E·XFL

Intel - 5SGXEABN2F45I2N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	359200
Number of Logic Elements/Cells	952000
Total RAM Bits	53248000
Number of I/O	840
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1932-BBGA, FCBGA
Supplier Device Package	1932-FBGA, FC (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxeabn2f45i2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		(-,					
Transceiver Speed Grade				Core Spe	ed Grade			
	C1	C2, C2L	C3	C4	12, 12L	13, 13L	I 3YY	14
3		Yes	Yes	Yes		Yes	Yes (4)	Yes
GX channel—8.5 Gbps		165	165	165		163	163 17	165

Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering ^{(1), (2), (3)} (Part 2 of 2)

Notes to Table 1:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

(3) C2L, I2L, and I3L speed grades are for low-power devices.

(4) I3YY speed grades can achieve up to 10.3125 Gbps.

Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices. **Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering** ⁽¹⁾, ⁽²⁾

Transaction Oracle Oracle	Core Speed Grade							
Transceiver Speed Grade	C1	C2	12	13				
2 GX channel—12.5 Gbps GT channel—28.05 Gbps	Yes	Yes	_	_				
3 GX channel—12.5 Gbps GT channel—25.78 Gbps	Yes	Yes	Yes	Yes				

Notes to Table 2:

(1) C = Commercial temperature grade; I = Industrial temperature grade.

(2) Lower number refers to faster speed grade.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 3.	Absolute	Maximum	Ratings	for Stratix \	/ Devices	(Part 1 of 2)
----------	----------	---------	----------------	---------------	-----------	---------------

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
			0.82	0.85	0.88	
V _{CCR_GXBR}	Receiver analog power supply (right side)		0.87	0.90	0.93	v
(2)	Receiver analog power supply (right side)	GX, GS, GT	0.97	1.0	1.03	v
			1.03	1.05	1.07	
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
			0.82	0.85	0.88	
V _{CCT_GXBL} T	Transmitter analog power supply (left side)	GX, GS, GT	0.87	0.90	0.93	V
			0.97	1.0	1.03	
			1.03	1.05	1.07	
		GX, GS, GT	0.82	0.85	0.88	V
V _{CCT_GXBR}	Transmitter analog nower supply (right side)		0.87	0.90	0.93	
(2)	Transmitter analog power supply (right side)		0.97	1.0	1.03	
			1.03	1.05	1.07	
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
V_{CCL_GTBR}	Transmitter clock network power supply	GT	1.02	1.05	1.08	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	1.425	1.5	1.575	V

Table 7.	Recommended Transceiver Power Supply Operating Conditions for Stratix V GX,	GS, and GT Devices
(Part 2	of 2)	

Notes to Table 7:

(1) This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

(2) Refer to Table 8 to select the correct power supply level for your design.

(3) When using ATX PLLs, the supply must be 3.0 V.

(4) This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

I/O Pin Leakage Current

Table 9 lists the Stratix V I/O pin leakage current specifications.

Table 9. I/	0 Pin Leakage	Current for Stratix 	/ Devices ⁽¹⁾
-------------	---------------	-----------------------------	--------------------------

Symbol	Description	Conditions	Min	Тур	Max	Unit
I _I	Input pin	$V_I = 0 V \text{ to } V_{CCIOMAX}$	-30	—	30	μA
I _{0Z}	Tri-stated I/O pin	$V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$	-30		30	μA

Note to Table 9:

(1) If $V_0 = V_{CCIO}$ to $V_{CCIOMax}$, 100 μ A of leakage current per I/O is expected.

Bus Hold Specifications

Table 10 lists the Stratix V device family bus hold specifications.

Table 10. Bus Hold Parameters for Stratix V Devices

			V _{CCI0}										
Parameter	Symbol	Conditions	1.2 V		1.	1.5 V 1.		1.8 V		2.5 V		3.0 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (maximum)	22.5	_	25.0	_	30.0	_	50.0	_	70.0	_	μA
High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (minimum)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μA
Low overdrive current	I _{odl}	$0V < V_{IN} < V_{CCIO}$	_	120	_	160	_	200	_	300	_	500	μA
High overdrive current	I _{odh}	0V < V _{IN} < V _{CCI0}		-120		-160	_	-200		-300	_	-500	μA
Bus-hold trip point	V _{trip}	_	0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

On-Chip Termination (OCT) Specifications

If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block. Table 11 lists the Stratix V OCT termination calibration accuracy specifications.

Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices ⁽¹⁾ (Part 1 of 2)

Symbol			Calibration Accuracy				
	Description	Conditions	C1	C2,12	C3,I3, I3YY	C4,14	Unit
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%

			Calibration Accuracy					
Symbol	Description	Conditions	C1	C2,12	C3,I3, I3YY	C4,14	Unit	
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%	
34-Ω and 40-Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	±15	±15	%	
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	V _{CCI0} = 1.2 V	±15	±15	±15	±15	%	
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%	
20- $Ω$, 30- $Ω$, 40- $Ω$,60- $Ω$, and 120- $Ω$ R _T	Internal parallel termination with calibration ($20 \cdot \Omega$, $30 \cdot \Omega$, $40 \cdot \Omega$, $60 \cdot \Omega$, and $120 \cdot \Omega$ setting)	V _{CCI0} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%	
60-Ω and 120-Ω R_T	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	V _{CCI0} = 1.2	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%	
$\begin{array}{l} \textbf{25-}\Omega\\ \textbf{R}_{S_left_shift} \end{array}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%	

Table 11. OCT Calibration Accurat	y Specifications for Stratix V Devices ⁽¹⁾ ((Part 2 of 2)
-----------------------------------	---	---------------

Note to Table 11:

(1) OCT calibration accuracy is valid at the time of calibration only.

Table 12 lists the Stratix V OCT without calibration resistance to PVT changes.

			Re	esistance	Tolerance	1	
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 3.0$ and 2.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	$V_{CCI0} = 1.8$ and 1.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%

Symbol	Description	V _{CCIO} (V)	Typical	Unit
		3.0	0.189	
		2.5	0.208	
dR/dT	OCT variation with temperature without recalibration	1.8	0.266	%/°C
	without robalibration	1.5	0.273	
		1.2	0.317	

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2)⁽¹⁾

Note to Table 13:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to 85°C.

Pin Capacitance

Table 14 lists the Stratix V device family pin capacitance.

Table 14. Pin Capacitance for Stratix V Devices

Symbol	Description	Value	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	6	рF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	6	рF

Hot Socketing

Table 15 lists the hot socketing specifications for Stratix V devices.

Table 15.	Hot Socketing Specifications for Stratix V Devices
-----------	--

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μA
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Note to Table 15:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{10PIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Switching Characteristics

This section provides performance characteristics of the Stratix V core and periphery blocks.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary."
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

Transceiver Performance Specifications

This section describes transceiver performance specifications.

Table 23 lists the Stratix V GX and GS transceiver specifications.

Table 23.	Transceiver S	necifications (for Stratix	V GX and GS	Devices (1)	(Part 1 of 7)
	114113001101 0	poontoutions	IOI OUIUUA	• un unu uu		(1 41 (1 01 1)

Symbol/ Description	Conditions	Trai	isceive Grade	r Speed 1	Trar	isceive Grade	r Speed 2	Trar	isceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Reference Clock											
Supported I/O Standards	Dedicated reference clock pin	1.2-V	PCML,	1.4-V PCM	L, 1.5-V		, 2.5-V PCN HCSL	1L, Diffe	rential	LVPECL, L\	/DS, and
Standards	RX reference clock pin			1.4-V PCMI	_, 1.5-V	PCML,	2.5-V PCM	L, LVPE	CL, and	d LVDS	
Input Reference Clock Frequency (CMU PLL) ⁽⁸⁾	_	40	_	710	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽⁸⁾	_	100		710	100		710	100	_	710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽²⁶⁾	_	_	400	_	_	400	_	_	400	ps
Fall time	Measure at ±60 mV of differential signal ⁽²⁶⁾	_	_	400	_		400	_		400	μο
Duty cycle	—	45		55	45		55	45	—	55	%
Spread-spectrum modulating clock frequency	PCI Express® (PCIe [®])	30		33	30		33	30		33	kHz

Symbol/ Description	Conditions	Tra	nsceive Grade	r Speed 1	Tra	nsceive Grade	r Speed 2	Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	85– Ω setting		85 ± 30%		-	85 ± 30%			85 ± 30%		Ω
Differential on-	100–Ω setting	_	100 ± 30%		_	100 ± 30%		_	100 ± 30%		Ω
chip termination resistors ⁽²¹⁾	120–Ω setting	_	120 ± 30%		_	120 ± 30%		_	120 ± 30%		Ω
	150-Ω setting	_	150 ± 30%	_	_	150 ± 30%		_	150 ± 30%		Ω
	V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth		600		_	600	_		600		mV
V _{ICM} (AC and DC coupled)	V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth	_	600	_	_	600	_	_	600	_	mV
coupleu)	V _{CCR_GXB} = 1.0 V/1.05 V full bandwidth	_	700		_	700			700		mV
	V _{CCR_GXB} = 1.0 V half bandwidth		750	_	_	750	_	_	750	_	mV
t _{LTR} ⁽¹¹⁾	_	_	—	10	—	—	10	—	—	10	μs
t _{LTD} (12)	_	4			4			4			μs
t _{LTD_manual} ⁽¹³⁾		4			4			4	_		μs
t _{LTR_LTD_manual} ⁽¹⁴⁾		15			15	—		15	—		μs
Run Length	_	_		200		—	200		—	200	UI
Programmable equalization (AC Gain) ⁽¹⁰⁾	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)			16	_		16	_		16	dB

 Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 4 of 7)

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trar	isceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	DC Gain Setting = 0		0	_	_	0		_	0	—	dB
	DC Gain Setting = 1	_	2	_	—	2	_	_	2	_	dB
Programmable DC gain	DC Gain Setting = 2	_	4	_	_	4	_	_	4	_	dB
	DC Gain Setting = 3	_	6	_	_	6	_	_	6	_	dB
	DC Gain Setting = 4	_	8	_	_	8	_	_	8	—	dB
Transmitter											
Supported I/O Standards	_				-	I.4-V ar	nd 1.5-V PC	ML			
Data rate (Standard PCS)	_	600	_	12200	600	_	12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS)	_	600	_	14100	600		12500	600		8500/ 10312.5 (24)	Mbps
	85-Ω setting		85 ± 20%	_	_	85 ± 20%		_	85 ± 20%	_	Ω
Differential on-	100-Ω setting	_	100 ± 20%	_	_	100 ± 20%	_	_	100 ± 20%	_	Ω
chip termination resistors	120-Ω setting	_	120 ± 20%		_	120 ± 20%		_	120 ± 20%		Ω
	150-Ω setting		150 ± 20%			150 ± 20%			150 ± 20%		Ω
V _{OCM} (AC coupled)	0.65-V setting		650		_	650		_	650	_	mV
V _{OCM} (DC coupled)	_		650		_	650		_	650	_	mV
Rise time (7)	20% to 80%	30		160	30		160	30		160	ps
Fall time ⁽⁷⁾	80% to 20%	30		160	30		160	30		160	ps
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps			15			15			15	ps
Intra-transceiver block transmitter channel-to- channel skew	x6 PMA bonded mode			120			120			120	ps

Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 5 of 7)

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) ⁽¹⁾
--

Symbol/ Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3		Unit	
		Min	Тур	Max	Min	Тур	Max	_
Data rate	GT channels	19,600		28,050	19,600		25,780	Mbps
Differential on-chip	GT channels		100	_		100		Ω
termination resistors	GX channels		1	1	(8)		11	
	GT channels		500	_		500	—	mV
V_{OCM} (AC coupled)	GX channels		1	1	(8)		11	
Dies/Fall times	GT channels	_	15	_		15	—	ps
Rise/Fall time	GX channels				(8)		1	
Intra-differential pair skew	GX channels				(8)			
Intra-transceiver block transmitter channel-to- channel skew	GX channels				(8)			
Inter-transceiver block transmitter channel-to- channel skew	GX channels				(8)			
CMU PLL	· · · · · ·							
Supported Data Range	—	600	—	12500	600	—	8500	Mbps
t _{pll_powerdown} (13)	—	1	—	—	1	_	—	μs
t _{pll_lock} ⁽¹⁴⁾	—	_	—	10	—	_	10	μs
ATX PLL								
	VCO post- divider L=2	8000	_	12500	8000	_	8500	Mbps
	L=4	4000		6600	4000	_	6600	Mbps
Supported Data Rate	L=8	2000	—	3300	2000	-	3300	Mbps
Range for GX Channels	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	Mbps
Supported Data Rate Range for GT Channels	VCO post- divider L=2	9800	_	14025	9800	_	12890	Mbps
t _{pll_powerdown} ⁽¹³⁾	—	1	—	—	1	—	—	μs
t _{pll_lock} ⁽¹⁴⁾	—		—	10	—	—	10	μs
fPLL							· ·	
Supported Data Range	_	600		3250/ 3.125 ⁽²³⁾	600	_	3250/ 3.125 ⁽²³⁾	Mbps
t _{pll_powerdown} (13)		1	_		1			μs

Table 29 shows the V_{OD} settings for the GT channel.

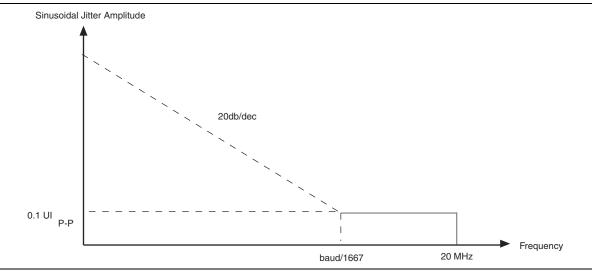
Table 29.	Typical Von Setting	g for GT Channel, T	EX Termination = 100 Ω
-----------	---------------------	---------------------	--------------------------------------

Symbol	V _{OD} Setting	V _{op} Value (mV)	
	0	0	
	1	200	
\mathbf{V}_{0D} differential peak to peak typical (1)	2	400	
VOD unicicilitat peak to peak typical (*)	3	600	
	4	800	
	5	1000	

Note:

(1) Refer to Figure 4.

Symbol	Parameter	Min	Тур	Max	Unit
+ (3) (4)	Input clock cycle-to-cycle jitter ($f_{REF} \ge 100 \text{ MHz}$)	_	—	0.15	UI (p-p)
t _{INCCJ} ^{(3),} ⁽⁴⁾	Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz)	-750	_	+750	ps (p-p)
+ (5)	Period Jitter for dedicated clock output (f_{OUT} \geq 100 MHz)	_	_	175 ⁽¹⁾	ps (p-p)
t _{outpj_dc} ⁽⁵⁾	Period Jitter for dedicated clock output (f _{OUT} < 100 MHz)	_		17.5 ⁽¹⁾	mUI (p-p)
+ (5)	Period Jitter for dedicated clock output in fractional PLL ($f_{0UT} \geq 100 \mbox{ MHz})$	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{foutpj_dc} ⁽⁵⁾	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
+	Cycle-to-Cycle Jitter for a dedicated clock output ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{outccj_dc} ⁽⁵⁾	Cycle-to-Cycle Jitter for a dedicated clock output (f _{0UT} < 100 MHz)	_	_	17.5	mUI (p-p)
+ <i>(5)</i>	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f_{OUT} \geq 100 MHz)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)+	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
t _{outpj_10} (5),	Period Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} \geq 100 MHz)	_	_	600	ps (p-p)
(8)	Period Jitter for a clock output on a regular I/O (f _{OUT} < 100 MHz)	_	_	$\begin{array}{c} 0.15 \\ +750 \\ 175 (1) \\ 175 (1) \\ 250 (11) \\ 175 (12) \\ 25 (11) \\ 175 (12) \\ 25 (11) \\ 17.5 (12) \\ 175 \\ 17.5 \\ 250 (11) \\ 175 (12) \\ 25 (11) \\ 17.5 (12) \\ 25 (11) \\ 17.5 (12) \end{array}$	mUI (p-p)
t _{FOUTPJ_IO} (5),	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600 (10)	ps (p-p)
(8), (11)	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{outccj_io} (5),	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} \geq 100 MHz)	_	_	600	ps (p-p)
(8)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{foutccj_10} ^{(5),}	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{0UT} \geq 100 \mbox{ MHz})$	_	_	600 ⁽¹⁰⁾	ps (p-p)
(8), (11)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)	_	_	60	mUI (p-p)
t _{casc_outpj_dc}	Period Jitter for a dedicated clock output in cascaded PLLs (f_{0UT} \geq 100 MHz)		_	175	ps (p-p)
(5), (6)	Period Jitter for a dedicated clock output in cascaded PLLs (f _{OUT} < 100 MHz)		_	17.5	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits
k _{value}	Numerator of Fraction	128	8388608	2147483648	


Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3)

Jitter Frequency (Hz)		Sinusoidal Jitter (UI)
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Table 38.	LVDS Soft-CDR/D	PA Sinusoidal	Jitter Mask Valu	es for a Data Ra	te > 1.25 Gbps
-----------	-----------------	---------------	-------------------------	------------------	----------------

Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps.

DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications

Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices.

Table 39. DLL Range Specifications for Stratix V Devices (1)

C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,I4	Unit
300-933	300-933	300-890	300-890	MHz

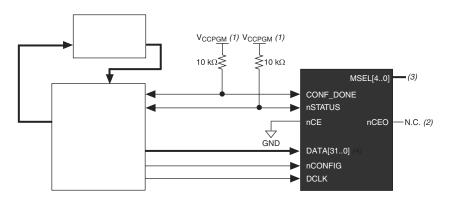
Note to Table 39:

(1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL.

Table 40 lists the DQS phase offset delay per stage for Stratix V devices.

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices ^{(1), (2)} (Part 1 of 2)

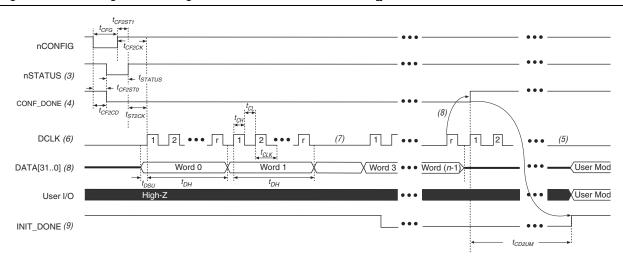
Speed Grade	Min	Max	Unit
C1	8	14	ps
C2, C2L, I2, I2L	8	14	ps
C3,I3, I3L, I3YY	8	15	ps


Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FPP ×32	Disabled	Enabled	4
FPP ×32	Enabled	Disabled	8
	Enabled	Enabled	8

Note to Table 49:

(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.


Figure 11. Single Device FPP Configuration Using an External Host

Notes to Figure 11:

- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM} .
- (2) You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device's nCE pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP ×8, use DATA [7..0]. If you use FPP ×16, use DATA [15..0].

IF the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio – 1) clock cycles after the last data is latched into the Stratix V device.

Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2)

Notes to Figure 13:

- (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay.
- (4) After power-up, before and during configuration, CONF_DONE is low.
- (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (6) "r" denotes the DCLK-to-DATA [] ratio. For the DCLK-to-DATA [] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55.
- (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge.
- (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Page 60

Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is more than 1.

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μS
t _{STATUS}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μS
t _{CF2CK} ⁽⁵⁾	nCONFIG high to first rising edge on DCLK	1,506	_	μS
t _{ST2CK} ⁽⁵⁾	nSTATUS high to first rising edge of DCLK	2	—	μS
t _{DSU}	DATA [] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA [] hold time after rising edge on DCLK	N-1/f _{DCLK} ⁽⁵⁾		S
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45\times1/f_{MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}		S
f	DCLK frequency (FPP ×8/×16)	—	125	MHz
f _{MAX}	DCLK frequency (FPP ×32)	—	100	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	—	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽³⁾	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) ⁽⁴⁾	_	_

Notes to Table 51:

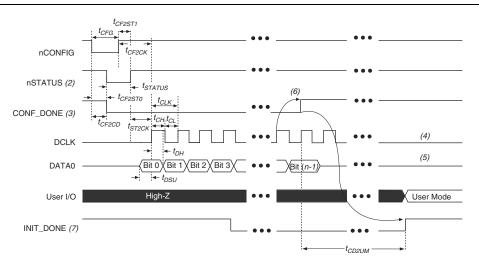
- (1) Use these timing parameters when you use the decompression and design security features.
- (2) You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.
- (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (5) N is the ${\tt DCLK}\mbox{-to-DATA}$ ratio and $f_{{\tt DCLK}}$ is the ${\tt DCLK}$ frequency the system is operating.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Symbol	Parameter	Minimum	Maximum	Units
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{cd2cu} + (8576 × clkusr period)	_	—

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 53:

(1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.


(2) t_{CF2CD}, t_{CF2ST0}, t_{CF2ST0}, t_{CF6}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63.

(3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

Passive Serial Configuration Timing

Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Figure 15. PS Configuration Timing Waveform ⁽¹⁾

Notes to Figure 15:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power-up, the Stratix V device holds <code>nSTATUS</code> low for the time of the POR delay.
- (3) After power-up, before and during configuration, CONF DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**.
- (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specifications

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} ⁽¹⁾	250	—	ns
t _{RU_nRSTIMER} ⁽²⁾	250	—	ns

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum	Typical	Maximum	Units
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

 You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Deremeter	Available	Min	Fast	Model				Slow N	lodel			
Parameter (1)	Available Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns

Parameter	Available	Min	Fast	Model				Slow N	lodel			
(1)	Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D3	8	0	1.587	1.699	2.793	2.793	2.992	3.192	2.811	3.047	3.257	ns
D4	64	0	0.464	0.492	0.838	0.838	0.924	1.011	0.843	0.920	1.006	ns
D5	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D6	32	0	0.229	0.244	0.415	0.415	0.458	0.503	0.418	0.456	0.499	ns

Notes to Table 58:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor.

(2) Minimum offset does not include the intrinsic delay.

Programmable Output Buffer Delay

Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

Table 59. Programmable Output Buffer Delay for Stratix V Devices (Table 59.	Programmable Out	put Buffer Delay	y for Stratix V Devices (
--	-----------	------------------	------------------	---------------------------

Symbol	Parameter	Typical	Unit
		0 (default)	ps
D	Rising and/or falling edge	25	ps
D _{OUTBUF}	delay	50	ps
		75	ps

Note to Table 59:

(1) You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

Glossary

Table 60 lists the glossary for this chapter.

Table 60. Glossary (Part 1 of 4)

Letter	Subject	Definitions
Α		
В	—	—
С		
D	_	—
E	—	_
	f _{HSCLK}	Left and right PLL input clock frequency.
F	f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.
	f _{hsdrdpa}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.

Document Revision History

Table 61 lists the revision history for this chapter.

 Table 61. Document Revision History (Part 1 of 3)

Date	Version	Changes		
June 2018	3.9	 Added the "Stratix V Device Overshoot Duration" figure. 		
		 Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. 		
April 2017		 Changed the minimum value for t_{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. 		
		 Changed the condition for 100-Ω R_D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. 		
	3.8	 Changed the minimum value for t_{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table 		
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 		
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. 		
		 Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. 		
June 2016	3.7	 Added the V_{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table 		
Julie 2010	3.7	 Added the I_{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. 		
December 2015	3.6	Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.		
December 2015	3.5	 Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 		
December 2015	3.5	 Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. 		
		• Changed the data rate specification for transceiver speed grade 3 in the following tables:		
		 "Transceiver Specifications for Stratix V GX and GS Devices" 		
		 "Stratix V Standard PCS Approximate Maximum Date Rate" 		
		 "Stratix V 10G PCS Approximate Maximum Data Rate" 		
July 2015	3.4	 Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. 		
		 Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. 		
		 Changed the t_{co} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. 		
		 Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. 		