

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	225400
Number of Logic Elements/Cells	597000
Total RAM Bits	53248000
Number of I/O	432
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-FBGA (40x40)
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxeb6r2f40i2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics Page 3

Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V
V _I	DC input voltage	-0.5	3.8	V
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices.

Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices

Symbol	Description	Devices	Minimum	Maximum	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	GX, GS, GT	-0.5	3.75	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	GX, GS	-0.5	3.75	V
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHIP_R}	Transceiver hard IP power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCL_GTBR}	Transmitter clock network power supply (right side)	GT	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

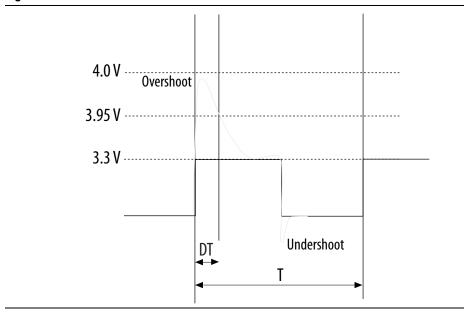

Page 4 Electrical Characteristics

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

Table 5. Maximum Allowed Overshoot During Transitions

Symbol	Description	Condition (V)	Overshoot Duration as % @ T _J = 100°C	Unit
		3.8	100	%
		3.85	64	%
		3.9 36		
		3.95	21	%
Vi (AC)	AC input voltage	4	12	%
		4.05	7	%
		4.1	4	%
		4.15	2	%
		4.2	1	%

Figure 1. Stratix V Device Overshoot Duration

Page 6 Electrical Characteristics

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
t	Power supply ramp time	Standard POR	200 μs	_	100 ms	_
LRAMP	Power supply railly tillle	Fast POR	200 μs	_	4 ms	_

Notes to Table 6:

- (1) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.
- (2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low.
- (3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades.
- (4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices.

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2)

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit	
V _{CCA_GXBL}	Transceiver channel PLL power supply (left	GX, GS, GT	2.85	3.0	3.15	V	
(1), (3)	side)	७४, ७७, ७१	2.375	2.5	2.625	V	
V _{CCA_GXBR}	Transceiver channel PLL power supply (right	GX, GS	2.85	3.0	3.15	V	
$(1), (\overline{3})$	side)	রম, রহ	2.375	2.5	2.625	V	
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	2.85	3.0	3.15	V	
	Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHIP_L}	Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
	Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHIP_R}	Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
	Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHSSI_L}	Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
	Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHSSI_R}	Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
			0.82	0.85	0.88		
V _{CCR_GXBL}	Receiver analog power supply (left side)	OV 00 0T	0.87	0.90	0.93	V	
(2)	Treceiver arialog power supply (left side)	GX, GS, GT	0.97	1.0	1.03] V	
			1.03	1.05	1.07		

Electrical Characteristics Page 7

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2)

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit
			0.82	0.85	0.88	
V _{CCR_GXBR}	Receiver analog power supply (right side)	GX, GS, GT	0.87	0.90	0.93	V
(2)	neceiver analog power supply (right side)	ux, us, u1	0.97	1.0	1.03	\ \
			1.03	1.05	1.07	
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
			0.82	0.85	0.88	
V _{CCT_GXBL}	Transmitter analog newer cupply (left side)	GX, GS, GT	0.87	0.90	0.93	V
	Transmitter analog power supply (left side)	ux, us, u1	0.97	1.0	1.03	
			1.03	1.05	1.07	
		GX, GS, GT	0.82	0.85	0.88	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)		0.87	0.90	0.93	
(2)	Transmitter analog power supply (right side)		0.97	1.0	1.03	
			1.03	1.05	1.07	
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	1.02	1.05	1.08	V
V _{CCL_GTBR}	Transmitter clock network power supply	GT	1.02	1.05	1.08	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	1.425	1.5	1.575	V

Notes to Table 7:

⁽¹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

⁽²⁾ Refer to Table 8 to select the correct power supply level for your design.

⁽³⁾ When using ATX PLLs, the supply must be 3.0 V.

⁽⁴⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Page 10 Electrical Characteristics

Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 2 of 2)

				Calibratio	n Accuracy		
Symbol	Description	Conditions	C1	C2,I2	C3,I3, I3YY	C4,I4	Unit
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%
$34\text{-}\Omega$ and $40\text{-}\Omega$ R_S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	±15	±15	%
48 - Ω , 60 - Ω , 80 - Ω , and 240 - Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	V _{CCIO} = 1.2 V	±15	±15	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
$\begin{array}{c} 20\text{-}\Omega,30\text{-}\Omega,\\ 40\text{-}\Omega,60\text{-}\Omega,\\ \text{and}\\ 120\text{-}\OmegaR_T \end{array}$	Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
60- Ω and 120- Ω R _T	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	V _{CCIO} = 1.2	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
$\begin{array}{c} \textbf{25-}\Omega \\ \textbf{R}_{S_left_shift} \end{array}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%

Note to Table 11:

Table 12 lists the Stratix V OCT without calibration resistance tolerance to PVT changes.

Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 1 of 2)

			Resistance Tolerance					
Symbol	Description	Conditions	C 1	C2,I2	C3, I3, I3YY	C4, I4	Unit	
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CC10} = 3.0 and 2.5 V	±30	±30	±40	±40	%	
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CC10} = 1.8 and 1.5 V	±30	±30	±40	±40	%	
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 1.2 V	±35	±35	±50	±50	%	

⁽¹⁾ OCT calibration accuracy is valid at the time of calibration only.

Electrical Characteristics Page 17

You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 2 of 7)

Symbol/ Description	Conditions	Trai	nsceive Grade	r Speed 1	Trai	Transceiver Speed Grade 2			nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Spread-spectrum downspread	PCle	_	0 to -0.5	_	_	0 to -0.5	_	_	0 to -0.5	_	%
On-chip termination resistors (21)	_	_	100	_	_	100	_	_	100	_	Ω
Absolute V _{MAX} ⁽⁵⁾	Dedicated reference clock pin	_	_	1.6	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_	_	1.2	_	_	1.2	_	_	1.2	
Absolute V _{MIN}	_	-0.4		_	-0.4	_		-0.4	_	1	V
Peak-to-peak differential input voltage	_	200	_	1600	200		1600	200	_	1600	mV
V _{ICM} (AC coupled) (3)	Dedicated reference clock pin	1050/	1000/90	00/850 ⁽²⁾	1050/1000/900/850 (2)			1050/	1000/90	00/850 ⁽²⁾	mV
coupled) (9	RX reference clock pin 1.0/0.9/0.85 (4) 1.0/0.9/0.85 (4) 1.0/0.9/0.85		0/0.9/0	.85 ⁽⁴⁾	V						
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
	100 Hz	_	_	-70	_	_	-70	_	_	-70	dBc/Hz
Transmitter	1 kHz	_	_	-90	_	_	-90	_	_	-90	dBc/Hz
REFCLK Phase Noise	10 kHz		_	-100	_	_	-100	_	_	-100	dBc/Hz
(622 MHz) ⁽²⁰⁾	100 kHz	_	_	-110	_	_	-110	_	_	-110	dBc/Hz
	≥1 MHz	_	_	-120	_	_	-120	_	_	-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) (17)	10 kHz to 1.5 MHz (PCle)	_	_	3	_	_	3	_	_	3	ps (rms)
R _{REF} (19)	_	_	1800 ±1%	_	_	1800 ±1%	_	_	180 0 ±1%	_	Ω
Transceiver Clock	<u> </u>			_			_			_	
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	_	100 or 125	_	MHz

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 4 of 7)

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Transceiver Speed Grade 2			Trai	nsceive Grade	r Speed 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	85– Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-	100–Ω setting	_	100 ± 30%		_	100 ± 30%	_	_	100 ± 30%	_	Ω
chip termination resistors (21) 1 s	120–Ω setting	_	120 ± 30%	_	_	120 ± 30%	_	_	120 ± 30%	_	Ω
	150-Ω setting	_	150 ± 30%	_	_	150 ± 30%	_	_	150 ± 30%	_	Ω
	V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth	_	600	_	_	600	_	_	600	_	mV
V _{ICM} (AC and DC coupled)	V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth	_	600	_	_	600	_	_	600	_	mV
coupleu)	$V_{CCR_GXB} = \\ 1.0 \text{ V/1.05 V} \\ \text{full} \\ \text{bandwidth}$	_	700	_	_	700	_	_	700	_	mV
	V _{CCR_GXB} = 1.0 V half bandwidth	_	750	_	_	750	_	_	750	_	mV
t _{LTR} (11)	_	_	_	10	_	_	10	_	_	10	μs
t _{LTD} (12)	_	4	_		4			4			μs
t _{LTD_manual} (13)	_	4	_		4			4			μs
t _{LTR_LTD_manual} (14)		15			15		_	15	_		μs
Run Length		_	_	200	_		200	_	-	200	UI
Programmable equalization (AC Gain) (10)	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)	_	_	16	_	_	16	_	_	16	dB

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 6 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed e 1	Trar	sceive Grade	r Speed 2	Tran	sceive Grade	er Speed e 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Inter-transceiver block transmitter channel-to- channel skew	xN PMA bonded mode	ı	ı	500	_	ı	500	_	_	500	ps
CMU PLL											
Supported Data Range	_	600	_	12500	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
t _{pll_powerdown} (15)	_	1	_	_	1	_	_	1	_	_	μs
t _{pll_lock} (16)	_	_	_	10	_	_	10	_	_	10	μs
ATX PLL											
	VCO post-divider L=2	8000		14100	8000		12500	8000	_	8500/ 10312.5 (24)	Mbps
Currented Date	L=4	4000	_	7050	4000	_	6600	4000	_	6600	Mbps
Supported Data Rate Range	L=8	2000	_	3525	2000	_	3300	2000	_	3300	Mbps
S	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	1000	_	1762.5	Mbps
t _{pll_powerdown} (15)	_	1	_	_	1	_	_	1	_	_	μs
t _{pll_lock} (16)	_		_	10	_	_	10	_	_	10	μs
fPLL											
Supported Data Range	_	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	Mbps
t _{pll_powerdown} (15)	_	1	_		1	_		1			μs

Table 24 shows the maximum transmitter data rate for the clock network.

Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1)

		ATX PLL			CMU PLL (2))		fPLL	
Clock Network	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span
x1 ⁽³⁾	14.1	_	6	12.5	_	6	3.125	_	3
x6 ⁽³⁾	_	14.1	6	_	12.5	6	_	3.125	6
x6 PLL Feedback ⁽⁴⁾	_	14.1	Side- wide	_	12.5	Side- wide	_	_	_
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_
	8.0	8.0	Up to 13 channels above and below PLL	7.99	7 00	Up to 13 channels above	3.125	3.125	Up to 13 channels above
xN (Native PHY IP)	П	8.01 to 9.8304	Up to 7 channels above and below PLL	· 7.55	7.99	and below PLL	3.123	J.120	and below PLL

Notes to Table 24:

⁽¹⁾ Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation.

⁽²⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽³⁾ Channel span is within a transceiver bank.

⁽⁴⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP.

Figure 2 shows the differential transmitter output waveform.

Figure 2. Differential Transmitter Output Waveform

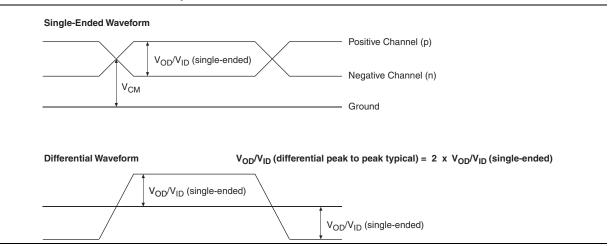


Figure 3 shows the Stratix V AC gain curves for GX channels.

Figure 3. AC Gain Curves for GX Channels (full bandwidth)

Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23.

Table 28 lists the Stratix V GT transceiver specifications.

Page 30 Switching Characteristics

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$

Symbol/	Conditions	5	Transceive Speed Grade			r 3	Unit	
Description		Min	Тур	Max	Min	Тур	Max	
Reference Clock	•	•	•	•	•	•	•	
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCN	/IL, 1.4-V PC	ML, 1.5-V P	CML, 2.5-V and HCSL	PCML, Diffe	rential LVPE	ECL, LVDS,
Otandards	RX reference clock pin		1.4-V PCML	., 1.5-V PCN	IL, 2.5-V PC	ML, LVPEC	L, and LVDS	3
Input Reference Clock Frequency (CMU PLL) ⁽⁶⁾	_	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) (6)	_	100	_	710	100	_	710	MHz
Rise time	20% to 80%	_	_	400	_	_	400	
Fall time	80% to 20%	_	<u> </u>	400	_	<u> </u>	400	ps
Duty cycle	_	45	<u> </u>	55	45	_	55	%
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCle	_	0 to -0.5	_	_	0 to -0.5	_	%
On-chip termination resistors (19)	_	_	100	_	_	100	_	Ω
Absolute V _{MAX} (3)	Dedicated reference clock pin	_	_	1.6	_	_	1.6	V
	RX reference clock pin	_	_	1.2	_	_	1.2	
Absolute V _{MIN}	_	-0.4	_	_	-0.4	_	_	V
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV
V _{ICM} (AC coupled)	Dedicated reference clock pin		1050/1000	2)		2)	mV	
	RX reference clock pin	1	.0/0.9/0.85	(22)	1	V		
V _{ICM} (DC coupled) HCSL I/O standard for PCIe reference clock		250	_	550	250	_	550	mV

Page 36 Switching Characteristics

Figure 4 shows the differential transmitter output waveform.

Figure 4. Differential Transmitter/Receiver Output/Input Waveform

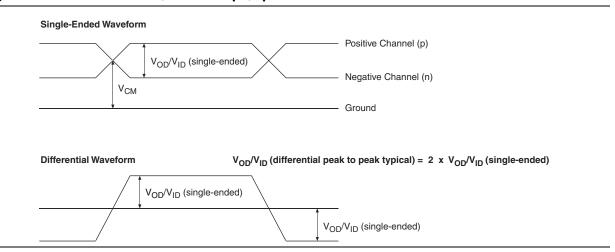


Figure 5 shows the Stratix V AC gain curves for GT channels.

Figure 5. AC Gain Curves for GT Channels

Page 38 Switching Characteristics

- XFI
- ASI
- HiGig/HiGig+
- HiGig2/HiGig2+
- Serial Data Converter (SDC)
- GPON
- SDI
- SONET
- Fibre Channel (FC)
- PCIe
- QPI
- SFF-8431

Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols.

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications.

Clock Tree Specifications

Table 30 lists the clock tree specifications for Stratix V devices.

Table 30. Clock Tree Performance for Stratix V Devices (1)

	Performance							
Symbol	C1, C2, C2L, I2, and I2L	C3, I3, I3L, and I3YY	C4, I4	Unit				
Global and Regional Clock	717	650	580	MHz				
Periphery Clock	550	500	500	MHz				

Note to Table 30:

(1) The Stratix V ES devices are limited to 600 MHz core clock tree performance.

Page 46 Switching Characteristics

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4)

			C1		C2,	C2L, I	2, I2L	C3,	13, I3L	., I3YY	C4,14			
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{DUTY}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards		50	55	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards	_	_	160	_	_	160	_	_	200	_	_	200	ps
t _{RISE} & t _{FALL}	Emulated Differential I/O Standards with three external output resistor networks	_		250	_	_	250	_		250	_		300	ps
	True Differential I/O Standards	_	_	150	_		150		_	150			150	ps
TCCS	Emulated Differential I/O Standards	_	_	300	_	_	300	_		300	_	_	300	ps
Receiver														
	SERDES factor J = 3 to 10 (11), (12), (13), (14), (15), (16)	150	_	1434	150	_	1434	150	_	1250	150		1050	Mbps
True Differential I/O Standards	SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16)	150	_	1600	150	_	1600	150	_	1600	150	_	1250	Mbps
- f _{HSDRDPA} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)	_	(7)	(6)	_	(7)	(6)		(7)	(6)	_	(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps

Configuration Specification Page 55

Table 48. Minimum Configuration Time Estimation for Stratix V Devices

	Member		Active Serial (1))	Fast Passive Parallel (2)			
Variant	Code	Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)	
	D3	4	100	0.344	32	100	0.043	
	D4	4	100	0.534	32	100	0.067	
GS		4	100	0.344	32	100	0.043	
us 	D5	4	100	0.534	32	100	0.067	
	D6	4	100	0.741	32	100	0.093	
	D8	4	100	0.741	32	100	0.093	
E	E9	4	100	0.857	32	100	0.107	
	EB	4	100	0.857	32	100	0.107	

Notes to Table 48:

Fast Passive Parallel Configuration Timing

This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices.

DCLK-to-DATA[] Ratio for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[] ratio for each combination.

Table 49. DCLK-to-DATA[] Ratio (1) (Part 1 of 2)

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FPP ×8	Disabled	Enabled	1
	Enabled	Disabled	2
	Enabled	Enabled	2
	Disabled	Disabled	1
FPP ×16	Disabled	Enabled	2
FPF × 10	Enabled	Disabled	4
	Enabled	Enabled	4

⁽¹⁾ DCLK frequency of 100 MHz using external CLKUSR.

⁽²⁾ Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Page 64 I/O Timing

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specifications

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} (1)	250	_	ns
t _{RU_nRSTIMER} (2)	250	_	ns

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum	Typical	Maximum	Units
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Doromotor	Avoilable	Min	Fast	Model				Slow M	lodel			
Parameter (1)	Available Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns

Page 66 Glossary

Table 60. Glossary (Part 2 of 4)

Letter	Subject	Definitions
G		
Н	_	_
1		
J	JTAG Timing Specifications	High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS TDI TCK TJPZX TDO TJPZX TDO TJPZX TDO TJPZX TDO TJPZZ TDO TJPZZ TDO TJPZZ TDO TJPZZ TDO TJPZZ TDO
K L M N	_	
P	PLL Specifications	Diagram of PLL Specifications (1) Switchover CLKOUT Pins Four Core Clock Reconfigurable in User Mode External Feedback Note: (1) Core Clock can only be fed by dedicated clock input pins or PLL outputs.
Q	_	<u> </u>
R	R _L	Receiver differential input discrete resistor (external to the Stratix V device).
	L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Document Revision History Page 71

Table 61. Document Revision History (Part 3 of 3)

Date	Version	Changes
		■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60
May 2013	2.7	■ Added Table 24, Table 48
		■ Updated Figure 9, Figure 10, Figure 11, Figure 12
February 2013	2.6	■ Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46
,		■ Updated "Maximum Allowed Overshoot and Undershoot Voltage"
		■ Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35
		■ Added Table 33
		■ Added "Fast Passive Parallel Configuration Timing"
D	0.5	■ Added "Active Serial Configuration Timing"
December 2012	2.5	■ Added "Passive Serial Configuration Timing"
		■ Added "Remote System Upgrades"
		■ Added "User Watchdog Internal Circuitry Timing Specification"
		■ Added "Initialization"
		■ Added "Raw Binary File Size"
		■ Added Figure 1, Figure 2, and Figure 3.
June 2012	2.4	■ Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59.
		Various edits throughout to fix bugs.
		■ Changed title of document to Stratix V Device Datasheet.
		■ Removed document from the Stratix V handbook and made it a separate document.
February 2012	2.3	■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31.
December 2011	2.2	■ Added Table 2–31.
December 2011	2.2	■ Updated Table 2–28 and Table 2–34.
Navarahar 0044	0.1	■ Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices.
November 2011	2.1	■ Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25.
		■ Various edits throughout to fix SPRs.
		■ Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24.
May 2011	2.0	■ Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title.
		■ Chapter moved to Volume 1.
		■ Minor text edits.
		■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23.
December 2010	1.1	Converted chapter to the new template.
		■ Minor text edits.
July 2010	1.0	Initial release.

Page 72 Document Revision History