Welcome to **E-XFL.COM** # **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 225400 | | Number of Logic Elements/Cells | 597000 | | Total RAM Bits | 53248000 | | Number of I/O | 432 | | Number of Gates | - | | Voltage - Supply | 0.87V ~ 0.93V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1517-FBGA (40x40) | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxeb6r2f40c2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Page 4 Electrical Characteristics Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years. **Table 5. Maximum Allowed Overshoot During Transitions** | Symbol | Description | Condition (V) | Overshoot Duration as %
@ T _J = 100°C | Unit | |---------|------------------|---------------|---|------| | | | 3.8 | 100 | % | | | | 3.85 | 64 | % | | | | 3.9 | 36 | % | | | | 3.95 | 21 | % | | Vi (AC) | AC input voltage | 4 | 12 | % | | | | 4.05 | 7 | % | | | | 4.1 | 4 | % | | | | 4.15 | 2 | % | | | | 4.2 | 1 | % | Figure 1. Stratix V Device Overshoot Duration Page 8 Electrical Characteristics Table 8 shows the transceiver power supply voltage requirements for various conditions. **Table 8. Transceiver Power Supply Voltage Requirements** | Conditions | Core Speed Grade | VCCR_GXB & VCCT_GXB (2) | VCCA_GXB | VCCH_GXB | Unit | |--|-----------------------------------|-------------------------|----------|----------|------| | If BOTH of the following conditions are true: | | 4.05 | | | | | ■ Data rate > 10.3 Gbps. | All | 1.05 | | | | | ■ DFE is used. | | | | | | | If ANY of the following conditions are true ⁽¹⁾ : | | | 3.0 | | | | ATX PLL is used. | | | | | | | ■ Data rate > 6.5Gbps. | All | 1.0 | | | | | ■ DFE (data rate ≤
10.3 Gbps), AEQ, or
EyeQ feature is used. | | | | 1.5 | V | | If ALL of the following | C1, C2, I2, and I3YY | 0.90 | 2.5 | | | | conditions are true: ATX PLL is not used. | | | | | | | ■ Data rate ≤ 6.5Gbps. | C2L, C3, C4, I2L, I3, I3L, and I4 | 0.85 | 2.5 | | | | DFE, AEQ, and EyeQ are
not used. | | | | | | ### Notes to Table 8: - (1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions. - (2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply. ### **DC Characteristics** This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications. ### **Supply Current** Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Electrical Characteristics Page 11 | | | | , | | | | | |----------------------|--|-----------------------------------|-----|-------|-----------------|--------|------| | Symbol | Description | Conditions | C1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | | 100-Ω R _D | Internal differential termination (100-Ω setting) | V _{CCPD} = 2.5 V | ±25 | ±25 | ±25 | ±25 | % | Calibration accuracy for the calibrated series and parallel OCTs are applicable at the moment of calibration. When voltage and temperature conditions change after calibration, the tolerance may change. OCT calibration is automatically performed at power-up for OCT-enabled I/Os. Table 13 lists the OCT variation with temperature and voltage after power-up calibration. Use Table 13 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration. Equation 1. OCT Variation Without Recalibration for Stratix V Devices (1), (2), (3), (4), (5), (6) $$R_{OCT} = R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$ ### Notes to Equation 1: - (1) The R_{OCT} value shows the range of OCT resistance with the variation of temperature and V_{CCIO} . - (2) R_{SCAL} is the OCT resistance value at power-up. - (3) ΔT is the variation of temperature with respect to the temperature at power-up. - (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power-up. - (5) dR/dT is the percentage change of R_{SCAL} with temperature. - (6) dR/dV is the percentage change of R_{SCAL} with voltage. Table 13 lists the on-chip termination variation after power-up calibration. Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 1 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | |--------|--|-----------------------|---------|------| | | | 3.0 | 0.0297 | | | | 007 | 2.5 | 0.0344 | | | dR/dV | OCT variation with voltage without recalibration | 1.8 | 0.0499 | %/mV | | | | 1.5 | 0.0744 | | | | | 1.2 | 0.1241 | | Page 18 Switching Characteristics ## **Switching Characteristics** This section provides performance characteristics of the Stratix V core and periphery blocks. These characteristics can be designated as Preliminary or Final. - Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary." - Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables. ## **Transceiver Performance Specifications** This section describes transceiver performance specifications. Table 23 lists the Stratix V GX and GS transceiver specifications. Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 1 of 7) | Symbol/ | Conditions | Trai | nsceiver Speed Transceiver Speed Transceiver Speed Grade 1 Grade 2 Grade 3 | | Transceiver Speed
Grade 1 | | | | | Unit | | |---|---|-------|---|------------|------------------------------|-------|-----------|---------|---------|----------|-----| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Reference Clock | Reference Clock | | | | | | | | | | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V | 1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVDS, and HCSL | | | | | | | /DS, and | | | Statiuatus | RX reference clock pin | | | 1.4-V PCMI | _, 1.5-V | PCML, | 2.5-V PCM | L, LVPE | CL, and | d LVDS | | | Input Reference
Clock Frequency
(CMU PLL) (8) | _ | 40 | _ | 710 | 40 | _ | 710 | 40 | _ | 710 | MHz | | Input Reference
Clock Frequency
(ATX PLL) (8) | _ | 100 | _ | 710 | 100 | _ | 710 | 100 | _ | 710 | MHz | | Rise time | Measure at
±60 mV of
differential
signal ⁽²⁶⁾ | _ | _ | 400 | _ | _ | 400 | _ | _ | 400 | ne | | Fall time | Measure at
±60 mV of
differential
signal ⁽²⁶⁾ | _ | _ | 400 | _ | _ | 400 | _ | _ | 400 | ps | | Duty cycle | _ | 45 | | 55 | 45 | _ | 55 | 45 | | 55 | % | | Spread-spectrum
modulating clock
frequency | PCI Express®
(PCIe®) | 30 | _ | 33 | 30 | _ | 33 | 30 | _ | 33 | kHz | Page 28 Switching Characteristics Table 27 shows the $\ensuremath{V_{OD}}$ settings for the GX channel. Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$ | Symbol | V _{OD} Setting | V _{op} Value
(mV) | V _{op} Setting | V _{op} Value
(mV) | |---------------------------------------|-------------------------|-------------------------------|-------------------------|-------------------------------| | | 0 (1) | 0 | 32 | 640 | | | 1 (1) | 20 | 33 | 660 | | | 2 (1) | 40 | 34 | 680 | | | 3 (1) | 60 | 35 | 700 | | | 4 (1) | 80 | 36 | 720 | | | 5 ⁽¹⁾ | 100 | 37 | 740 | | | 6 | 120 | 38 | 760 | | | 7 | 140 | 39 | 780 | | | 8 | 160 | 40 | 800 | | | 9 | 180 | 41 | 820 | | | 10 | 200 | 42 | 840 | | | 11 | 220 | 43 | 860 | | | 12 | 240 | 44 | 880 | | | 13 | 260 | 45 | 900 | | | 14 | 280 | 46 | 920 | | V op differential peak to peak | 15 | 300 | 47 | 940 | | typical ⁽³⁾ | 16 | 320 | 48 | 960 | | | 17 | 340 | 49 | 980 | | | 18 | 360 | 50 | 1000 | | | 19 | 380 | 51 | 1020 | | | 20 | 400 | 52 | 1040 | | | 21 | 420 | 53 | 1060 | | | 22 | 440 | 54 | 1080 | | | 23 | 460 | 55 | 1100 | | | 24 | 480 | 56 | 1120 | | | 25 | 500 | 57 | 1140 | | | 26 | 520 | 58 | 1160 | | | 27 | 540 | 59 | 1180 | | | 28 | 560 | 60 | 1200 | | | 29 | 580 | 61 | 1220 | | | 30 | 600 | 62 | 1240 | | | 31 | 620 | 63 | 1260 | ### Note to Table 27: - (1) If TX termination resistance = 100Ω , this VOD setting is illegal. - (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below. - (3) Refer to Figure 2. Figure 2 shows the differential transmitter output waveform. Figure 2. Differential Transmitter Output Waveform Figure 3 shows the Stratix V AC gain curves for GX channels. Figure 3. AC Gain Curves for GX Channels (full bandwidth) Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23. Table 28 lists the Stratix V GT transceiver specifications. Page 30 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$ | Symbol/ | Conditions | Transceiv
Speed Grad | | | | Transceive
peed Grade | | Unit | |--|--|-------------------------|---------------|--------------------------|------------------------|--------------------------|--------------|------------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Reference Clock | • | • | • | • | • | • | • | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V PCN | /IL, 1.4-V PC | ML, 1.5-V P | CML, 2.5-V
and HCSL | PCML, Diffe | rential LVPE | ECL, LVDS, | | Standards | RX reference clock pin | | 1.4-V PCML | ., 1.5-V PCN | IL, 2.5-V PC | ML, LVPEC | L, and LVDS | ; | | Input Reference Clock
Frequency (CMU
PLL) ⁽⁶⁾ | _ | 40 | _ | 710 | 40 | _ | 710 | MHz | | Input Reference Clock
Frequency (ATX PLL) (6) | _ | 100 | _ | 710 | 100 | _ | 710 | MHz | | Rise time | 20% to 80% | _ | _ | 400 | _ | _ | 400 | | | Fall time | 80% to 20% | _ | _ | 400 | _ | <u> </u> | 400 | - ps | | Duty cycle | _ | 45 | _ | 55 | 45 | _ | 55 | % | | Spread-spectrum
modulating clock
frequency | PCI Express
(PCIe) | 30 | _ | 33 | 30 | _ | 33 | kHz | | Spread-spectrum
downspread | PCle | _ | 0 to -0.5 | _ | _ | 0 to -0.5 | _ | % | | On-chip termination resistors (19) | _ | _ | 100 | _ | _ | 100 | _ | Ω | | Absolute V _{MAX} (3) | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | V | | | RX reference
clock pin | _ | _ | 1.2 | _ | _ | 1.2 | | | Absolute V _{MIN} | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | _ | 1600 | mV | | V _{ICM} (AC coupled) | Dedicated
reference
clock pin | 1050/1000 (2) | | 1050/1000 ⁽²⁾ | | 2) | mV | | | RX reference clock pin | | 1 | .0/0.9/0.85 | (22) | 1 | .0/0.9/0.85 | (22) | V | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | mV | Page 32 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceiver
Speed Grade | | s | Unit | | | |---|----------------------------------|-----|----------------------------|--------|-------------|--------------|--------|-------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Differential on-chip termination resistors (7) | GT channels | _ | 100 | _ | _ | 100 | _ | Ω | | | 85-Ω setting | _ | 85 ± 30% | _ | _ | 85
± 30% | _ | Ω | | Differential on-chip termination resistors | 100-Ω
setting | _ | 100
± 30% | _ | _ | 100
± 30% | _ | Ω | | for GX channels (19) | 120-Ω
setting | _ | 120
± 30% | _ | _ | 120
± 30% | _ | Ω | | | 150-Ω
setting | _ | 150
± 30% | _ | _ | 150
± 30% | _ | Ω | | V _{ICM} (AC coupled) | GT channels | _ | 650 | _ | _ | 650 | _ | mV | | | VCCR_GXB =
0.85 V or
0.9 V | _ | 600 | _ | _ | 600 | _ | mV | | VICM (AC and DC coupled) for GX Channels | VCCR_GXB = 1.0 V full bandwidth | _ | 700 | _ | _ | 700 | _ | mV | | | VCCR_GXB = 1.0 V half bandwidth | _ | 750 | _ | _ | 750 | _ | mV | | t _{LTR} ⁽⁹⁾ | _ | _ | _ | 10 | _ | _ | 10 | μs | | t _{LTD} ⁽¹⁰⁾ | _ | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTD_manual} (11) | | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTR_LTD_manual} (12) | | 15 | _ | _ | 15 | _ | _ | μs | | Run Length | GT channels | _ | _ | 72 | _ | _ | 72 | CID | | nuii Leiigiii | GX channels | | | | (8) | | | | | CDR PPM | GT channels | _ | _ | 1000 | _ | _ | 1000 | ± PPM | | ODITITIVI | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 14 | _ | _ | 14 | dB | | equalization
(AC Gain) ⁽⁵⁾ | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 7.5 | _ | _ | 7.5 | dB | | DC gain ⁽⁶⁾ | GX channels | | | | (8) | | | | | Differential on-chip termination resistors ⁽⁷⁾ | GT channels | | 100 | _ | _ | 100 | _ | Ω | | Transmitter | · ' | | • | | | • | • | | | Supported I/O
Standards | _ | | | 1.4-V | and 1.5-V F | PCML | | | | Data rate
(Standard PCS) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) | GX channels | 600 | _ | 12,500 | 600 | | 12,500 | Mbps | Page 34 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 5 of 5) (1) | Symbol/
Description | Conditions | | Transceiver
Speed Grade 2 | | | Transceiver
Speed Grade 3 | | Unit | |----------------------------|-------------|---|------------------------------|-----|-----|------------------------------|-----|------| | Description | Description | | Тур | Max | Min | Тур | Max | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | #### Notes to Table 28: - (1) Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*. - (2) The reference clock common mode voltage is equal to the VCCR_GXB power supply level. - (3) The device cannot tolerate prolonged operation at this absolute maximum. - (4) The differential eye opening specification at the receiver input pins assumes that receiver equalization is disabled. If you enable receiver equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. - (5) Refer to Figure 5 for the GT channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain. - (6) Refer to Figure 6 for the GT channel DC gain curves. - (7) CFP2 optical modules require the host interface to have the receiver data pins differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (8) Specifications for this parameter are the same as for Stratix V GX and GS devices. See Table 23 for specifications. - (9) t_{LTB} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset. - (10) tLTD is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high. - (11) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode. - (12) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode. - (13) tpll powerdown is the PLL powerdown minimum pulse width. - (14) tpll lock is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset. - (15) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f. - (16) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}). - (17) For ES devices, RREF is 2000 Ω ±1%. - (18) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622). - (19) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (20) Refer to Figure 4. - (21) For oversampling design to support data rates less than the minimum specification, the CDR needs to be in LTR mode only. - (22) This supply follows VCCR_GXB for both GX and GT channels. - (23) When you use fPLL as a TXPLL of the transceiver. Table 29 shows the $\ensuremath{V_{\text{OD}}}$ settings for the GT channel. Table 29. Typical V_{0D} Setting for GT Channel, TX Termination = 100 Ω | Symbol | V _{op} Setting | V _{op} Value (mV) | |---|-------------------------|----------------------------| | | 0 | 0 | | | 1 | 200 | | V differential peak to peak tunical (1) | 2 | 400 | | V _{OD} differential peak to peak typical ⁽¹⁾ | 3 | 600 | | | 4 | 800 | | | 5 | 1000 | ### Note: (1) Refer to Figure 4. Figure 6 shows the Stratix V DC gain curves for GT channels. ### Figure 6. DC Gain Curves for GT Channels ### **Transceiver Characterization** This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols: - Interlaken - 40G (XLAUI)/100G (CAUI) - 10GBase-KR - QSGMII - XAUI - SFI - Gigabit Ethernet (Gbe / GIGE) - SPAUI - Serial Rapid IO (SRIO) - CPRI - OBSAI - Hyper Transport (HT) - SATA - SAS - CEI ## **PLL Specifications** Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85°C) and the industrial junction temperature range (-40° to 100° C). Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3) | Symbol | Parameter | Min | Тур | Max | Unit | |---------------------------------|--|-----|-----|--|---| | | Input clock frequency (C1, C2, C2L, I2, and I2L speed grades) | 5 | _ | 800 (1) | MHz | | f _{IN} | Input clock frequency (C3, I3, I3L, and I3YY speed grades) | 5 | _ | 800 (1) | MHz | | | Input clock frequency (C4, I4 speed grades) | 5 | _ | 650 ⁽¹⁾ | | | f _{INPFD} | Input frequency to the PFD | 5 | _ | 325 | MHz | | FINPFD | Fractional Input clock frequency to the PFD | 50 | _ | 160 | MHz | | | PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades) | 600 | _ | 1600 | MHz | | f _{vco} ⁽⁹⁾ | PLL VCO operating range (C3, I3, I3L, I3YY speed grades) | 600 | _ | 1600 | MHz | | | PLL VCO operating range (C4, I4 speed grades) | 600 | _ | 1300 | MHz | | EINDUTY | Input clock or external feedback clock input duty cycle | 40 | _ | 60 | % | | | Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades) | _ | _ | 717 (2) | MHz | | f _{оит} | Output frequency for an internal global or regional clock (C3, I3, I3L speed grades) | _ | _ | 650 ⁽²⁾ | MHz | | | Output frequency for an internal global or regional clock (C4, I4 speed grades) | _ | _ | 580 ⁽²⁾ | MHz | | | Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades) | _ | _ | 800 (2) | MHz | | f _{OUT_EXT} | Output frequency for an external clock output (C3, I3, I3L speed grades) | _ | _ | 667 (2) | MHz | | | Output frequency for an external clock output (C4, I4 speed grades) | _ | _ | 553 ⁽²⁾ | MHz | | t _{оитриту} | Duty cycle for a dedicated external clock output (when set to 50%) | 45 | 50 | 55 | % | | FCOMP | External feedback clock compensation time | _ | _ | 10 | ns | | DYCONFIGCLK | Dynamic Configuration Clock used for mgmt_clk and scanclk | _ | _ | 100 | MHz | | Lock | Time required to lock from the end-of-device configuration or deassertion of areset | _ | _ | 1 | ms | | DLOCK | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) | _ | _ | 1 | ms | | | PLL closed-loop low bandwidth | | 0.3 | | MHz | | :
CLBW | PLL closed-loop medium bandwidth | | 1.5 | | MHz | | | PLL closed-loop high bandwidth (7) | _ | 4 | 800 (2)
667 (2)
553 (2)
55
10
100 | MHz | | PLL_PSERR | Accuracy of PLL phase shift | | _ | ±50 | ps | | ARESET | Minimum pulse width on the areset signal | 10 | _ | _ | ns | Page 42 Switching Characteristics Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 2 of 2) | | | Peformance | | | | | | | | |-----------------------|-----|------------|-----------|------|------------------|-----|-----|------|--| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | | Modes us | ing Three | DSPs | • | | | | | | One complex 18 x 25 | 425 | 425 | 415 | 340 | 340 | 275 | 265 | MHz | | | Modes using Four DSPs | | | | | | | | | | | One complex 27 x 27 | 465 | 465 | 465 | 380 | 380 | 300 | 290 | MHz | | ## **Memory Block Specifications** Table 33 lists the Stratix V memory block specifications. Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 1 of 2) | | | Resources Used | | Performance | | | | | | | | |--------|------------------------------------|----------------|--------|-------------|------------|-----|-----|---------|---------------------|-----|------| | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C3 | C4 | 12, I2L | 13,
13L,
13YY | 14 | Unit | | MLAB - | Single port, all supported widths | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | | Simple dual-port,
x32/x64 depth | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | | Simple dual-port, x16 depth (3) | 0 | 1 | 675 | 675 | 533 | 400 | 675 | 533 | 400 | MHz | | | ROM, all supported widths | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | Page 52 Configuration Specification ## **Duty Cycle Distortion (DCD) Specifications** Table 44 lists the worst-case DCD for Stratix V devices. Table 44. Worst-Case DCD on Stratix V I/O Pins (1) | Symbol | C | 1 | C2, C2 | L, I2, I2L | | 3, I3L,
3YY | C4 | 1,14 | Unit | |-------------------|-----|-----|--------|------------|-----|----------------|-----|------|------| | - | Min | Max | Min | Max | Min | Max | Min | Max | | | Output Duty Cycle | 45 | 55 | 45 | 55 | 45 | 55 | 45 | 55 | % | #### Note to Table 44: # **Configuration Specification** ## **POR Delay Specification** Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration. For more information about the POR delay, refer to the *Hot Socketing and Power-On Reset in Stratix V Devices* chapter. Table 45 lists the fast and standard POR delay specification. Table 45. Fast and Standard POR Delay Specification (1) | POR Delay | Minimum | Maximum | |-----------|---------|---------| | Fast | 4 ms | 12 ms | | Standard | 100 ms | 300 ms | ### Note to Table 45: ## **JTAG Configuration Specifications** Table 46 lists the JTAG timing parameters and values for Stratix V devices. Table 46. JTAG Timing Parameters and Values for Stratix V Devices | Symbol | Description | Min | Max | Unit | |-------------------------|---------------------------------|-----|-----|------| | t _{JCP} | TCK clock period (2) | 30 | _ | ns | | t _{JCP} | TCK clock period ⁽²⁾ | 167 | _ | ns | | t _{JCH} | TCK clock high time (2) | 14 | _ | ns | | t _{JCL} | TCK clock low time (2) | 14 | _ | ns | | t _{JPSU (TDI)} | TDI JTAG port setup time | 2 | _ | ns | | t _{JPSU (TMS)} | TMS JTAG port setup time | 3 | _ | ns | ⁽¹⁾ The DCD numbers do not cover the core clock network. ⁽¹⁾ You can select the POR delay based on the MSEL settings as described in the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. Configuration Specification Page 55 Table 48. Minimum Configuration Time Estimation for Stratix V Devices | | Member
Code | | Active Serial (1) |) | Fast Passive Parallel (2) | | | | |---------|----------------|-------|-------------------|------------------------|---------------------------|------------|------------------------|--| | Variant | | Width | DCLK (MHz) | Min Config
Time (s) | Width | DCLK (MHz) | Min Config
Time (s) | | | | D3 | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | | D4 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | GS | | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | us
 | D5 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | D6 | 4 | 100 | 0.741 | 32 | 100 | 0.093 | | | | D8 | 4 | 100 | 0.741 | 32 | 100 | 0.093 | | | E | E9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | EB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | ### Notes to Table 48: ## **Fast Passive Parallel Configuration Timing** This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices. ## DCLK-to-DATA[] Ratio for FPP Configuration FPP configuration requires a different DCLK-to-DATA[] ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[] ratio for each combination. Table 49. DCLK-to-DATA[] Ratio (1) (Part 1 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | | Disabled | Disabled | 1 | | FPP ×8 | Disabled | Enabled | 1 | | | Enabled | Disabled | 2 | | | Enabled | Enabled | 2 | | | Disabled | Disabled | 1 | | FPP ×16 | Disabled | Enabled | 2 | | FFF X IU | Enabled | Disabled | 4 | | | Enabled | Enabled | 4 | ⁽¹⁾ DCLK frequency of 100 MHz using external CLKUSR. ⁽²⁾ Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic. Page 60 Configuration Specification Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA [] ratio is more than 1. Table 51. FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1 $^{(1)}$ | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nconfig low to conf_done low | _ | 600 | ns | | t _{CF2ST0} | nconfig low to nstatus low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | _ | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽²⁾ | μS | | t _{CF2ST1} | nconfig high to nstatus high | _ | 1,506 ⁽²⁾ | μS | | t _{CF2CK} (5) | nconfig high to first rising edge on DCLK | 1,506 | _ | μS | | t _{ST2CK} (5) | nstatus high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | N-1/f _{DCLK} ⁽⁵⁾ | _ | S | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f | DCLK frequency (FPP ×8/×16) | _ | 125 | MHz | | f _{MAX} | DCLK frequency (FPP ×32) | _ | 100 | MHz | | t _R | Input rise time | _ | 40 | ns | | t _F | Input fall time | _ | 40 | ns | | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t _{CD2CU} +
(8576 × CLKUSR
period) ⁽⁴⁾ | _ | _ | ### Notes to Table 51: - (1) Use these timing parameters when you use the decompression and design security features. - (2) You can obtain this value if you do not delay configuration by extending the nconfig or nstatus low pulse width. - (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device. - (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (5) N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating. - (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. Configuration Specification Page 61 ## **Active Serial Configuration Timing** Table 52 lists the DCLK frequency specification in the AS configuration scheme. Table 52. DCLK Frequency Specification in the AS Configuration Scheme (1), (2) | Minimum | Typical | Maximum | Unit | |---------|---------|---------|------| | 5.3 | 7.9 | 12.5 | MHz | | 10.6 | 15.7 | 25.0 | MHz | | 21.3 | 31.4 | 50.0 | MHz | | 42.6 | 62.9 | 100.0 | MHz | #### Notes to Table 52: - (1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source. - (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz. Figure 14 shows the single-device configuration setup for an AS ×1 mode. Figure 14. AS Configuration Timing ### Notes to Figure 14: - (1) If you are using AS ×4 mode, this signal represents the AS_DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle. - (2) The initialization clock can be from internal oscillator or ${\tt CLKUSR}$ pin. - (3) After the option bit to enable the $INIT_DONE$ pin is configured into the device, the $INIT_DONE$ goes low. Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices. Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 1 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |-----------------|---|---------|---------|-------| | t _{CO} | DCLK falling edge to AS_DATAO/ASDO output | _ | 2 | ns | | t _{SU} | Data setup time before falling edge on DCLK | 1.5 | _ | ns | | t _H | Data hold time after falling edge on DCLK | 0 | _ | ns | Glossary Page 65 Table 58. IOE Programmable Delay for Stratix V Devices (Part 2 of 2) | Parameter (1) | Available | Min | Fast Model | | Slow Model | | | | | | | | |---------------|-----------|---------|------------|------------|------------|-------|-------|-------|-------|-------------|-------|------| | | Settings | HITTERT | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | D3 | 8 | 0 | 1.587 | 1.699 | 2.793 | 2.793 | 2.992 | 3.192 | 2.811 | 3.047 | 3.257 | ns | | D4 | 64 | 0 | 0.464 | 0.492 | 0.838 | 0.838 | 0.924 | 1.011 | 0.843 | 0.920 | 1.006 | ns | | D5 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D6 | 32 | 0 | 0.229 | 0.244 | 0.415 | 0.415 | 0.458 | 0.503 | 0.418 | 0.456 | 0.499 | ns | ### Notes to Table 58: - (1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor. - (2) Minimum offset does not include the intrinsic delay. ## **Programmable Output Buffer Delay** Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps. Table 59. Programmable Output Buffer Delay for Stratix V Devices (1) | Symbol | Parameter | Typical | Unit | |---------------------|----------------------------------|-------------|------| | | Rising and/or falling edge delay | 0 (default) | ps | | D | | 25 | ps | | D _{OUTBUF} | | 50 | ps | | | | 75 | ps | ### Note to Table 59: # **Glossary** Table 60 lists the glossary for this chapter. Table 60. Glossary (Part 1 of 4) | Letter | Subject | Definitions | | |--------|----------------------|---|--| | Α | | | | | В | _ | _ | | | С | | | | | D | _ | _ | | | E | _ | _ | | | F | f _{HSCLK} | Left and right PLL input clock frequency. | | | | f _{HSDR} | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA. | | | | f _{HSDRDPA} | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA. | | ⁽¹⁾ You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment. Document Revision History Page 71 Table 61. Document Revision History (Part 3 of 3) | Date | Version | Changes | | |---------------|---------|---|--| | | 2.7 | ■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60 | | | May 2013 | | ■ Added Table 24, Table 48 | | | | | ■ Updated Figure 9, Figure 10, Figure 11, Figure 12 | | | February 2013 | 2.6 | ■ Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46 | | | | | ■ Updated "Maximum Allowed Overshoot and Undershoot Voltage" | | | | 2.5 | ■ Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35 | | | | | ■ Added Table 33 | | | | | ■ Added "Fast Passive Parallel Configuration Timing" | | | D | | ■ Added "Active Serial Configuration Timing" | | | December 2012 | | ■ Added "Passive Serial Configuration Timing" | | | | | ■ Added "Remote System Upgrades" | | | | | ■ Added "User Watchdog Internal Circuitry Timing Specification" | | | | | ■ Added "Initialization" | | | | | ■ Added "Raw Binary File Size" | | | | 2.4 | ■ Added Figure 1, Figure 2, and Figure 3. | | | June 2012 | | ■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59. | | | | | Various edits throughout to fix bugs. | | | | | ■ Changed title of document to Stratix V Device Datasheet. | | | | | ■ Removed document from the Stratix V handbook and made it a separate document. | | | February 2012 | 2.3 | ■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31. | | | December 2011 | 2.2 | ■ Added Table 2–31. | | | December 2011 | | ■ Updated Table 2–28 and Table 2–34. | | | November 2011 | 2.1 | ■ Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices. | | | | | ■ Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25. | | | | | ■ Various edits throughout to fix SPRs. | | | | 2.0 | ■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24. | | | May 2011 | | ■ Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title. | | | | | ■ Chapter moved to Volume 1. | | | | | ■ Minor text edits. | | | December 2010 | 1.1 | ■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23. | | | | | Converted chapter to the new template. | | | | | ■ Minor text edits. | | | July 2010 | 1.0 | Initial release. | | Page 72 Document Revision History