Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 185000 | | Number of Logic Elements/Cells | 490000 | | Total RAM Bits | 41984000 | | Number of I/O | 432 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1517-FBGA (40x40) | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxeb5r2f40c2ln | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Page 2 Electrical Characteristics Table 1. Stratix V GX and GS Commercial and Industrial Speed Grade Offering (1), (2), (3) (Part 2 of 2) | Transceiver Speed | Core Speed Grade | | | | | | | | | | | |--------------------------|------------------|---------|-----|-----|---------|---------|--------------------|-----|--|--|--| | Grade | C1 | C2, C2L | C3 | C4 | 12, 12L | 13, 13L | I3YY | 14 | | | | | 3
GX channel—8.5 Gbps | _ | Yes | Yes | Yes | _ | Yes | Yes ⁽⁴⁾ | Yes | | | | #### Notes to Table 1: - (1) C = Commercial temperature grade; I = Industrial temperature grade. - (2) Lower number refers to faster speed grade. - (3) C2L, I2L, and I3L speed grades are for low-power devices. - (4) I3YY speed grades can achieve up to 10.3125 Gbps. Table 2 lists the industrial and commercial speed grades for the Stratix V GT devices. Table 2. Stratix V GT Commercial and Industrial Speed Grade Offering (1), (2) | Transacius Crad Crado | Core Speed Grade | | | | | | | | | |--|------------------|-----|-----|-----|--|--|--|--|--| | Transceiver Speed Grade | C1 | C2 | 12 | 13 | | | | | | | 2
GX channel—12.5 Gbps
GT channel—28.05 Gbps | Yes | Yes | _ | _ | | | | | | | 3
GX channel—12.5 Gbps
GT channel—25.78 Gbps | Yes | Yes | Yes | Yes | | | | | | #### Notes to Table 2: - (1) C = Commercial temperature grade; I = Industrial temperature grade. - (2) Lower number refers to faster speed grade. ## **Absolute Maximum Ratings** Absolute maximum ratings define the maximum operating conditions for Stratix V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions. Conditions other than those listed in Table 3 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device. Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 1 of 2) | Symbol | Description | Minimum | Maximum | Unit | |---------------------|--|---------|---------|------| | V _{CC} | Power supply for core voltage and periphery circuitry | -0.5 | 1.35 | V | | V _{CCPT} | Power supply for programmable power technology | -0.5 | 1.8 | V | | V _{CCPGM} | Power supply for configuration pins | -0.5 | 3.9 | V | | V _{CC_AUX} | Auxiliary supply for the programmable power technology | -0.5 | 3.4 | V | | V _{CCBAT} | Battery back-up power supply for design security volatile key register | -0.5 | 3.9 | V | | V _{CCPD} | I/O pre-driver power supply | -0.5 | 3.9 | V | | V _{CCIO} | I/O power supply | -0.5 | 3.9 | V | Page 14 Electrical Characteristics Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Devices | I/O Standard | | V _{CCIO} (V) | | | V _{REF} (V) | | V _{TT} (V) | | | | |-------------------------|-------|-----------------------|-------|-----------------------------|-------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|--| | I/O Standard | Min | Тур | Max | Min | Тур | Max | Min | Тур | Мах | | | SSTL-2
Class I, II | 2.375 | 2.5 | 2.625 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | V _{REF} – 0.04 | V_{REF} | V _{REF} + 0.04 | | | SSTL-18
Class I, II | 1.71 | 1.8 | 1.89 | 0.833 | 0.9 | 0.969 | V _{REF} – 0.04 | V _{REF} | V _{REF} + 0.04 | | | SSTL-15
Class I, II | 1.425 | 1.5 | 1.575 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | | SSTL-135
Class I, II | 1.283 | 1.35 | 1.418 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
V _{CCIO} | 0.51 *
V _{CCIO} | | | SSTL-125
Class I, II | 1.19 | 1.25 | 1.26 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | | SSTL-12
Class I, II | 1.14 | 1.20 | 1.26 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | 0.49 *
V _{CCIO} | 0.5 *
VCCIO | 0.51 *
V _{CCIO} | | | HSTL-18
Class I, II | 1.71 | 1.8 | 1.89 | 0.85 | 0.9 | 0.95 | _ | V _{CCIO} /2 | _ | | | HSTL-15
Class I, II | 1.425 | 1.5 | 1.575 | 0.68 | 0.75 | 0.9 | _ | V _{CCIO} /2 | _ | | | HSTL-12
Class I, II | 1.14 | 1.2 | 1.26 | 0.47 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.53 *
V _{CCIO} | _ | V _{CCIO} /2 | _ | | | HSUL-12 | 1.14 | 1.2 | 1.3 | 0.49 *
V _{CCIO} | 0.5 * V _{CCIO} | 0.51 *
V _{CCIO} | _ | _ | _ | | Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 1 of 2) | I/O Standard | V _{IL(D(} | _{C)} (V) | V _{IH(D} | _{C)} (V) | V _{IL(AC)} (V) | V _{IH(AC)} (V) | V _{OL} (V) | V _{OH} (V) | I (mA) | I _{oh} | |-------------------------|--------------------|--------------------------|--------------------------|-------------------------|----------------------------|--------------------------|----------------------------|----------------------------|----------------------|-----------------| | i/U Stanuaru | Min | Max | Min | Max | Max | Min | Max | Min | I _{ol} (mA) | (mA) | | SSTL-2
Class I | -0.3 | V _{REF} – 0.15 | V _{REF} + 0.15 | V _{CCIO} + 0.3 | V _{REF} –
0.31 | V _{REF} + 0.31 | V _{TT} –
0.608 | V _{TT} + 0.608 | 8.1 | -8.1 | | SSTL-2
Class II | -0.3 | V _{REF} – 0.15 | V _{REF} + 0.15 | V _{CCIO} + 0.3 | V _{REF} – 0.31 | V _{REF} + 0.31 | V _{TT} – 0.81 | V _{TT} + 0.81 | 16.2 | -16.2 | | SSTL-18
Class I | -0.3 | V _{REF} – 0.125 | V _{REF} + 0.125 | V _{CCIO} + 0.3 | V _{REF} – 0.25 | V _{REF} + 0.25 | V _{TT} – 0.603 | V _{TT} + 0.603 | 6.7 | -6.7 | | SSTL-18
Class II | -0.3 | V _{REF} – 0.125 | V _{REF} + 0.125 | V _{CCIO} + 0.3 | V _{REF} –
0.25 | V _{REF} + 0.25 | 0.28 | V _{CCIO} - 0.28 | 13.4 | -13.4 | | SSTL-15
Class I | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} – 0.175 | V _{REF} + 0.175 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | 8 | -8 | | SSTL-15
Class II | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} – 0.175 | V _{REF} + 0.175 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | 16 | -16 | | SSTL-135
Class I, II | _ | V _{REF} – 0.09 | V _{REF} + 0.09 | _ | V _{REF} –
0.16 | V _{REF} + 0.16 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | | SSTL-125
Class I, II | _ | V _{REF} – 0.85 | V _{REF} + 0.85 | _ | V _{REF} –
0.15 | V _{REF} + 0.15 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | | SSTL-12
Class I, II | _ | V _{REF} – 0.1 | V _{REF} + 0.1 | _ | V _{REF} –
0.15 | V _{REF} + 0.15 | 0.2 *
V _{CCIO} | 0.8 *
V _{CCIO} | _ | _ | Page 16 Electrical Characteristics Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2) | I/O | | | | V _{DIF(DC)} (V) | | V _{X(AC)} (V) | | | | V _{CM(DC)} (V | V _{DIF(AC)} (V) | | | |------------------------|------|-----|------|--------------------------|-------------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------|---------------------------|------|-----------------------------| | Standard | Min | Тур | Max | Min | Max | Min | Тур | Max | Min | Тур | Max | Min | Max | | HSTL-12
Class I, II | 1.14 | 1.2 | 1.26 | 0.16 | V _{CCIO} + 0.3 | _ | 0.5*
V _{CCIO} | _ | 0.4*
V _{CCIO} | 0.5*
V _{CCIO} | 0.6*
V _{CCIO} | 0.3 | V _{CCIO}
+ 0.48 | | HSUL-12 | 1.14 | 1.2 | 1.3 | 0.26 | 0.26 | 0.5*V _{CCIO}
- 0.12 | 0.5*
V _{CCIO} | 0.5*V _{CCIO}
+ 0.12 | 0.4*
V _{CCIO} | 0.5*
V _{CCIO} | 0.6*
V _{CCIO} | 0.44 | 0.44 | Table 22. Differential I/O Standard Specifications for Stratix V Devices (7) | I/O | Vc | _{CIO} (V) | (10) | V _{ID} (mV) ⁽⁸⁾ | | | | V _{ICM(DC)} (V) | | | V _{OD} (V) ⁽⁶⁾ | | | V_{OCM} (V) (6) | | | |------------------------------|--|--------------------|-------|-------------------------------------|--------------------------|-----|------|-----------------------------|-------|-------|------------------------------------|-----|-------|--------------------------------|-------|--| | Standard | Min | Тур | Max | Min | Condition | Max | Min | Condition | Max | Min | Тур | Max | Min | Тур | Max | | | PCML | Transmitter, receiver, and input reference clock pins of the high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to Table 23 on page 18. | | | | | | | | | | | | | | | | | 2.5 V | 2.375 | 2.5 | 2.625 | 100 | V _{CM} = | _ | 0.05 | D _{MAX} ≤ 700 Mbps | 1.8 | 0.247 | | 0.6 | 1.125 | 1.25 | 1.375 | | | LVDS (1) | 2.373 | 2.3 | 2.023 | 100 | 1.25 V | | 1.05 | D _{MAX} > 700 Mbps | 1.55 | 0.247 | _ | 0.6 | 1.125 | 1.25 | 1.375 | | | BLVDS (5) | 2.375 | 2.5 | 2.625 | 100 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | | RSDS
(HIO) ⁽²⁾ | 2.375 | 2.5 | 2.625 | 100 | V _{CM} = 1.25 V | _ | 0.3 | _ | 1.4 | 0.1 | 0.2 | 0.6 | 0.5 | 1.2 | 1.4 | | | Mini-
LVDS
(HIO) (3) | 2.375 | 2.5 | 2.625 | 200 | _ | 600 | 0.4 | _ | 1.325 | 0.25 | _ | 0.6 | 1 | 1.2 | 1.4 | | | LVPECL (4 | _ | _ | _ | 300 | _ | _ | 0.6 | D _{MAX} ≤ 700 Mbps | 1.8 | _ | _ | _ | _ | _ | _ | | |), (9) | _ | _ | _ | 300 | _ | _ | 1 | D _{MAX} > 700 Mbps | 1.6 | _ | _ | _ | _ | _ | _ | | ### Notes to Table 22: - (1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps. - (2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V. - (3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V. - (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps. - (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology. - (6) RL range: $90 \le RL \le 110 \Omega$. - (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18. - (8) The minimum VID value is applicable over the entire common mode range, VCM. - (9) LVPECL is only supported on dedicated clock input pins. - (10) Differential inputs are powered by VCCPD which requires 2.5 $\rm V.$ ## **Power Consumption** Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature. Page 22 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Trai | nsceive
Grade | r Speed
3 | Unit | | |---|---|-----|----------------------|--------------|------|------------------|--------------|------|------------------|--------------------------|------|--| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | | DC Gain
Setting = 0 | _ | 0 | _ | _ | 0 | _ | _ | 0 | _ | dB | | | | DC Gain
Setting = 1 | _ | 2 | _ | _ | 2 | _ | _ | 2 | _ | dB | | | Programmable
DC gain | DC Gain
Setting = 2 | | 4 | _ | _ | 4 | | _ | 4 | _ | dB | | | | DC Gain
Setting = 3 | | 6 | | _ | 6 | _ | _ | 6 | _ | dB | | | | DC Gain
Setting = 4 | _ | 8 | | _ | 8 | | _ | 8 | _ | dB | | | Transmitter | | | | | | | | | | | | | | Supported I/O
Standards | _ | | 1.4-V and 1.5-V PCML | | | | | | | | | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | | Data rate
(10G PCS) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | | | 85-Ω
setting | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | Ω | | | Differential on- | 100-Ω
setting | | 100
±
20% | _ | _ | 100
±
20% | | _ | 100
±
20% | _ | Ω | | | chip termination resistors | 120-Ω
setting | _ | 120
±
20% | _ | _ | 120
±
20% | _ | _ | 120
±
20% | _ | Ω | | | | 150-Ω
setting | _ | 150
±
20% | _ | _ | 150
±
20% | _ | _ | 150
±
20% | _ | Ω | | | V _{OCM} (AC coupled) | 0.65-V
setting | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | | V _{OCM} (DC coupled) | _ | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | | Rise time (7) | 20% to 80% | 30 | _ | 160 | 30 | _ | 160 | 30 | | 160 | ps | | | Fall time ⁽⁷⁾ | 80% to 20% | 30 | _ | 160 | 30 | | 160 | 30 | _ | 160 | ps | | | Intra-differential
pair skew | Tx V _{CM} = 0.5 V and slew rate of 15 ps | _ | _ | 15 | _ | _ | 15 | _ | _ | 15 | ps | | | Intra-transceiver
block transmitter
channel-to-
channel skew | x6 PMA
bonded mode | _ | _ | 120 | _ | _ | 120 | _ | _ | 120 | ps | | Page 26 Switching Characteristics Table 25 shows the approximate maximum data rate using the standard PCS. Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3) | Mada (2) | Transceiver | PMA Width | 20 | 20 | 16 | 16 | 10 | 10 | 8 | 8 | |---------------------|-------------|--|---------|---------|---------|---------|-----|-----|------|------| | Mode ⁽²⁾ | Speed Grade | PCS/Core Width | 40 | 20 | 32 | 16 | 20 | 10 | 16 | 8 | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.5 | 5.8 | 5.2 | 4.72 | | | 2 | C1, C2, C2L, I2, I2L core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.5 | 5.8 | 5.2 | 4.72 | | | 2 | C3, I3, I3L
core speed grade | 9.8 | 9.0 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | FIFO | | C1, C2, C2L, I2, I2L core speed grade | 8.5 | 8.5 | 8.5 | 8.5 | 6.5 | 5.8 | 5.2 | 4.72 | | | 3 | I3YY
core speed grade | 10.3125 | 10.3125 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | | 3 | C3, I3, I3L
core speed grade | 8.5 | 8.5 | 7.84 | 7.2 | 5.3 | 4.7 | 4.24 | 3.76 | | | | C4, I4
core speed grade | 8.5 | 8.2 | 7.04 | 6.56 | 4.8 | 4.2 | 3.84 | 3.44 | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.1 | 5.7 | 4.88 | 4.56 | | | 2 | C1, C2, C2L, I2, I2L
core speed grade | 12.2 | 11.4 | 9.76 | 9.12 | 6.1 | 5.7 | 4.88 | 4.56 | | | 2 | C3, I3, I3L
core speed grade | 9.8 | 9.0 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | Register | | C1, C2, C2L, I2, I2L
core speed grade | 10.3125 | 10.3125 | 10.3125 | 10.3125 | 6.1 | 5.7 | 4.88 | 4.56 | | | - | I3YY
core speed grade | 10.3125 | 10.3125 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | | 3 | C3, I3, I3L
core speed grade | 8.5 | 8.5 | 7.92 | 7.2 | 4.9 | 4.5 | 3.96 | 3.6 | | | | C4, I4
core speed grade | 8.5 | 8.2 | 7.04 | 6.56 | 4.4 | 4.1 | 3.52 | 3.28 | ## Notes to Table 25: ⁽¹⁾ The maximum data rate is in Gbps. ⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency. ⁽³⁾ The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade. Figure 2 shows the differential transmitter output waveform. Figure 2. Differential Transmitter Output Waveform Figure 3 shows the Stratix V AC gain curves for GX channels. Figure 3. AC Gain Curves for GX Channels (full bandwidth) Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23. Table 28 lists the Stratix V GT transceiver specifications. Page 32 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceiver
Speed Grade | | | Transceiver
Speed Grade 3 | | | | |---|----------------------------------|-----|----------------------------|--------|-------------|------------------------------|--------|-------|--| | Description | | Min | Тур | Max | Min | Тур | Max | Unit | | | Differential on-chip termination resistors (7) | GT channels | _ | 100 | _ | _ | 100 | _ | Ω | | | | 85-Ω setting | _ | 85 ± 30% | _ | _ | 85
± 30% | _ | Ω | | | Differential on-chip termination resistors | 100-Ω
setting | _ | 100
± 30% | _ | _ | 100
± 30% | _ | Ω | | | for GX channels (19) | 120-Ω
setting | _ | 120
± 30% | _ | _ | 120
± 30% | _ | Ω | | | V _{ICM} (AC coupled) | 150-Ω
setting | _ | 150
± 30% | _ | _ | 150
± 30% | _ | Ω | | | V _{ICM} (AC coupled) | GT channels | _ | 650 | _ | _ | 650 | _ | mV | | | | VCCR_GXB =
0.85 V or
0.9 V | _ | 600 | _ | _ | 600 | _ | mV | | | VICM (AC and DC coupled) for GX Channels | VCCR_GXB = 1.0 V full bandwidth | _ | 700 | _ | _ | 700 | _ | mV | | | | VCCR_GXB = 1.0 V half bandwidth | _ | 750 | _ | _ | 750 | _ | mV | | | t _{LTR} ⁽⁹⁾ | _ | _ | _ | 10 | _ | _ | 10 | μs | | | t _{LTD} ⁽¹⁰⁾ | _ | 4 | _ | _ | 4 | _ | _ | μs | | | t _{LTD_manual} (11) | | 4 | _ | _ | 4 | _ | _ | μs | | | t _{LTR_LTD_manual} (12) | | 15 | _ | _ | 15 | _ | _ | μs | | | Run Length | GT channels | _ | _ | 72 | _ | _ | 72 | CID | | | nuii Leiigiii | GX channels | | | | (8) | | | | | | CDR PPM | GT channels | _ | _ | 1000 | _ | _ | 1000 | ± PPM | | | ODITITIVI | GX channels | | | | (8) | | | | | | Programmable | GT channels | _ | _ | 14 | _ | _ | 14 | dB | | | equalization
(AC Gain) ⁽⁵⁾ | GX channels | | | | (8) | | | | | | Programmable | GT channels | _ | _ | 7.5 | _ | _ | 7.5 | dB | | | DC gain ⁽⁶⁾ | GX channels | | | | (8) | | | | | | Differential on-chip termination resistors ⁽⁷⁾ | GT channels | | 100 | _ | _ | 100 | _ | Ω | | | Transmitter | · ' | | • | | | • | • | | | | Supported I/O
Standards | _ | | | 1.4-V | and 1.5-V F | PCML | | | | | Data rate
(Standard PCS) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | | Data rate
(10G PCS) | GX channels | 600 | _ | 12,500 | 600 | | 12,500 | Mbps | | Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | | | |--|--|--------|--------------------------|--------------------------------|--------|--------------------------|--------------------------------|------|--|--| | Description | | Min | Тур | Max | Min | Тур | Max | | | | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | | | Differential on-chip | GT channels | _ | 100 | _ | | 100 | <u> </u> | Ω | | | | termination resistors | GX channels | | | • | (8) | | <u>'</u> | | | | | \/ | GT channels | _ | 500 | _ | _ | 500 | _ | mV | | | | V _{OCM} (AC coupled) | GX channels | | | • | (8) | | <u>'</u> | | | | | Diag/Fall time | GT channels | _ | 15 | _ | _ | 15 | _ | ps | | | | Rise/Fall time | GX channels | | <u>I</u> | | (8) | | | | | | | Intra-differential pair
skew | GX channels | (8) | | | | | | | | | | Intra-transceiver block
transmitter channel-to-
channel skew | GX channels | (8) | | | | | | | | | | Inter-transceiver block
transmitter channel-to-
channel skew | GX channels | (8) | | | | | | | | | | CMU PLL | | | | | | | | | | | | Supported Data Range | _ | 600 | _ | 12500 | 600 | _ | 8500 | Mbps | | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | | | ATX PLL | | | | | | | | | | | | | VCO post-
divider L=2 | 8000 | _ | 12500 | 8000 | _ | 8500 | Mbps | | | | | L=4 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | | | Supported Data Rate | L=8 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | | | Range for GX Channels | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | | | Supported Data Rate
Range for GT Channels | VCO post-
divider L=2 | 9800 | _ | 14025 | 9800 | _ | 12890 | Mbps | | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | | | fPLL | | | • | | | | | | | | | Supported Data Range | _ | 600 | _ | 3250/
3.125 ⁽²³⁾ | 600 | _ | 3250/
3.125 ⁽²³⁾ | Mbps | | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | Table 29 shows the $\ensuremath{V_{\text{OD}}}$ settings for the GT channel. Table 29. Typical V_{0D} Setting for GT Channel, TX Termination = 100 Ω | Symbol | V _{op} Setting | V _{op} Value (mV) | |---|-------------------------|----------------------------| | | 0 | 0 | | | 1 | 200 | | V differential peak to peak tunical (1) | 2 | 400 | | V _{OD} differential peak to peak typical ⁽¹⁾ | 3 | 600 | | | 4 | 800 | | | 5 | 1000 | ## Note: (1) Refer to Figure 4. Page 36 Switching Characteristics Figure 4 shows the differential transmitter output waveform. Figure 4. Differential Transmitter/Receiver Output/Input Waveform Figure 5 shows the Stratix V AC gain curves for GT channels. Figure 5. AC Gain Curves for GT Channels Page 38 Switching Characteristics - XFI - ASI - HiGig/HiGig+ - HiGig2/HiGig2+ - Serial Data Converter (SDC) - GPON - SDI - SONET - Fibre Channel (FC) - PCIe - QPI - SFF-8431 Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols. ## **Core Performance Specifications** This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications. ## **Clock Tree Specifications** Table 30 lists the clock tree specifications for Stratix V devices. Table 30. Clock Tree Performance for Stratix V Devices (1) | | Performance | | | | | | | |------------------------------|--------------------------|--------------------------|--------|------|--|--|--| | Symbol | C1, C2, C2L, I2, and I2L | C3, I3, I3L, and
I3YY | C4, I4 | Unit | | | | | Global and
Regional Clock | 717 | 650 | 580 | MHz | | | | | Periphery Clock | 550 | 500 | 500 | MHz | | | | ### Note to Table 30: (1) The Stratix V ES devices are limited to 600 MHz core clock tree performance. Table 31. PLL Specifications for Stratix V Devices (Part 3 of 3) | | Symbol | Parameter | Min | Тур | Max | Unit | |---|--------|--|--------|------|-------|------| | f | RES | Resolution of VCO frequency (f _{INPFD} = 100 MHz) | 390625 | 5.96 | 0.023 | Hz | #### Notes to Table 31: - (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard. - (2) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL. - (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps. - (4) f_{REF} is fIN/N when N = 1. - (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 44 on page 52. - (6) The cascaded PLL specification is only applicable with the following condition: - a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz - b. Downstream PLL: Downstream PLL BW > 2 MHz - (7) High bandwidth PLL settings are not supported in external feedback mode. - (8) The external memory interface clock output jitter specifications use a different measurement method, which is available in Table 42 on page 50. - (9) The VCO frequency reported by the Quartus II software in the PLL Usage Summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification. - (10) This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05 0.95 must be \geq 1000 MHz, while f_{VCO} for fractional value range 0.20 0.80 must be \geq 1200 MHz. - (11) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05-0.95 must be ≥ 1000 MHz. - (12) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20-0.80 must be ≥ 1200 MHz. ## **DSP Block Specifications** Table 32 lists the Stratix V DSP block performance specifications. Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 1 of 2) | | | | F | Peformano | e | | | | | | | |--|---------------------|---------|------------|-----------|------------------|-----|-----|------|--|--|--| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | | | Modes using one DSP | | | | | | | | | | | | Three 9 x 9 | 600 | 600 | 600 | 480 | 480 | 420 | 420 | MHz | | | | | One 18 x 18 | 600 | 600 | 600 | 480 | 480 | 420 | 400 | MHz | | | | | Two partial 18 x 18 (or 16 x 16) | 600 | 600 | 600 | 480 | 480 | 420 | 400 | MHz | | | | | One 27 x 27 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One 36 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One sum of two 18 x 18(One sum of 2 16 x 16) | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One sum of square | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One 18 x 18 plus 36 (a x b) + c | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | | | Modes u | sing two I |)SPs | | | | • | | | | | Three 18 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One sum of four 18 x 18 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | | | | One sum of two 27 x 27 | 465 | 465 | 450 | 380 | 380 | 300 | 290 | MHz | | | | | One sum of two 36 x 18 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | | | | One complex 18 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | | One 36 x 36 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | | | Page 46 Switching Characteristics Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4) | | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | 13, I3L | ., I3YY | C4,I4 | | | | |---------------------------------------|---|-----|-----|------|-----|--------|--------|-----|---------|---------|-------|-----|------|------| | Symbol | | Min | Тур | Max | Unit | | t _{DUTY} | Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | % | | | True Differential
I/O Standards | _ | _ | 160 | _ | _ | 160 | _ | _ | 200 | _ | _ | 200 | ps | | t _{RISE} & t _{FALL} | Emulated Differential I/O Standards with three external output resistor networks | _ | | 250 | _ | _ | 250 | _ | | 250 | _ | | 300 | ps | | | True Differential
I/O Standards | _ | _ | 150 | _ | | 150 | | _ | 150 | | _ | 150 | ps | | TCCS | Emulated
Differential I/O
Standards | _ | _ | 300 | _ | _ | 300 | _ | | 300 | _ | | 300 | ps | | Receiver | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (11), (12),
(13), (14), (15), (16) | 150 | _ | 1434 | 150 | _ | 1434 | 150 | _ | 1250 | 150 | _ | 1050 | Mbps | | True
Differential
I/O Standards | SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16) | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1250 | Mbps | | - f _{HSDRDPA}
(data rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | _ | (7) | Mbps | Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 4 of 4) | Cumbal | Conditions | C1 | | C2, C2L, I2, I2L | | C3, I3, I3L, I3YY | | C4,I4 | | | Unit | | | | |-------------------------------|--|-----|-----|------------------|-----|-------------------|-----------|-------|-----|-----------|------|-----|-----------|----------| | Symbol | Symbol Conditions | | Тур | Max | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Ullit | | | SERDES factor J
= 3 to 10 | (6) | _ | (8) | (6) | | (8) | (6) | | (8) | (6) | _ | (8) | Mbps | | f _{HSDR} (data rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | | (7) | (6) | | (7) | (6) | | (7) | (6) | | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | DPA Mode | | | | | | | | | | | | | | | | DPA run
length | _ | _ | _ | 1000
0 | _ | | 1000
0 | _ | | 1000
0 | _ | _ | 1000
0 | UI | | Soft CDR mode | • | | | | | | | | | | | | | | | Soft-CDR
PPM
tolerance | _ | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | ±
PPM | | Non DPA Mode | Non DPA Mode | | | | | | | | | | | | | | | Sampling
Window | _ | _ | _ | 300 | _ | | 300 | _ | | 300 | _ | _ | 300 | ps | ### Notes to Table 36: - (1) When J = 3 to 10, use the serializer/deserializer (SERDES) block. - (2) When J = 1 or 2, bypass the SERDES block. - (3) This only applies to DPA and soft-CDR modes. - (4) Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate. - (5) This is achieved by using the **LVDS** clock network. - (6) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate. - (7) The maximum ideal frequency is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean. - (8) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported. - (9) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps. - (10) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin. - (11) The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design-dependent and requires timing analysis. - (12) Stratix V RX LVDS will need DPA. For Stratix V TX LVDS, the receiver side component must have DPA. - (13) Stratix V LVDS serialization and de-serialization factor needs to be x4 and above. - (14) Requires package skew compensation with PCB trace length. - (15) Do not mix single-ended I/O buffer within LVDS I/O bank. - (16) Chip-to-chip communication only with a maximum load of 5 pF. - (17) When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported. Page 48 Switching Characteristics Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled. Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled Table 37 lists the DPA lock time specifications for Stratix V devices. Table 37. DPA Lock Time Specifications for Stratix V GX Devices Only (1), (2), (3) | Standard | Training Pattern | Number of Data
Transitions in One
Repetition of the
Training Pattern | Number of
Repetitions per 256
Data Transitions ⁽⁴⁾ | Maximum | |--------------------|----------------------|---|---|----------------------| | SPI-4 | 00000000001111111111 | 2 | 128 | 640 data transitions | | Parallel Rapid I/O | 00001111 | 2 | 128 | 640 data transitions | | Faranei napiu 1/0 | 10010000 | 4 | 64 | 640 data transitions | | Miscellaneous | 10101010 | 8 | 32 | 640 data transitions | | Miscellaneous | 01010101 | 8 | 32 | 640 data transitions | #### Notes to Table 37: - (1) The DPA lock time is for one channel. - (2) One data transition is defined as a 0-to-1 or 1-to-0 transition. - (3) The DPA lock time stated in this table applies to both commercial and industrial grade. - (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions. Figure 8 shows the **LVDS** soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Figure 8. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate \geq 1.25 Gbps LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification 25 8.5 0.35 0.1 F1 F2 F3 F4 Jitter Frequency (Hz) Page 54 Configuration Specification Table 47. Uncompressed .rbf Sizes for Stratix V Devices | Family | Device | Device Package Configuration .rbf Size (bits) | | IOCSR .rbf Size (bits) ^{(4), (5)} | | |-----------------|--------|---|-------------|--|--| | Stratix V E (1) | 5SEE9 | _ | 342,742,976 | 700,888 | | | Stratix V L 17 | 5SEEB | _ | 342,742,976 | 700,888 | | #### Notes to Table 47: - (1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme. - (2) 36-transceiver devices. - (3) 24-transceiver devices. - (4) File size for the periphery image. - (5) The IOCSR .rbf size is specifically for the CvP feature. Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design. For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help*. Table 48 lists the minimum configuration time estimates for Stratix V devices. Table 48. Minimum Configuration Time Estimation for Stratix V Devices | | Banker | | Active Serial (1) |) | Fast Passive Parallel ⁽²⁾ | | | | |---------|----------------|-------|-------------------|------------------------|--------------------------------------|------------|------------------------|--| | Variant | Member
Code | Width | DCLK (MHz) | Min Config
Time (s) | Width | DCLK (MHz) | Min Config
Time (s) | | | | A3 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | | A4 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | A5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | | A7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | GX | A9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | AB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | B5 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | | B6 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | | В9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | BB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | GT | C5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | G1 | C7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | Configuration Specification Page 59 Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2) #### Notes to Figure 13: - (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55. - (2) The beginning of this waveform shows the device in user mode. In user mode, nconfig, nstatus, and conf_done are at logic high levels. When nconfig is pulled low, a reconfiguration cycle begins. - (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay. - (4) After power-up, before and during configuration, CONF DONE is low. - (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (6) "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55. - (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge. - (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ## **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) #### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Document Revision History Page 69 # **Document Revision History** Table 61 lists the revision history for this chapter. Table 61. Document Revision History (Part 1 of 3) | Date | Version | Changes | |---------------|---------|---| | June 2018 | 3.9 | ■ Added the "Stratix V Device Overshoot Duration" figure. | | | | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | | | ■ Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. | | | | ■ Changed the condition for 100-Ω R _D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. | | April 2017 | 3.8 | ■ Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | ■ Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. | | June 2016 3.7 | 2.7 | ■ Added the V _{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table | | | 3.7 | ■ Added the I _{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. | | December 2015 | 3.6 | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | December 2015 | 3.5 | ■ Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | December 2013 | 3.3 | ■ Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. | | | | ■ Changed the data rate specification for transceiver speed grade 3 in the following tables: | | | | ■ "Transceiver Specifications for Stratix V GX and GS Devices" | | | | ■ "Stratix V Standard PCS Approximate Maximum Date Rate" | | | | ■ "Stratix V 10G PCS Approximate Maximum Data Rate" | | July 2015 | 3.4 | ■ Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | - | | ■ Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | ■ Changed the t _{CO} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. | | | | ■ Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. | Document Revision History Page 71 Table 61. Document Revision History (Part 3 of 3) | Date | Version | Changes | |-----------------|---------|---| | | | ■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60 | | May 2013 | 2.7 | ■ Added Table 24, Table 48 | | | | ■ Updated Figure 9, Figure 10, Figure 11, Figure 12 | | February 2013 | 2.6 | ■ Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46 | | | | ■ Updated "Maximum Allowed Overshoot and Undershoot Voltage" | | | | ■ Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35 | | | | ■ Added Table 33 | | | | ■ Added "Fast Passive Parallel Configuration Timing" | | | 0.5 | ■ Added "Active Serial Configuration Timing" | | December 2012 | 2.5 | ■ Added "Passive Serial Configuration Timing" | | | | ■ Added "Remote System Upgrades" | | | | ■ Added "User Watchdog Internal Circuitry Timing Specification" | | | | ■ Added "Initialization" | | | | ■ Added "Raw Binary File Size" | | | | ■ Added Figure 1, Figure 2, and Figure 3. | | June 2012 | 2.4 | ■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59. | | | | Various edits throughout to fix bugs. | | | | ■ Changed title of document to Stratix V Device Datasheet. | | | | ■ Removed document from the Stratix V handbook and made it a separate document. | | February 2012 | 2.3 | ■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31. | | December 2011 | 2.2 | ■ Added Table 2–31. | | December 2011 | 2.2 | ■ Updated Table 2–28 and Table 2–34. | | Navarah ay 0044 | 0.4 | ■ Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices. | | November 2011 | 2.1 | ■ Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25. | | | | ■ Various edits throughout to fix SPRs. | | | | ■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24. | | May 2011 | 2.0 | ■ Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title. | | | | ■ Chapter moved to Volume 1. | | | | ■ Minor text edits. | | | | ■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23. | | December 2010 | 1.1 | Converted chapter to the new template. | | | | ■ Minor text edits. | | July 2010 | 1.0 | Initial release. |