_GXB | Unit | |--|-----------------------------------|-------------------------|----------|----------|------| | If BOTH of the following conditions are true: | | 4.05 | | | | | ■ Data rate > 10.3 Gbps. | All | 1.05 | | | | | ■ DFE is used. | | | | | | | If ANY of the following conditions are true ⁽¹⁾ : | | | 3.0 | | | | ATX PLL is used. | | | | | | | ■ Data rate > 6.5Gbps. | All | 1.0 | | | | | ■ DFE (data rate ≤
10.3 Gbps), AEQ, or
EyeQ feature is used. | | | | 1.5 | V | | If ALL of the following | C1, C2, I2, and I3YY | 0.90 | 2.5 | | | | conditions are true: ATX PLL is not used. | | | | | | | ■ Data rate ≤ 6.5Gbps. | C2L, C3, C4, I2L, I3, I3L, and I4 | 0.85 | 2.5 | | | | DFE, AEQ, and EyeQ are
not used. | | | | | | #### Notes to Table 8: - (1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions. - (2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply. ### **DC Characteristics** This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications. ## **Supply Current** Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Page 14 Electrical Characteristics Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Devices | I/O Standard | | V _{CCIO} (V) | | | V _{REF} (V) | | | V _{TT} (V) | | |-------------------------|-------|-----------------------|-------|-----------------------------|-------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------| | I/O Standard | Min | Тур | Max | Min | Тур | Max | Min | Тур | Мах | | SSTL-2
Class I, II | 2.375 | 2.5 | 2.625 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | V _{REF} – 0.04 | V_{REF} | V _{REF} + 0.04 | | SSTL-18
Class I, II | 1.71 | 1.8 | 1.89 | 0.833 | 0.9 | 0.969 | V _{REF} – 0.04 | V _{REF} | V _{REF} + 0.04 | | SSTL-15
Class I, II | 1.425 | 1.5 | 1.575 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | SSTL-135
Class I, II | 1.283 | 1.35 | 1.418 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
V _{CCIO} | 0.51 *
V _{CCIO} | | SSTL-125
Class I, II | 1.19 | 1.25 | 1.26 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | SSTL-12
Class I, II | 1.14 | 1.20 | 1.26 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | HSTL-18
Class I, II | 1.71 | 1.8 | 1.89 | 0.85 | 0.9 | 0.95 | _ | V _{CCIO} /2 | _ | | HSTL-15
Class I, II | 1.425 | 1.5 | 1.575 | 0.68 | 0.75 | 0.9 | _ | V _{CCIO} /2 | _ | | HSTL-12
Class I, II | 1.14 | 1.2 | 1.26 | 0.47 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.53 *
V _{CCIO} | _ | V _{CCIO} /2 | _ | | HSUL-12 | 1.14 | 1.2 | 1.3 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | _ | _ | _ | Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 1 of 2) | I/O Standard | V _{IL(D(} | ; ₎ (V) | V _{IH(D} | _{C)} (V) | V _{IL(AC)} (V) | V _{IH(AC)} (V) | V _{OL} (V) | V _{OH} (V) | I (mA) | l _{oh} | |-------------------------|--------------------|--------------------------|--------------------------|-------------------------|----------------------------|--------------------------|----------------------------|----------------------------|----------------------|-----------------| | i/U Stanuaru | Min | Max | Min | Max | Max | Min | Max | Min | I _{ol} (mA) | (mA) | | SSTL-2
Class I | -0.3 | V _{REF} – 0.15 | V _{REF} + 0.15 | V _{CCIO} + 0.3 | V _{REF} –
0.31 | V _{REF} + 0.31 | V _{TT} – 0.608 | V _{TT} + 0.608 | 8.1 | -8.1 | | SSTL-2
Class II | -0.3 | V _{REF} – 0.15 | V _{REF} + 0.15 | V _{CCIO} + 0.3 | V _{REF} – 0.31 | V _{REF} + 0.31 | V _{TT} – 0.81 | V _{TT} + 0.81 | 16.2 | -16.2 | | SSTL-18
Class I | -0.3 | V _{REF} – 0.125 | V _{REF} + 0.125 | V _{CCIO} + 0.3 | V _{REF} – 0.25 | V _{REF} + 0.25 | V _{TT} – 0.603 | V _{TT} + 0.603 | 6.7 | -6.7 | | SSTL-18
Class II | -0.3 | V _{REF} – 0.125 | V _{REF} + 0.125 | V _{CCIO} + 0.3 | V _{REF} –
0.25 | V _{REF} + 0.25 | 0.28 | V _{CCIO} - 0.28 | 13.4 | -13.4 | | SSTL-15
Class I | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} – 0.175 | V _{REF} + 0.175 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | 8 | -8 | | SSTL-15
Class II | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} – 0.175 | V _{REF} + 0.175 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | 16 | -16 | | SSTL-135
Class I, II | _ | V _{REF} – 0.09 | V _{REF} + 0.09 | _ | V _{REF} –
0.16 | V _{REF} + 0.16 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | | SSTL-125
Class I, II | _ | V _{REF} – 0.85 | V _{REF} + 0.85 | _ | V _{REF} –
0.15 | V _{REF} + 0.15 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | | SSTL-12
Class I, II | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} –
0.15 | V _{REF} + 0.15 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | Page 20 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 3 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | sceive
Grade | r Speed
2 | Trar | Unit | | | |--|---|------|------------------|--------------|----------|-----------------|--------------|---------|---------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Reconfiguration
clock
(mgmt_clk_clk)
frequency | _ | 100 | _ | 125 | 100 | _ | 125 | 100 | _ | 125 | MHz | | Receiver | | | | | | | | | | | | | Supported I/O
Standards | _ | | | 1.4-V PCMI | _, 1.5-V | PCML, | 2.5-V PCM | L, LVPE | CL, and | d LVDS | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) (9), (23) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Absolute V _{MAX} for a receiver pin ⁽⁵⁾ | _ | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | V | | Absolute V _{MIN} for a receiver pin | _ | -0.4 | _ | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | Maximum peak-
to-peak
differential input
voltage V _{ID} (diff p-
p) before device
configuration (22) | _ | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | Maximum peak-
to-peak | $V_{CCR_GXB} = 1.0 \text{ V}/1.05 \text{ V} $ $(V_{ICM} = 0.70 \text{ V})$ | _ | _ | 2.0 | _ | _ | 2.0 | _ | _ | 2.0 | V | | differential input
voltage V _{ID} (diff p-
p) after device
configuration (18) | $V_{\text{CCR_GXB}} = 0.90 \text{ V}$ $(V_{\text{ICM}} = 0.6 \text{ V})$ | | | 2.4 | _ | | 2.4 | _ | _ | 2.4 | V | | configuration ⁽¹⁸⁾ ,
(22) | $V_{CCR_GXB} = 0.85 \text{ V}$ $(V_{ICM} = 0.6 \text{ V})$ | _ | _ | 2.4 | _ | _ | 2.4 | _ | _ | 2.4 | V | | Minimum differential eye opening at receiver serial input pins (6), (22), (27) | _ | 85 | _ | _ | 85 | _ | _ | 85 | _ | _ | mV | Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 4 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Trai | nsceive
Grade | r Speed
3 | Unit | |--|---|-----|------------------|--------------|------|------------------|--------------|------|------------------|--------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | 85– Ω setting | _ | 85 ±
30% | _ | _ | 85 ± 30% | _ | _ | 85 ± 30% | _ | Ω | | Differential on- | 100–Ω
setting | _ | 100
±
30% | | _ | 100
±
30% | _ | _ | 100
±
30% | _ | Ω | | chip termination resistors (21) | 120–Ω
setting | _ | 120
±
30% | _ | _ | 120
±
30% | _ | _ | 120
±
30% | _ | Ω | | | 150-Ω
setting | _ | 150
±
30% | _ | _ | 150
±
30% | _ | _ | 150
±
30% | _ | Ω | | V _{ICM}
(AC and DC | V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth | _ | 600 | _ | _ | 600 | _ | _ | 600 | _ | mV | | | V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth | _ | 600 | _ | _ | 600 | _ | _ | 600 | _ | mV | | coupled) | $V_{CCR_GXB} = \\ 1.0 \text{ V/1.05 V} \\ \text{full} \\ \text{bandwidth}$ | _ | 700 | _ | _ | 700 | _ | _ | 700 | _ | mV | | | V _{CCR_GXB} = 1.0 V half bandwidth | _ | 750 | _ | _ | 750 | _ | _ | 750 | _ | mV | | t _{LTR} (11) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | t _{LTD} (12) | _ | 4 | _ | | 4 | | | 4 | | | μs | | t _{LTD_manual} (13) | _ | 4 | _ | | 4 | | | 4 | | | μs | | t _{LTR_LTD_manual} (14) | | 15 | | | 15 | | _ | 15 | _ | | μs | | Run Length | | _ | _ | 200 | _ | | 200 | _ | - | 200 | UI | | Programmable equalization (AC Gain) (10) | Full
bandwidth
(6.25 GHz)
Half
bandwidth
(3.125 GHz) | _ | _ | 16 | _ | _ | 16 | _ | _ | 16 | dB | Page 26 Switching Characteristics Table 25 shows the approximate maximum data rate using the standard PCS. Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3) | Mada (2) | Transceiver | PMA Width | 20 | 20 | 16 | 16 | 10 | 10 | 8 | 8 | |---------------------|-------------|--|---------|---------|---------|---------|-----|-----|------|------| | Mode ⁽²⁾ | Speed Grade | PCS/Core Width | 40 | 20 | 32 | 16 | 20 | 10 | 16 | 8 | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.5 | 5.8 | 5.2 | 4.72 | | | 2 | C1, C2, C2L, I2, I2L core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.5 | 5.8 | 5.2 | 4.72 | | | L | C3, I3, I3L
core speed grade | 9.8 | 9.0 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | FIFO | | C1, C2, C2L, I2, I2L core speed grade | 8.5 | 8.5 | 8.5 | 8.5 | 6.5 | 5.8 | 5.2 | 4.72 | | | 3 | I3YY
core speed grade | 10.3125 | 10.3125 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | | O | C3, I3, I3L
core speed grade | 8.5 | 8.5 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | | | C4, I4
core speed grade | 8.5 | 8.2 | 7.04 | 6.56 | 4.8 | 4.2 | 3.84 | 3.44 | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.1 | 5.7 | 4.88 | 4.56 | | | 2 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.1 | 5.7 | 4.88 | 4.56 | | | 2 | C3, I3, I3L
core speed grade | 9.8 | 9.0 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | Register | | C1, C2, C2L, I2, I2L
core speed grade | 10.3125 | 10.3125 | 10.3125 | 10.3125 | 6.1 | 5.7 | 4.88 | 4.56 | | | 3 | I3YY
core speed grade | 10.3125 | 10.3125 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | | 3 | C3, I3, I3L
core speed grade | 8.5 | 8.5 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | | | C4, I4
core speed grade | 8.5 | 8.2 | 7.04 | 6.56 | 4.4 | 4.1 | 3.52 | 3.28 | ### Notes to Table 25: ⁽¹⁾ The maximum data rate is in Gbps. ⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency. ⁽³⁾ The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade. Page 32 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceiver
Speed Grade | | | Transceive
peed Grade | | Unit | |---|----------------------------------|----------------------|----------------------------|--------|-----|--------------------------|--------|-------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Differential on-chip termination resistors (7) | GT channels | _ | 100 | _ | _ | 100 | _ | Ω | | | 85-Ω setting | _ | 85 ± 30% | _ | _ | 85
± 30% | _ | Ω | | Differential on-chip termination resistors | 100-Ω
setting | _ | 100
± 30% | _ | _ | 100
± 30% | _ | Ω | | for GX channels (19) | 120-Ω
setting | _ | 120
± 30% | _ | _ | 120
± 30% | _ | Ω | | | 150-Ω
setting | _ | 150
± 30% | _ | _ | 150
± 30% | _ | Ω | | V _{ICM} (AC coupled) | GT channels | _ | 650 | _ | _ | 650 | _ | mV | | | VCCR_GXB =
0.85 V or
0.9 V | _ | 600 | _ | _ | 600 | _ | mV | | VICM (AC and DC
coupled) for GX
Channels | VCCR_GXB = 1.0 V full bandwidth | _ | 700 | _ | _ | 700 | _ | mV | | | VCCR_GXB = 1.0 V half bandwidth | _ | 750 | _ | _ | 750 | _ | mV | | t _{LTR} ⁽⁹⁾ | _ | _ | _ | 10 | _ | _ | 10 | μs | | t _{LTD} ⁽¹⁰⁾ | _ | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTD_manual} (11) | | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTR_LTD_manual} (12) | | 15 | _ | _ | 15 | _ | _ | μs | | Run Length | GT channels | _ | _ | 72 | _ | _ | 72 | CID | | nuii Leiigiii | GX channels | | | | (8) | | | | | CDR PPM | GT channels | _ | _ | 1000 | _ | _ | 1000 | ± PPM | | ODITITIVI | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 14 | _ | _ | 14 | dB | | equalization
(AC Gain) ⁽⁵⁾ | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 7.5 | _ | _ | 7.5 | dB | | DC gain ⁽⁶⁾ | GX channels | | | | (8) | | | | | Differential on-chip termination resistors ⁽⁷⁾ | GT channels | | 100 | _ | _ | 100 | _ | Ω | | Transmitter | · ' | | • | | | • | • | | | Supported I/O
Standards | _ | 1.4-V and 1.5-V PCML | | | | | | | | Data rate
(Standard PCS) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) | GX channels | 600 | _ | 12,500 | 600 | | 12,500 | Mbps | Table 29 shows the $\ensuremath{V_{\text{OD}}}$ settings for the GT channel. Table 29. Typical V_{0D} Setting for GT Channel, TX Termination = 100 Ω | Symbol | V _{op} Setting | V _{op} Value (mV) | |---|-------------------------|----------------------------| | | 0 | 0 | | | 1 | 200 | | V differential peak to peak tunical (1) | 2 | 400 | | V _{OD} differential peak to peak typical ⁽¹⁾ | 3 | 600 | | | 4 | 800 | | | 5 | 1000 | ### Note: (1) Refer to Figure 4. Figure 6 shows the Stratix V DC gain curves for GT channels. # Figure 6. DC Gain Curves for GT Channels # **Transceiver Characterization** This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols: - Interlaken - 40G (XLAUI)/100G (CAUI) - 10GBase-KR - QSGMII - XAUI - SFI - Gigabit Ethernet (Gbe / GIGE) - SPAUI - Serial Rapid IO (SRIO) - CPRI - OBSAI - Hyper Transport (HT) - SATA - SAS - CEI Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 2 of 2) | | | Resour | ces Used | | | Pe | erforman | ce | | | | |---------------|---|--------|----------|-----|------------|-----|----------|---------|---------------------|-----|------| | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C3 | C4 | 12, 12L | 13,
13L,
13YY | 14 | Unit | | | Single-port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | Simple dual-port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | Simple dual-port with
the read-during-write
option set to Old Data ,
all supported widths | 0 | 1 | 525 | 525 | 455 | 400 | 525 | 455 | 400 | MHz | | M20K
Block | Simple dual-port with ECC enabled, 512 × 32 | 0 | 1 | 450 | 450 | 400 | 350 | 450 | 400 | 350 | MHz | | | Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32 | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | | | True dual port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | ROM, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | #### Notes to Table 33: # **Temperature Sensing Diode Specifications** Table 34 lists the internal TSD specification. **Table 34. Internal Temperature Sensing Diode Specification** | Tei | mperature
Range | Accuracy | Offset
Calibrated
Option | Sampling Rate | Conversion
Time | Resolution | Minimum
Resolution
with no
Missing Codes | |------|--------------------|----------|--------------------------------|----------------|--------------------|------------|---| | -40° | °C to 100°C | ±8°C | No | 1 MHz, 500 KHz | < 100 ms | 8 bits | 8 bits | Table 35 lists the specifications for the Stratix V external temperature sensing diode. Table 35. External Temperature Sensing Diode Specifications for Stratix V Devices | Description | Min | Тур | Max | Unit | |--|-------|-------|-------|------| | I _{bias} , diode source current | 8 | _ | 200 | μΑ | | V _{bias,} voltage across diode | 0.3 | _ | 0.9 | V | | Series resistance | _ | _ | <1 | Ω | | Diode ideality factor | 1.006 | 1.008 | 1.010 | _ | ⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes. ⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}. ⁽³⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled. Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 2 of 4) | Combal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | I3, I3I | ., I3YY | | C4,I4 | 4 | II.a.i.k | |---|--|-----|-----|------|-----|--------|--------|-----|---------|---------|-----|-------|------|----------| | Symbol | Conditions | Min | Тур | Max | Unit | | Transmitter | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (9), (11),
(12), (13), (14), (15),
(16) | (6) | _ | 1600 | (6) | _ | 1434 | (6) | _ | 1250 | (6) | _ | 1050 | Mbps | | True
Differential
I/O Standards | SERDES factor J ≥ 4 LVDS TX with DPA (12), (14), (15), (16) | (6) | _ | 1600 | (6) | _ | 1600 | (6) | _ | 1600 | (6) | | 1250 | Mbps | | - f _{HSDR} (data
rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (10) | SERDES factor J
= 4 to 10 (17) | (6) | _ | 1100 | (6) | _ | 1100 | (6) | _ | 840 | (6) | | 840 | Mbps | | t _{x Jitter} - True
Differential | Total Jitter for
Data Rate
600 Mbps -
1.25 Gbps | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | ps | | I/O Standards | Total Jitter for
Data Rate
< 600 Mbps | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | UI | | t _{x Jitter} -
Emulated
Differential
I/O Standards | Total Jitter for
Data Rate
600 Mbps - 1.25
Gbps | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | _ | _ | 325 | ps | | with Three
External
Output
Resistor
Network | Total Jitter for
Data Rate
< 600 Mbps | _ | _ | 0.2 | _ | _ | 0.2 | _ | _ | 0.2 | _ | _ | 0.25 | UI | Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3) | Clock
Network | Parameter | Symbol | C1 | | C2, C2L, I2, I2L | | C3, I3, I3L,
I3YY | | C4,I4 | | Unit | |------------------|------------------------------|------------------------|-------|------|------------------|------|----------------------|-----|-------|-----|------| | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | Clock period jitter | t _{JIT(per)} | -25 | 25 | -25 | 25 | -30 | 30 | -35 | 35 | ps | | PHY
Clock | Cycle-to-cycle period jitter | t _{JIT(cc)} | -50 | 50 | -50 | 50 | -60 | 60 | -70 | 70 | ps | | | Duty cycle jitter | t _{JIT(duty)} | -37.5 | 37.5 | -37.5 | 37.5 | -45 | 45 | -56 | 56 | ps | #### Notes to Table 42: - (1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible. - (2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL. - (3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma. # **OCT Calibration Block Specifications** Table 43 lists the OCT calibration block specifications for Stratix V devices. Table 43. OCT Calibration Block Specifications for Stratix V Devices | Symbol | Description | Min | Тур | Max | Unit | |-----------------------|---|-----|------|-----|--------| | OCTUSRCLK | Clock required by the OCT calibration blocks | _ | _ | 20 | MHz | | T _{OCTCAL} | Number of OCTUSRCLK clock cycles required for OCT $R_{\mbox{\scriptsize S}}/R_{\mbox{\scriptsize T}}$ calibration | | 1000 | _ | Cycles | | T _{OCTSHIFT} | Number of OCTUSRCLK clock cycles required for the OCT code to shift out | _ | 32 | _ | Cycles | | T _{RS_RT} | Time required between the dyn_term_ctr1 and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10) | _ | 2.5 | _ | ns | Figure 10 shows the timing diagram for the oe and dyn term ctrl signals. Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals Page 56 Configuration Specification Table 49. DCLK-to-DATA[] Ratio (1) (Part 2 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | | Disabled | Disabled | 1 | | FPP ×32 | Disabled | Enabled | 4 | | 1FF ×32 | Enabled | Disabled | 8 | | | Enabled | Enabled | 8 | #### Note to Table 49: (1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data. If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio -1) clock cycles after the last data is latched into the Stratix V device. Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration. Figure 11. Single Device FPP Configuration Using an External Host #### Notes to Figure 11: - (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM}. - (2) You can leave the nceo pin unconnected or use it as a user I/O pin when it does not feed another device's nce pin. - (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (4) If you use FPP $\times 8$, use DATA [7..0]. If you use FPP $\times 16$, use DATA [15..0]. Page 58 Configuration Specification Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1. Table 50. FPP Timing Parameters for Stratix V Devices (1) | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nCONFIG low to CONF_DONE low | _ | 600 | ns | | t _{CF2ST0} | nconfig low to nstatus low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | _ | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽²⁾ | μ\$ | | t _{CF2ST1} | nCONFIG high to nSTATUS high | _ | 1,506 ⁽³⁾ | μ\$ | | t _{CF2CK} (6) | nCONFIG high to first rising edge on DCLK | 1,506 | _ | μ\$ | | t _{ST2CK} (6) | nSTATUS high to first rising edge of DCLK | 2 | _ | μ\$ | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | 0 | _ | ns | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f | DCLK frequency (FPP ×8/×16) | _ | 125 | MHz | | f _{MAX} | DCLK frequency (FPP ×32) | _ | 100 | MHz | | t _{CD2UM} | CONF_DONE high to user mode (4) | 175 | 437 | μS | | + | GOVER DOVER high to GUVERN anabled | 4 × maximum | | | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t _{CD2CU} + (8576 × CLKUSR period) ⁽⁵⁾ | _ | _ | #### Notes to Table 50: - (1) Use these timing parameters when the decompression and design security features are disabled. - (2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width. - (3) This value is applicable if you do not delay configuration by externally holding the nstatus low. - (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device. - (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. # FPP Configuration Timing when DCLK-to-DATA [] > 1 Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1. Page 60 Configuration Specification Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA [] ratio is more than 1. Table 51. FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1 $^{(1)}$ | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nconfig low to conf_done low | _ | 600 | ns | | t _{CF2ST0} | nconfig low to nstatus low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | _ | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽²⁾ | μS | | t _{CF2ST1} | nconfig high to nstatus high | _ | 1,506 ⁽²⁾ | μS | | t _{CF2CK} (5) | nconfig high to first rising edge on DCLK | 1,506 | _ | μS | | t _{ST2CK} (5) | nstatus high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | N-1/f _{DCLK} ⁽⁵⁾ | _ | S | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f | DCLK frequency (FPP ×8/×16) | _ | 125 | MHz | | f _{MAX} | DCLK frequency (FPP ×32) | _ | 100 | MHz | | t _R | Input rise time | _ | 40 | ns | | t _F | Input fall time | _ | 40 | ns | | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t _{CD2CU} +
(8576 × CLKUSR
period) ⁽⁴⁾ | _ | _ | #### Notes to Table 51: - (1) Use these timing parameters when you use the decompression and design security features. - (2) You can obtain this value if you do not delay configuration by extending the nconfig or nstatus low pulse width. - (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device. - (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (5) N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating. - (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. # **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) #### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Glossary Page 67 Table 60. Glossary (Part 3 of 4) | Letter | Subject | Definitions | |--------|---|--| | | SW (sampling window) | Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window (SW) 0.5 x TCCS | | S | Single-ended
voltage
referenced I/O
standard | The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard VIHACO VIHACO VIHACO VILLOCO VI | | | t _C TCCS (channel- | High-speed receiver and transmitter input and output clock period. The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS | | | to-channel-skew) | measurement (refer to the <i>Timing Diagram</i> figure under SW in this table). | | | t _{DUTY} | High-speed I/O block—Duty cycle on the high-speed transmitter output clock. Timing Unit Interval (TUI) | | Т | | The timing budget allowed for skew, propagation delays, and the data sampling window. $(TUI = 1/(receiver input clock frequency multiplication factor) = t_c/w$ | | | t _{FALL} | Signal high-to-low transition time (80-20%) | | | t _{INCCJ} | Cycle-to-cycle jitter tolerance on the PLL clock input. | | | t _{OUTPJ_IO} | Period jitter on the general purpose I/O driven by a PLL. | | | t _{OUTPJ_DC} | Period jitter on the dedicated clock output driven by a PLL. | | | t _{RISE} | Signal low-to-high transition time (20-80%) | | U | _ | _ | Page 70 Document Revision History Table 61. Document Revision History (Part 2 of 3) | Date | Version | Changes | |---------------|---------|---| | | | ■ Added the I3YY speed grade and changed the data rates for the GX channel in Table 1. | | | | ■ Added the I3YY speed grade to the V _{CC} description in Table 6. | | | | ■ Added the I3YY speed grade to V _{CCHIP_L} , V _{CCHIP_R} , V _{CCHSSI_L} , and V _{CCHSSI_R} descriptions in Table 7. | | | | ■ Added 240-Ω to Table 11. | | | | ■ Changed CDR PPM tolerance in Table 23. | | | | ■ Added additional max data rate for fPLL in Table 23. | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25. | | | 3.3 | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26. | | | | ■ Changed CDR PPM tolerance in Table 28. | | | | ■ Added additional max data rate for fPLL in Table 28. | | | | ■ Changed the mode descriptions for MLAB and M20K in Table 33. | | November 2014 | | ■ Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36. | | | | ■ Changed the frequency ranges for C1 and C2 in Table 39. | | | | ■ Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47. | | | | ■ Added note about nSTATUS to Table 50, Table 51, Table 54. | | | | ■ Changed the available settings in Table 58. | | | | ■ Changed the note in "Periphery Performance". | | | | ■ Updated the "I/O Standard Specifications" section. | | | | ■ Updated the "Raw Binary File Size" section. | | | | ■ Updated the receiver voltage input range in Table 22. | | | | ■ Updated the max frequency for the LVDS clock network in Table 36. | | | | ■ Updated the DCLK note to Figure 11. | | | | ■ Updated Table 23 VO _{CM} (DC Coupled) condition. | | | | ■ Updated Table 6 and Table 7. | | | | ■ Added the DCLK specification to Table 55. | | | | ■ Updated the notes for Table 47. | | | | ■ Updated the list of parameters for Table 56. | | November 2013 | 3.2 | ■ Updated Table 28 | | November 2013 | 3.1 | ■ Updated Table 33 | | November 2013 | 3.0 | ■ Updated Table 23 and Table 28 | | October 2013 | 2.9 | ■ Updated the "Transceiver Characterization" section | | | | ■ Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59 | | October 2013 | 2.8 | ■ Added Figure 1 and Figure 3 | | | | ■ Added the "Transceiver Characterization" section | | | | ■ Removed all "Preliminary" designations. |