Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 225400 | | Number of Logic Elements/Cells | 597000 | | Total RAM Bits | 53248000 | | Number of I/O | 432 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1517-FBGA (40x40) | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxeb6r2f40c2ln | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Electrical Characteristics Page 3 Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2) | Symbol | Description | Minimum | Maximum | Unit | |-----------------------|--------------------------------|---------|---------|------| | V _{CCD_FPLL} | PLL digital power supply | -0.5 | 1.8 | V | | V _{CCA_FPLL} | PLL analog power supply | -0.5 | 3.4 | V | | V _I | DC input voltage | -0.5 | 3.8 | V | | T _J | Operating junction temperature | -55 | 125 | °C | | T _{STG} | Storage temperature (No bias) | -65 | 150 | °C | | I _{OUT} | DC output current per pin | -25 | 40 | mA | Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices. Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices | Symbol | Description | Devices | Minimum | Maximum | Unit | |-----------------------|--|------------|---------|---------|------| | V _{CCA_GXBL} | Transceiver channel PLL power supply (left side) | GX, GS, GT | -0.5 | 3.75 | V | | V _{CCA_GXBR} | Transceiver channel PLL power supply (right side) | GX, GS | -0.5 | 3.75 | V | | V _{CCA_GTBR} | Transceiver channel PLL power supply (right side) | GT | -0.5 | 3.75 | V | | V _{CCHIP_L} | Transceiver hard IP power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHIP_R} | Transceiver hard IP power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHSSI_L} | Transceiver PCS power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHSSI_R} | Transceiver PCS power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GXBL} | Receiver analog power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | -0.5 | 1.35 | V | | V _{CCT_GXBL} | Transmitter analog power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCT_GXBR} | Transmitter analog power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | -0.5 | 1.35 | V | | V _{CCL_GTBR} | Transmitter clock network power supply (right side) | GT | -0.5 | 1.35 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | -0.5 | 1.8 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | -0.5 | 1.8 | V | ## **Maximum Allowed Overshoot and Undershoot Voltage** During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. Page 4 Electrical Characteristics Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years. **Table 5. Maximum Allowed Overshoot During Transitions** | Symbol | Description | Condition (V) | Overshoot Duration as %
@ T _J = 100°C | Unit | |---------|------------------|---------------|---|------| | | | 3.8 | 100 | % | | | | 3.85 | 64 | % | | | | 3.9 | 36 | % | | | | 3.95 | 21 | % | | Vi (AC) | AC input voltage | 4 | 12 | % | | | 1 | 4.05 | 7 | % | | | | 4.1 | 4 | % | | | | 4.15 | 2 | % | | | | 4.2 | 1 | % | Figure 1. Stratix V Device Overshoot Duration Electrical Characteristics Page 5 # **Recommended Operating Conditions** This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus. Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2) | Symbol | Description | Condition | Min ⁽⁴⁾ | Тур | Max ⁽⁴⁾ | Unit | |----------------------------------|--|------------|--------------------|------|--------------------|------| | | Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades) | _ | 0.87 | 0.9 | 0.93 | V | | V _{CC} | Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) (3) | _ | 0.82 | 0.85 | 0.88 | V | | V _{CCPT} | Power supply for programmable power technology | _ | 1.45 | 1.50 | 1.55 | V | | V _{CC_AUX} | Auxiliary supply for the programmable power technology | _ | 2.375 | 2.5 | 2.625 | V | | V (1) | I/O pre-driver (3.0 V) power supply | | 2.85 | 3.0 | 3.15 | V | | V _{CCPD} ⁽¹⁾ | I/O pre-driver (2.5 V) power supply | | 2.375 | 2.5 | 2.625 | V | | | I/O buffers (3.0 V) power supply | _ | 2.85 | 3.0 | 3.15 | ٧ | | | I/O buffers (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | I/O buffers (1.8 V) power supply | _ | 1.71 | 1.8 | 1.89 | ٧ | | V_{CCIO} | I/O buffers (1.5 V) power supply | _ | 1.425 | 1.5 | 1.575 | V | | | I/O buffers (1.35 V) power supply | | 1.283 | 1.35 | 1.45 | V | | | I/O buffers (1.25 V) power supply | | 1.19 | 1.25 | 1.31 | V | | | I/O buffers (1.2 V) power supply | _ | 1.14 | 1.2 | 1.26 | V | | | Configuration pins (3.0 V) power supply | | 2.85 | 3.0 | 3.15 | V | | V_{CCPGM} | Configuration pins (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | Configuration pins (1.8 V) power supply | _ | 1.71 | 1.8 | 1.89 | V | | V _{CCA_FPLL} | PLL analog voltage regulator power supply | | 2.375 | 2.5 | 2.625 | V | | V _{CCD_FPLL} | PLL digital voltage regulator power supply | | 1.45 | 1.5 | 1.55 | V | | V _{CCBAT} (2) | Battery back-up power supply (For design security volatile key register) | _ | 1.2 | _ | 3.0 | V | | V _I | DC input voltage | _ | -0.5 | _ | 3.6 | V | | V ₀ | Output voltage | _ | 0 | _ | V _{CCIO} | V | | т. | Operating junction temperature | Commercial | 0 | _ | 85 | °C | | T _J | Operating junction temperature | Industrial | -40 | _ | 100 | °C | Electrical Characteristics Page 7 Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | |-----------------------|--|------------|------------------------|---------|------------------------|------| | | | | 0.82 | 0.85 | 0.88 | | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Treceiver analog power supply (right side) | ux, us, u1 | 0.97 | 1.0 | 1.03 | v | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBL} | Transmitter analog power supply (left side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | | Transmitter analog power supply (left side) | | 0.97 | 1.0 | 1.03 | | | | | | 1.03 | 1.05 | 1.07 | | | | | GX, GS, GT | 0.82 | 0.85 | 0.88 | V | | V _{CCT_GXBR} | Transmitten and a resumment of the cide | | 0.87 | 0.90 | 0.93 | | | (2) | Transmitter analog power supply (right side) | | 0.97 | 1.0 | 1.03 | | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCL_GTBR} | Transmitter clock network power supply | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | ### Notes to Table 7: ⁽¹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V. ⁽²⁾ Refer to Table 8 to select the correct power supply level for your design. ⁽³⁾ When using ATX PLLs, the supply must be 3.0 V. ⁽⁴⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Page 8 Electrical Characteristics Table 8 shows the transceiver power supply voltage requirements for various conditions. **Table 8. Transceiver Power Supply Voltage Requirements** | Conditions | Core Speed Grade | VCCR_GXB & VCCT_GXB (2) | VCCA_GXB | VCCH_GXB | Unit | |--|-----------------------------------|-------------------------|----------|----------|------| | If BOTH of the following conditions are true: | | 4.05 | | | | | ■ Data rate > 10.3 Gbps. | All | 1.05 | | | | | ■ DFE is used. | | | | | | | If ANY of the following conditions are true ⁽¹⁾ : | | | 3.0 | | | | ATX PLL is used. | | | | | | | ■ Data rate > 6.5Gbps. | All | 1.0 | | | | | ■ DFE (data rate ≤
10.3 Gbps), AEQ, or
EyeQ feature is used. | | | | 1.5 | V | | If ALL of the following | C1, C2, I2, and I3YY | 0.90 | 2.5 | | | | conditions are true: ATX PLL is not used. | | | | | | | ■ Data rate ≤ 6.5Gbps. | C2L, C3, C4, I2L, I3, I3L, and I4 | 0.85 | 2.5 | | | | DFE, AEQ, and EyeQ are
not used. | | | | | | ### Notes to Table 8: - (1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions. - (2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply. ### **DC Characteristics** This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications. ## **Supply Current** Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Page 22 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | Transceiver Speed
Grade 2 | | | Trai | nsceive
Grade | r Speed
3 | Unit | |---|---|----------------------|------------------|--------------|------------------------------|-----------------|-------|------|------------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | DC Gain
Setting = 0 | _ | 0 | _ | _ | 0 | _ | _ | 0 | _ | dB | | | DC Gain
Setting = 1 | _ | 2 | _ | _ | 2 | _ | _ | 2 | _ | dB | | Programmable
DC gain | DC Gain
Setting = 2 | | 4 | _ | _ | 4 | | _ | 4 | _ | dB | | | DC Gain
Setting = 3 | | 6 | | _ | 6 | _ | _ | 6 | _ | dB | | | DC Gain
Setting = 4 | _ | 8 | | _ | 8 | | _ | 8 | _ | dB | | Transmitter | | | | | | | | | | | | | Supported I/O
Standards | _ | 1.4-V and 1.5-V PCML | | | | | | | | | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | | 85-Ω
setting | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | Ω | | Differential on- | 100-Ω
setting | | 100
±
20% | _ | _ | 100
±
20% | | _ | 100
±
20% | _ | Ω | | chip termination resistors | 120-Ω
setting | _ | 120
±
20% | _ | _ | 120
±
20% | _ | _ | 120
±
20% | _ | Ω | | | 150-Ω
setting | _ | 150
±
20% | _ | _ | 150
±
20% | _ | _ | 150
±
20% | _ | Ω | | V _{OCM} (AC coupled) | 0.65-V
setting | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | V _{OCM} (DC coupled) | _ | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | Rise time (7) | 20% to 80% | 30 | _ | 160 | 30 | _ | 160 | 30 | | 160 | ps | | Fall time ⁽⁷⁾ | 80% to 20% | 30 | _ | 160 | 30 | | 160 | 30 | _ | 160 | ps | | Intra-differential
pair skew | Tx V _{CM} = 0.5 V and slew rate of 15 ps | _ | _ | 15 | _ | _ | 15 | _ | _ | 15 | ps | | Intra-transceiver
block transmitter
channel-to-
channel skew | x6 PMA
bonded mode | _ | _ | 120 | _ | _ | 120 | _ | _ | 120 | ps | Switching Characteristics Page 25 Table 24 shows the maximum transmitter data rate for the clock network. Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1) | | | ATX PLL | | | CMU PLL (2) |) | | fPLL | | |-----------------------------------|----------------------------------|--------------------------|--|----------------------------------|--------------------------|-------------------------|----------------------------------|--------------------------|-------------------------| | Clock Network | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | | x1 ⁽³⁾ | 14.1 | _ | 6 | 12.5 | _ | 6 | 3.125 | _ | 3 | | x6 ⁽³⁾ | _ | 14.1 | 6 | _ | 12.5 | 6 | _ | 3.125 | 6 | | x6 PLL
Feedback ⁽⁴⁾ | _ | 14.1 | Side-
wide | _ | 12.5 | Side-
wide | _ | _ | _ | | xN (PCIe) | _ | 8.0 | 8 | _ | 5.0 | 8 | _ | _ | _ | | xN (Native PHY IP) | 8.0 | 8.0 | Up to 13
channels
above
and
below
PLL | 7 00 | 7 00 | Up to 13 channels above | 3.125 | 3.125 | Up to 13 channels above | | | П | 8.01 to
9.8304 | Up to 7
channels
above
and
below
PLL | 7.99 | 7.99 | and
below
PLL | 3.125 | 3.125 | and
below
PLL | ### Notes to Table 24: ⁽¹⁾ Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation. ⁽²⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance. ⁽³⁾ Channel span is within a transceiver bank. ⁽⁴⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP. Page 28 Switching Characteristics Table 27 shows the $\ensuremath{V_{OD}}$ settings for the GX channel. Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$ | Symbol | V _{OD} Setting | V _{op} Value
(mV) | V _{op} Setting | V _{op} Value
(mV) | |---------------------------------------|-------------------------|-------------------------------|-------------------------|-------------------------------| | | 0 (1) | 0 | 32 | 640 | | | 1 (1) | 20 | 33 | 660 | | | 2 (1) | 40 | 34 | 680 | | | 3 (1) | 60 | 35 | 700 | | | 4 (1) | 80 | 36 | 720 | | | 5 ⁽¹⁾ | 100 | 37 | 740 | | | 6 | 120 | 38 | 760 | | | 7 | 140 | 39 | 780 | | | 8 | 160 | 40 | 800 | | | 9 | 180 | 41 | 820 | | | 10 | 200 | 42 | 840 | | | 11 | 220 | 43 | 860 | | | 12 | 240 | 44 | 880 | | | 13 | 260 | 45 | 900 | | | 14 | 280 | 46 | 920 | | V op differential peak to peak | 15 | 300 | 47 | 940 | | typical ⁽³⁾ | 16 | 320 | 48 | 960 | | | 17 | 340 | 49 | 980 | | | 18 | 360 | 50 | 1000 | | | 19 | 380 | 51 | 1020 | | | 20 | 400 | 52 | 1040 | | | 21 | 420 | 53 | 1060 | | | 22 | 440 | 54 | 1080 | | | 23 | 460 | 55 | 1100 | | | 24 | 480 | 56 | 1120 | | | 25 | 500 | 57 | 1140 | | | 26 | 520 | 58 | 1160 | | | 27 | 540 | 59 | 1180 | | | 28 | 560 | 60 | 1200 | | | 29 | 580 | 61 | 1220 | | | 30 | 600 | 62 | 1240 | | | 31 | 620 | 63 | 1260 | ### Note to Table 27: - (1) If TX termination resistance = 100Ω , this VOD setting is illegal. - (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below. - (3) Refer to Figure 2. Page 30 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$ | Symbol/ | Conditions | Transceiver
Speed Grade 2 | | | | Transceive
peed Grade | | Unit | |--|--|------------------------------|--------------------------|--------------|------------------------|--------------------------|--------------|------------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Reference Clock | • | • | • | • | • | • | • | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V PCN | /IL, 1.4-V PC | ML, 1.5-V P | CML, 2.5-V
and HCSL | PCML, Diffe | rential LVPE | ECL, LVDS, | | Standards | RX reference clock pin | | 1.4-V PCML | ., 1.5-V PCN | IL, 2.5-V PC | ML, LVPEC | L, and LVDS | ; | | Input Reference Clock
Frequency (CMU
PLL) ⁽⁶⁾ | _ | 40 | _ | 710 | 40 | _ | 710 | MHz | | Input Reference Clock
Frequency (ATX PLL) (6) | _ | 100 | _ | 710 | 100 | _ | 710 | MHz | | Rise time | 20% to 80% | _ | _ | 400 | _ | _ | 400 | | | Fall time | 80% to 20% | _ | _ | 400 | _ | <u> </u> | 400 | ps | | Duty cycle | _ | 45 | _ | 55 | 45 | _ | 55 | % | | Spread-spectrum
modulating clock
frequency | PCI Express
(PCIe) | 30 | _ | 33 | 30 | _ | 33 | kHz | | Spread-spectrum
downspread | PCle | _ | 0 to -0.5 | _ | _ | 0 to -0.5 | _ | % | | On-chip termination resistors (19) | _ | _ | 100 | _ | _ | 100 | _ | Ω | | Absolute V _{MAX} (3) | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | V | | | RX reference clock pin | _ | _ | 1.2 | _ | _ | 1.2 | | | Absolute V _{MIN} | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | _ | 1600 | mV | | V _{ICM} (AC coupled) | Dedicated
reference
clock pin | | 1050/1000 ⁽²⁾ | | | 1050/1000 | 2) | mV | | | RX reference
clock pin | 1 | .0/0.9/0.85 | (22) | 1 | .0/0.9/0.85 | (22) | V | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | mV | Page 32 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5) $^{(1)}$ | Symbol/ | Conditions | Transceiver
Speed Grade 2 | | | | Transceive
peed Grade | | Unit | |---|----------------------------------|------------------------------|--------------|--------|-----|--------------------------|--------|-------| | Description | | Min | Тур | Max | Min | Тур | Max | • | | Differential on-chip termination resistors (7) | GT channels | _ | 100 | _ | _ | 100 | _ | Ω | | | 85-Ω setting | _ | 85 ± 30% | _ | _ | 85
± 30% | _ | Ω | | Differential on-chip
termination resistors
for GX channels (19) | 100-Ω
setting | _ | 100
± 30% | _ | _ | 100
± 30% | _ | Ω | | | 120-Ω
setting | _ | 120
± 30% | _ | _ | 120
± 30% | _ | Ω | | | 150-Ω
setting | _ | 150
± 30% | _ | _ | 150
± 30% | _ | Ω | | V _{ICM} (AC coupled) | GT channels | _ | 650 | _ | _ | 650 | _ | mV | | | VCCR_GXB =
0.85 V or
0.9 V | _ | 600 | _ | _ | 600 | _ | mV | | VICM (AC and DC
coupled) for GX
Channels | VCCR_GXB = 1.0 V full bandwidth | _ | 700 | _ | _ | 700 | _ | mV | | | VCCR_GXB = 1.0 V half bandwidth | _ | 750 | _ | _ | 750 | _ | mV | | t _{LTR} ⁽⁹⁾ | _ | _ | _ | 10 | _ | _ | 10 | μs | | t _{LTD} ⁽¹⁰⁾ | _ | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTD_manual} (11) | | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTR_LTD_manual} (12) | | 15 | _ | _ | 15 | _ | _ | μs | | Run Length | GT channels | _ | _ | 72 | _ | _ | 72 | CID | | nuii Leiigiii | GX channels | | | | (8) | | | | | CDR PPM | GT channels | _ | _ | 1000 | _ | _ | 1000 | ± PPM | | ODITITIVI | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 14 | _ | _ | 14 | dB | | equalization
(AC Gain) ⁽⁵⁾ | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 7.5 | _ | _ | 7.5 | dB | | DC gain ⁽⁶⁾ | GX channels | | | | (8) | | | | | Differential on-chip termination resistors ⁽⁷⁾ | GT channels | | 100 | _ | _ | 100 | _ | Ω | | Transmitter | · ' | | • | | | • | • | | | Supported I/O
Standards | _ | 1.4-V and 1.5-V PCML | | | | | | | | Data rate
(Standard PCS) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) | GX channels | 600 | _ | 12,500 | 600 | | 12,500 | Mbps | Switching Characteristics Page 35 Table 29 shows the $\ensuremath{V_{\text{OD}}}$ settings for the GT channel. Table 29. Typical V_{0D} Setting for GT Channel, TX Termination = 100 Ω | Symbol | V _{op} Setting | V _{op} Value (mV) | |---|-------------------------|----------------------------| | | 0 | 0 | | | 1 | 200 | | V differential peak to peak tunical (1) | 2 | 400 | | V _{OD} differential peak to peak typical ⁽¹⁾ | 3 | 600 | | | 4 | 800 | | | 5 | 1000 | ### Note: (1) Refer to Figure 4. Switching Characteristics Page 37 Figure 6 shows the Stratix V DC gain curves for GT channels. ## Figure 6. DC Gain Curves for GT Channels ## **Transceiver Characterization** This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols: - Interlaken - 40G (XLAUI)/100G (CAUI) - 10GBase-KR - QSGMII - XAUI - SFI - Gigabit Ethernet (Gbe / GIGE) - SPAUI - Serial Rapid IO (SRIO) - CPRI - OBSAI - Hyper Transport (HT) - SATA - SAS - CEI Page 42 Switching Characteristics Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 2 of 2) | | | Peformance | | | | | | | | | |-----------------------|-----|------------|-----------|------|------------------|-----|-----|------|--|--| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | | | Modes us | ing Three | DSPs | • | | | | | | | One complex 18 x 25 | 425 | 425 | 415 | 340 | 340 | 275 | 265 | MHz | | | | Modes using Four DSPs | | | | | | | | | | | | One complex 27 x 27 | 465 | 465 | 465 | 380 | 380 | 300 | 290 | MHz | | | # **Memory Block Specifications** Table 33 lists the Stratix V memory block specifications. Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 1 of 2) | | | Resources Used | | Performance | | | | | | | | |--------|------------------------------------|----------------|--------|-------------|------------|-----|-----|---------|---------------------|-----|------| | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C3 | C4 | 12, I2L | 13,
13L,
13YY | 14 | Unit | | | Single port, all supported widths | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | | Simple dual-port,
x32/x64 depth | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | MLAB | Simple dual-port, x16 depth (3) | 0 | 1 | 675 | 675 | 533 | 400 | 675 | 533 | 400 | MHz | | | ROM, all supported widths | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | Switching Characteristics Page 43 Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 2 of 2) | | | Resour | ces Used | | | Pe | erforman | ce | | | | |---------------|---|--------|----------|-----|------------|-----|----------|---------|---------------------|-----|------| | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C3 | C4 | 12, 12L | 13,
13L,
13YY | 14 | Unit | | | Single-port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | Simple dual-port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | Simple dual-port with
the read-during-write
option set to Old Data ,
all supported widths | 0 | 1 | 525 | 525 | 455 | 400 | 525 | 455 | 400 | MHz | | M20K
Block | Simple dual-port with ECC enabled, 512 × 32 | 0 | 1 | 450 | 450 | 400 | 350 | 450 | 400 | 350 | MHz | | | Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32 | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | | | True dual port, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | | | ROM, all supported widths | 0 | 1 | 700 | 700 | 650 | 550 | 700 | 500 | 450 | MHz | ### Notes to Table 33: ## **Temperature Sensing Diode Specifications** Table 34 lists the internal TSD specification. **Table 34. Internal Temperature Sensing Diode Specification** | Tei | mperature
Range | Accuracy | Offset
Calibrated
Option | Sampling Rate | Conversion
Time | Resolution | Minimum
Resolution
with no
Missing Codes | |------|--------------------|----------|--------------------------------|----------------|--------------------|------------|---| | -40° | °C to 100°C | ±8°C | No | 1 MHz, 500 KHz | < 100 ms | 8 bits | 8 bits | Table 35 lists the specifications for the Stratix V external temperature sensing diode. Table 35. External Temperature Sensing Diode Specifications for Stratix V Devices | Description | Min | Тур | Max | Unit | |--|-------|-------|-------|------| | I _{bias} , diode source current | 8 | _ | 200 | μΑ | | V _{bias,} voltage across diode | 0.3 | _ | 0.9 | V | | Series resistance | _ | _ | <1 | Ω | | Diode ideality factor | 1.006 | 1.008 | 1.010 | _ | ⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes. ⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}. ⁽³⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled. Page 52 Configuration Specification ## **Duty Cycle Distortion (DCD) Specifications** Table 44 lists the worst-case DCD for Stratix V devices. Table 44. Worst-Case DCD on Stratix V I/O Pins (1) | Symbol | C1 | | C2, C2 | C2, C2L, I2, I2L | | C3, I3, I3L,
I3YY | | 1,14 | Unit | |-------------------|-----|-----|--------|------------------|-----|----------------------|-----|------|------| | | Min | Max | Min | Max | Min | Max | Min | Max | | | Output Duty Cycle | 45 | 55 | 45 | 55 | 45 | 55 | 45 | 55 | % | ### Note to Table 44: # **Configuration Specification** # **POR Delay Specification** Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration. For more information about the POR delay, refer to the *Hot Socketing and Power-On Reset in Stratix V Devices* chapter. Table 45 lists the fast and standard POR delay specification. Table 45. Fast and Standard POR Delay Specification (1) | POR Delay | Minimum | Maximum | | | |-----------|---------|---------|--|--| | Fast | 4 ms | 12 ms | | | | Standard | 100 ms | 300 ms | | | ### Note to Table 45: # **JTAG Configuration Specifications** Table 46 lists the JTAG timing parameters and values for Stratix V devices. Table 46. JTAG Timing Parameters and Values for Stratix V Devices | Symbol | Description | Min | Max | Unit | |-------------------------|---------------------------------|-----|-----|------| | t _{JCP} | TCK clock period (2) | 30 | _ | ns | | t _{JCP} | TCK clock period ⁽²⁾ | 167 | _ | ns | | t _{JCH} | TCK clock high time (2) | 14 | _ | ns | | t _{JCL} | TCK clock low time (2) | 14 | _ | ns | | t _{JPSU (TDI)} | TDI JTAG port setup time | 2 | _ | ns | | t _{JPSU (TMS)} | TMS JTAG port setup time | 3 | _ | ns | ⁽¹⁾ The DCD numbers do not cover the core clock network. ⁽¹⁾ You can select the POR delay based on the MSEL settings as described in the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. Page 54 Configuration Specification Table 47. Uncompressed .rbf Sizes for Stratix V Devices | Family | Device | Package | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) ^{(4), (5)} | | |-----------------|--------|---------|--------------------------------|--|--| | Stratix V E (1) | 5SEE9 | _ | 342,742,976 | 700,888 | | | Stratix V L 17 | 5SEEB | _ | 342,742,976 | 700,888 | | ### Notes to Table 47: - (1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme. - (2) 36-transceiver devices. - (3) 24-transceiver devices. - (4) File size for the periphery image. - (5) The IOCSR .rbf size is specifically for the CvP feature. Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design. For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help*. Table 48 lists the minimum configuration time estimates for Stratix V devices. Table 48. Minimum Configuration Time Estimation for Stratix V Devices | | Banker | | Active Serial (1) |) | Fast Passive Parallel ⁽²⁾ | | | | |---------|----------------|-------|-------------------|------------------------|--------------------------------------|------------|------------------------|--| | Variant | Member
Code | Width | DCLK (MHz) | Min Config
Time (s) | Width | DCLK (MHz) | Min Config
Time (s) | | | | A3 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | AS | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | | A4 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | A5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | | A7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | GX | A9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | AB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | B5 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | | B6 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | | В9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | BB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | GT | C5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | G1 | C7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | Configuration Specification Page 55 Table 48. Minimum Configuration Time Estimation for Stratix V Devices | | Member | | Active Serial (1) |) | Fast Passive Parallel ⁽²⁾ | | | | |---------|--------|-------|-------------------|------------------------|--------------------------------------|------------|------------------------|--| | Variant | Code | Width | DCLK (MHz) | Min Config
Time (s) | Width | DCLK (MHz) | Min Config
Time (s) | | | | D3 | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | | D4 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | GS | | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | us
 | D5 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | D6 | 4 | 100 | 0.741 | 32 | 100 | 0.093 | | | | D8 | 4 | 100 | 0.741 | 32 | 100 | 0.093 | | | E | E9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | EB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | ### Notes to Table 48: # **Fast Passive Parallel Configuration Timing** This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices. ## DCLK-to-DATA[] Ratio for FPP Configuration FPP configuration requires a different DCLK-to-DATA[] ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[] ratio for each combination. Table 49. DCLK-to-DATA[] Ratio (1) (Part 1 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | | Disabled | Disabled | 1 | | FPP ×8 | Disabled | Enabled | 1 | | IFF X0 | Enabled | Disabled | 2 | | | Enabled | Enabled | 2 | | | Disabled | Disabled | 1 | | FPP ×16 | Disabled | Enabled | 2 | | | Enabled | Disabled | 4 | | | Enabled | Enabled | 4 | ⁽¹⁾ DCLK frequency of 100 MHz using external CLKUSR. ⁽²⁾ Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic. Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ## **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) ### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Page 64 I/O Timing # **Remote System Upgrades** Table 56 lists the timing parameter specifications for the remote system upgrade circuitry. **Table 56. Remote System Upgrade Circuitry Timing Specifications** | Parameter | Minimum | Maximum | Unit | |------------------------------|---------|---------|------| | t _{RU_nCONFIG} (1) | 250 | _ | ns | | t _{RU_nRSTIMER} (2) | 250 | _ | ns | ### Notes to Table 56: - (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ## **User Watchdog Internal Circuitry Timing Specification** Table 57 lists the operating range of the 12.5-MHz internal oscillator. Table 57. 12.5-MHz Internal Oscillator Specifications | Minimum | Typical | Maximum | Units | | | |---------|---------|---------|-------|--|--| | 5.3 | 7.9 | 12.5 | MHz | | | # I/O Timing Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer. Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route. You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page. # **Programmable IOE Delay** Table 58 lists the Stratix V IOE programmable delay settings. Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2) | Doromotor | Min | | Fast Model | | Slow Model | | | | | | | | |---------------|-----------------------|---------------|------------|------------|------------|-------|-------|-------|-------|-------------|-------|------| | Parameter (1) | Available
Settings | Offset
(2) | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | D1 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D2 | 32 | 0 | 0.230 | 0.244 | 0.415 | 0.415 | 0.459 | 0.503 | 0.417 | 0.456 | 0.500 | ns | Page 66 Glossary Table 60. Glossary (Part 2 of 4) | Letter | Subject | Definitions | |------------------|-----------------------------------|--| | G | | | | Н | _ | - | | 1 | | | | J | J
TAG Timing
Specifications | High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS TDI TCK TJPSU TJ | | K
L
M
N | _ | | | P | PLL
Specifications | Diagram of PLL Specifications (1) CLKOUT Pins Four Core Clock Reconfigurable in User Mode External Feedback Note: (1) Core Clock can only be fed by dedicated clock input pins or PLL outputs. | | Q | _ | - | | R | R _L | Receiver differential input discrete resistor (external to the Stratix V device). | | | | 1 |