Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 225400 | | Number of Logic Elements/Cells | 597000 | | Total RAM Bits | 53248000 | | Number of I/O | 432 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1517-FBGA (40x40) | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxeb6r3f40i3l | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Electrical Characteristics Page 13 ### **Internal Weak Pull-Up Resistor** Table 16 lists the weak pull-up resistor values for Stratix V devices. Table 16. Internal Weak Pull-Up Resistor for Stratix V Devices (1), (2) | Symbol | Description | V _{CC10} Conditions
(V) ⁽³⁾ | Value ⁽⁴⁾ | Unit | |-----------------|---|--|----------------------|------| | | | 3.0 ±5% | 25 | kΩ | | | | 25 | kΩ | | | | Value of the I/O pin pull-up resistor before | 1.8 ±5% | 25 | kΩ | | R _{PU} | and during configuration, as well as user mode if you enable the programmable | 1.5 ±5% | 25 | kΩ | | | pull-up resistor option. | 1.35 ±5% | 25 | kΩ | | | | 1.25 ±5% | 25 | kΩ | | | | 1.2 ±5% | 25 | kΩ | #### Notes to Table 16: - (1) All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins. - (2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω . - (3) The pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} . - (4) These specifications are valid with a ±10% tolerance to cover changes over PVT. ## I/O Standard Specifications Table 17 through Table 22 list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Stratix V devices. These tables also show the Stratix V device family I/O standard specifications. The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively. For an explanation of the terms used in Table 17 through Table 22, refer to "Glossary" on page 65. For tolerance calculations across all SSTL and HSTL I/O standards, refer to Altera knowledge base solution rd07262012_486. Table 17. Single-Ended I/O Standards for Stratix V Devices | 1/0 | | V _{CCIO} (V) | | VII | _(V) | V _{IH} | (V) | V _{OL} (V) | V _{OH} (V) | I _{OL} | I _{OH} | |----------|-------|-----------------------|-------|------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-----------------|-----------------| | Standard | Min | Тур | Max | Min | Max | Min | Max | Max | Min | (mĀ) | (mA) | | LVTTL | 2.85 | 3 | 3.15 | -0.3 | 0.8 | 1.7 | 3.6 | 0.4 | 2.4 | 2 | -2 | | LVCMOS | 2.85 | 3 | 3.15 | -0.3 | 0.8 | 1.7 | 3.6 | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | 2.5 V | 2.375 | 2.5 | 2.625 | -0.3 | 0.7 | 1.7 | 3.6 | 0.4 | 2 | 1 | -1 | | 1.8 V | 1.71 | 1.8 | 1.89 | -0.3 | 0.35 *
V _{CCIO} | 0.65 *
V _{CCIO} | V _{CCIO} + 0.3 | 0.45 | V _{CCIO} –
0.45 | 2 | -2 | | 1.5 V | 1.425 | 1.5 | 1.575 | -0.3 | 0.35 *
V _{CCIO} | 0.65 *
V _{CCIO} | V _{CCIO} + 0.3 | 0.25 *
V _{CCIO} | 0.75 *
V _{CCIO} | 2 | -2 | | 1.2 V | 1.14 | 1.2 | 1.26 | -0.3 | 0.35 *
V _{CCIO} | 0.65 *
V _{CCIO} | V _{CCIO} + 0.3 | 0.25 *
V _{CCIO} | 0.75 *
V _{CCIO} | 2 | -2 | Page 18 Switching Characteristics # **Switching Characteristics** This section provides performance characteristics of the Stratix V core and periphery blocks. These characteristics can be designated as Preliminary or Final. - Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary." - Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables. # **Transceiver Performance Specifications** This section describes transceiver performance specifications. Table 23 lists the Stratix V GX and GS transceiver specifications. Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 1 of 7) | Symbol/ | Conditions | Transceiver Speed
Grade 1 | | Transceiver Speed
Grade 2 | | | Transceiver Speed
Grade 3 | | | Unit | | |---|---|---|-----|------------------------------|-----|-----|------------------------------|-----|-----|------|-----| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Reference Clock | | | | | | | | | | | | | Supported I/O Standards Dedicated reference clock pin 1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVD HCSL | | | | | | | /DS, and | | | | | | Statiuatus | RX reference clock pin | 1 /1-1/ PCMI 1 5-1/ PCMI 2 5-1/ PCMI 1 //PECI and I //IIS | | | | | | | | | | | Input Reference
Clock Frequency
(CMU PLL) (8) | _ | 40 | _ | 710 | 40 | _ | 710 | 40 | _ | 710 | MHz | | Input Reference
Clock Frequency
(ATX PLL) (8) | _ | 100 | _ | 710 | 100 | _ | 710 | 100 | _ | 710 | MHz | | Rise time | Measure at
±60 mV of
differential
signal ⁽²⁶⁾ | _ | _ | 400 | _ | _ | 400 | _ | _ | 400 | ne | | Fall time | Measure at
±60 mV of
differential
signal ⁽²⁶⁾ | _ | _ | 400 | _ | _ | 400 | _ | _ | 400 | ps | | Duty cycle | _ | 45 | | 55 | 45 | _ | 55 | 45 | | 55 | % | | Spread-spectrum
modulating clock
frequency | PCI Express®
(PCIe®) | 30 | _ | 33 | 30 | _ | 33 | 30 | _ | 33 | kHz | Page 24 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 7 of 7) | Symbol/ | Conditions | Transceiver Speed
Grade 1 | | Transceiver Speed
Grade 2 | | Transceiver Speed
Grade 3 | | | Unit | | | |----------------------------|------------|------------------------------|-----|------------------------------|-----|------------------------------|-----|-----|------|-----|----| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | t _{pll_lock} (16) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | #### Notes to Table 23: - (1) Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*. - (2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level. - (3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V. - (4) This supply follows VCCR_GXB. - (5) The device cannot tolerate prolonged operation at this absolute maximum. - (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. - (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode. - (8) The input reference clock frequency options depend on the data rate and the device speed grade. - (9) The line data rate may be limited by PCS-FPGA interface speed grade. - (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain. - (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset. - (12) t_{I TD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high. - (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode. - (14) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode. - (15) $t_{pll\ powerdown}$ is the PLL powerdown minimum pulse width. - (16) t_{nll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset. - (17) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f. - (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}). - (19) For ES devices, R_{REF} is 2000 Ω ±1%. - (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622). - (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (22) Refer to Figure 2. - (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only. - (24) I3YY devices can achieve data rates up to 10.3125 Gbps. - (25) When you use fPLL as a TXPLL of the transceiver. - (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification. - (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition. Page 28 Switching Characteristics Table 27 shows the $\ensuremath{V_{OD}}$ settings for the GX channel. Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$ | Symbol | V _{OD} Setting | V _{op} Value
(mV) | V _{op} Setting | V _{op} Value
(mV) | |---------------------------------------|-------------------------|-------------------------------|-------------------------|-------------------------------| | | 0 (1) | 0 | 32 | 640 | | | 1 (1) | 20 | 33 | 660 | | | 2 (1) | 40 | 34 | 680 | | | 3 (1) | 60 | 35 | 700 | | | 4 (1) | 80 | 36 | 720 | | | 5 ⁽¹⁾ | 100 | 37 | 740 | | | 6 | 120 | 38 | 760 | | | 7 | 140 | 39 | 780 | | | 8 | 160 | 40 | 800 | | | 9 | 180 | 41 | 820 | | | 10 | 200 | 42 | 840 | | | 11 | 220 | 43 | 860 | | | 12 | 240 | 44 | 880 | | | 13 | 260 | 45 | 900 | | | 14 | 280 | 46 | 920 | | V op differential peak to peak | 15 | 300 | 47 | 940 | | typical ⁽³⁾ | 16 | 320 | 48 | 960 | | | 17 | 340 | 49 | 980 | | | 18 | 360 | 50 | 1000 | | | 19 | 380 | 51 | 1020 | | | 20 | 400 | 52 | 1040 | | | 21 | 420 | 53 | 1060 | | | 22 | 440 | 54 | 1080 | | | 23 | 460 | 55 | 1100 | | | 24 | 480 | 56 | 1120 | | | 25 | 500 | 57 | 1140 | | | 26 | 520 | 58 | 1160 | | | 27 | 540 | 59 | 1180 | | | 28 | 560 | 60 | 1200 | | | 29 | 580 | 61 | 1220 | | | 30 | 600 | 62 | 1240 | | | 31 | 620 | 63 | 1260 | #### Note to Table 27: - (1) If TX termination resistance = 100Ω , this VOD setting is illegal. - (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below. - (3) Refer to Figure 2. Figure 2 shows the differential transmitter output waveform. Figure 2. Differential Transmitter Output Waveform Figure 3 shows the Stratix V AC gain curves for GX channels. Figure 3. AC Gain Curves for GX Channels (full bandwidth) Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23. Table 28 lists the Stratix V GT transceiver specifications. Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | |--|--|--------|--------------------------|--------------------------------|--------|--------------------------|--------------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | Differential on-chip | GT channels | _ | 100 | _ | | 100 | <u> </u> | Ω | | termination resistors | GX channels | | | • | (8) | | <u>'</u> | | | \/ | GT channels | _ | 500 | _ | _ | 500 | _ | mV | | V _{OCM} (AC coupled) | GX channels | | | • | (8) | | <u>'</u> | | | Diag/Fall time | GT channels | _ | 15 | _ | _ | 15 | _ | ps | | Rise/Fall time | GX channels | | <u>I</u> | | (8) | | | | | Intra-differential pair
skew | GX channels | (8) | | | | | | | | Intra-transceiver block
transmitter channel-to-
channel skew | GX channels | | (8) | | | | | | | Inter-transceiver block
transmitter channel-to-
channel skew | GX channels | (8) | | | | | | | | CMU PLL | | | | | | | | | | Supported Data Range | _ | 600 | _ | 12500 | 600 | _ | 8500 | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | ATX PLL | | | | | | | | | | | VCO post-
divider L=2 | 8000 | _ | 12500 | 8000 | _ | 8500 | Mbps | | | L=4 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | Supported Data Rate | L=8 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | Range for GX Channels | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | Supported Data Rate
Range for GT Channels | VCO post-
divider L=2 | 9800 | _ | 14025 | 9800 | _ | 12890 | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | fPLL | | | • | | | | | | | Supported Data Range | _ | 600 | _ | 3250/
3.125 ⁽²³⁾ | 600 | _ | 3250/
3.125 ⁽²³⁾ | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | Page 36 Switching Characteristics Figure 4 shows the differential transmitter output waveform. Figure 4. Differential Transmitter/Receiver Output/Input Waveform Figure 5 shows the Stratix V AC gain curves for GT channels. Figure 5. AC Gain Curves for GT Channels Figure 6 shows the Stratix V DC gain curves for GT channels. ### Figure 6. DC Gain Curves for GT Channels ### **Transceiver Characterization** This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols: - Interlaken - 40G (XLAUI)/100G (CAUI) - 10GBase-KR - QSGMII - XAUI - SFI - Gigabit Ethernet (Gbe / GIGE) - SPAUI - Serial Rapid IO (SRIO) - CPRI - OBSAI - Hyper Transport (HT) - SATA - SAS - CEI Table 31. PLL Specifications for Stratix V Devices (Part 3 of 3) | | Symbol | Parameter | Min | Тур | Max | Unit | |---|--------|--|--------|------|-------|------| | f | RES | Resolution of VCO frequency (f _{INPFD} = 100 MHz) | 390625 | 5.96 | 0.023 | Hz | #### Notes to Table 31: - (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard. - (2) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL. - (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps. - (4) f_{REF} is fIN/N when N = 1. - (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 44 on page 52. - (6) The cascaded PLL specification is only applicable with the following condition: - a. Upstream PLL: 0.59Mhz \le Upstream PLL BW < 1 MHz - b. Downstream PLL: Downstream PLL BW > 2 MHz - (7) High bandwidth PLL settings are not supported in external feedback mode. - (8) The external memory interface clock output jitter specifications use a different measurement method, which is available in Table 42 on page 50. - (9) The VCO frequency reported by the Quartus II software in the PLL Usage Summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification. - (10) This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05 0.95 must be \geq 1000 MHz, while f_{VCO} for fractional value range 0.20 0.80 must be \geq 1200 MHz. - (11) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05-0.95 must be ≥ 1000 MHz. - (12) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20-0.80 must be ≥ 1200 MHz. ## **DSP Block Specifications** Table 32 lists the Stratix V DSP block performance specifications. Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 1 of 2) | | | | F | Peformano | e | | | | |--|-----|---------|------------|-----------|------------------|-----|-----|------| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | Modes ι | ısing one | DSP | | | | | | Three 9 x 9 | 600 | 600 | 600 | 480 | 480 | 420 | 420 | MHz | | One 18 x 18 | 600 | 600 | 600 | 480 | 480 | 420 | 400 | MHz | | Two partial 18 x 18 (or 16 x 16) | 600 | 600 | 600 | 480 | 480 | 420 | 400 | MHz | | One 27 x 27 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One 36 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One sum of two 18 x 18(One sum of 2 16 x 16) | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One sum of square | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One 18 x 18 plus 36 (a x b) + c | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | Modes u | sing two I |)SPs | | | | • | | Three 18 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One sum of four 18 x 18 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | One sum of two 27 x 27 | 465 | 465 | 450 | 380 | 380 | 300 | 290 | MHz | | One sum of two 36 x 18 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | One complex 18 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One 36 x 36 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | Table 38. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate \geq 1.25 Gbps | Jitter F | requency (Hz) | Sinusoidal Jitter (UI) | |----------|---------------|------------------------| | F1 | 10,000 | 25.000 | | F2 | 17,565 | 25.000 | | F3 | 1,493,000 | 0.350 | | F4 | 50,000,000 | 0.350 | Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps. Figure 9. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate < 1.25 Gbps ## DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices. Table 39. DLL Range Specifications for Stratix V Devices (1) | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |---------|------------------|-------------------|---------|------| | 300-933 | 300-933 | 300-890 | 300-890 | MHz | #### Note to Table 39: (1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL. Table 40 lists the DQS phase offset delay per stage for Stratix V devices. Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 1 of 2) | Speed Grade | Min | Max | Unit | |------------------|-----|-----|------| | C1 | 8 | 14 | ps | | C2, C2L, I2, I2L | 8 | 14 | ps | | C3,I3, I3L, I3YY | 8 | 15 | ps | Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3) | Clock Parameter | | Symbol | C | 1 | C2, C2L | , I2, I2L | C3, I3 | | C4 | ,14 | Unit | |-----------------|------------------------------|------------------------|-------|------|---------|-----------|--------|-----|-----|-----|------| | Network | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | Clock period jitter | t _{JIT(per)} | -25 | 25 | -25 | 25 | -30 | 30 | -35 | 35 | ps | | PHY
Clock | Cycle-to-cycle period jitter | t _{JIT(cc)} | -50 | 50 | -50 | 50 | -60 | 60 | -70 | 70 | ps | | | Duty cycle jitter | t _{JIT(duty)} | -37.5 | 37.5 | -37.5 | 37.5 | -45 | 45 | -56 | 56 | ps | #### Notes to Table 42: - (1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible. - (2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL. - (3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma. ## **OCT Calibration Block Specifications** Table 43 lists the OCT calibration block specifications for Stratix V devices. Table 43. OCT Calibration Block Specifications for Stratix V Devices | Symbol | Description | Min | Тур | Max | Unit | |-----------------------|--|-----|------|-----|--------| | OCTUSRCLK | Clock required by the OCT calibration blocks | | _ | 20 | MHz | | T _{OCTCAL} | Number of OCTUSRCLK clock cycles required for OCT $\ensuremath{R}_{\ensuremath{S}}/\ensuremath{R}_{\ensuremath{T}}$ calibration | _ | 1000 | _ | Cycles | | T _{OCTSHIFT} | Number of OCTUSRCLK clock cycles required for the OCT code to shift out | _ | 32 | _ | Cycles | | T _{RS_RT} | Time required between the $\mathtt{dyn_term_ctrl}$ and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10) | _ | 2.5 | _ | ns | Figure 10 shows the timing diagram for the oe and dyn term ctrl signals. Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals Page 52 Configuration Specification ## **Duty Cycle Distortion (DCD) Specifications** Table 44 lists the worst-case DCD for Stratix V devices. Table 44. Worst-Case DCD on Stratix V I/O Pins (1) | Symbol | C | 1 | C2, C2 | L, I2, I2L | | 3, I3L,
3YY | C4 | 1,14 | Unit | |-------------------|-----|-----|--------|------------|-----|----------------|-----|------|------| | - | Min | Max | Min | Max | Min | Max | Min | Max | | | Output Duty Cycle | 45 | 55 | 45 | 55 | 45 | 55 | 45 | 55 | % | #### Note to Table 44: # **Configuration Specification** # **POR Delay Specification** Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration. For more information about the POR delay, refer to the *Hot Socketing and Power-On Reset in Stratix V Devices* chapter. Table 45 lists the fast and standard POR delay specification. Table 45. Fast and Standard POR Delay Specification (1) | POR Delay | Minimum | Maximum | |-----------|---------|---------| | Fast | 4 ms | 12 ms | | Standard | 100 ms | 300 ms | #### Note to Table 45: # **JTAG Configuration Specifications** Table 46 lists the JTAG timing parameters and values for Stratix V devices. Table 46. JTAG Timing Parameters and Values for Stratix V Devices | Symbol | Description | Min | Max | Unit | |-------------------------|---------------------------------|-----|-----|------| | t _{JCP} | TCK clock period (2) | 30 | _ | ns | | t _{JCP} | TCK clock period ⁽²⁾ | 167 | _ | ns | | t _{JCH} | TCK clock high time (2) | 14 | _ | ns | | t _{JCL} | TCK clock low time (2) | 14 | _ | ns | | t _{JPSU (TDI)} | TDI JTAG port setup time | 2 | _ | ns | | t _{JPSU (TMS)} | TMS JTAG port setup time | 3 | _ | ns | ⁽¹⁾ The DCD numbers do not cover the core clock network. ⁽¹⁾ You can select the POR delay based on the MSEL settings as described in the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. | Table 46. | JTAG Timino | Parameters a | nd Values | for Stratix V Devices | |-----------|-------------|--------------|-----------|-----------------------| |-----------|-------------|--------------|-----------|-----------------------| | Symbol | Description | Min | Max | Unit | |-------------------|--|-----|-------------------|------| | t _{JPH} | JTAG port hold time | 5 | _ | ns | | t _{JPCO} | JTAG port clock to output | _ | 11 ⁽¹⁾ | ns | | t _{JPZX} | JTAG port high impedance to valid output | _ | 14 ⁽¹⁾ | ns | | t _{JPXZ} | JTAG port valid output to high impedance | _ | 14 ⁽¹⁾ | ns | #### Notes to Table 46: - (1) A 1 ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, t_{JPCO} = 12 ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V. - (2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming. # **Raw Binary File Size** For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices". Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices. Table 47. Uncompressed .rbf Sizes for Stratix V Devices | Family | Device | Package | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) (4), (5) | |--------------|--------|------------------------------|--------------------------------|---------------------------------| | | ECCVAO | H35, F40, F35 ⁽²⁾ | 213,798,880 | 562,392 | | | 5SGXA3 | H29, F35 ⁽³⁾ | 137,598,880 | 564,504 | | | 5SGXA4 | _ | 213,798,880 | 563,672 | | | 5SGXA5 | _ | 269,979,008 | 562,392 | | | 5SGXA7 | _ | 269,979,008 | 562,392 | | Stratix V GX | 5SGXA9 | _ | 342,742,976 | 700,888 | | | 5SGXAB | _ | 342,742,976 | 700,888 | | | 5SGXB5 | _ | 270,528,640 | 584,344 | | | 5SGXB6 | _ | 270,528,640 | 584,344 | | | 5SGXB9 | _ | 342,742,976 | 700,888 | | | 5SGXBB | _ | 342,742,976 | 700,888 | | Chrotin V CT | 5SGTC5 | _ | 269,979,008 | 562,392 | | Stratix V GT | 5SGTC7 | _ | 269,979,008 | 562,392 | | | 5SGSD3 | _ | 137,598,880 | 564,504 | | | FCCCD4 | F1517 | 213,798,880 | 563,672 | | Ctrativ V CC | 5SGSD4 | _ | 137,598,880 | 564,504 | | Stratix V GS | 5SGSD5 | _ | 213,798,880 | 563,672 | | | 5SGSD6 | _ | 293,441,888 | 565,528 | | | 5SGSD8 | _ | 293,441,888 | 565,528 | Page 54 Configuration Specification Table 47. Uncompressed .rbf Sizes for Stratix V Devices | Family | Device | Package | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) (4), (5) | |-----------------|--------|---------|--------------------------------|---------------------------------| | Stratix V E (1) | 5SEE9 | _ | 342,742,976 | 700,888 | | Stratix V L 17 | 5SEEB | _ | 342,742,976 | 700,888 | #### Notes to Table 47: - (1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme. - (2) 36-transceiver devices. - (3) 24-transceiver devices. - (4) File size for the periphery image. - (5) The IOCSR .rbf size is specifically for the CvP feature. Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design. For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help*. Table 48 lists the minimum configuration time estimates for Stratix V devices. Table 48. Minimum Configuration Time Estimation for Stratix V Devices | | Banker | | Active Serial (1) |) | Fast Passive Parallel ⁽²⁾ | | | | |---------|----------------|-------|-------------------|------------------------|--------------------------------------|------------|------------------------|--| | Variant | Member
Code | Width | DCLK (MHz) | Min Config
Time (s) | Width | DCLK (MHz) | Min Config
Time (s) | | | | A3 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | AS | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | | A4 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | A5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | | A7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | GX | A9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | AB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | B5 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | | B6 | 4 | 100 | 0.676 | 32 | 100 | 0.085 | | | | В9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | | BB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | GT | C5 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | | G1 | C7 | 4 | 100 | 0.675 | 32 | 100 | 0.084 | | Page 58 Configuration Specification Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1. Table 50. FPP Timing Parameters for Stratix V Devices (1) | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nCONFIG low to CONF_DONE low | _ | 600 | ns | | t _{CF2ST0} | nconfig low to nstatus low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | _ | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽²⁾ | μ\$ | | t _{CF2ST1} | nCONFIG high to nSTATUS high | _ | 1,506 ⁽³⁾ | μ\$ | | t _{CF2CK} (6) | nCONFIG high to first rising edge on DCLK | 1,506 | _ | μ\$ | | t _{ST2CK} (6) | nSTATUS high to first rising edge of DCLK | 2 | _ | μ\$ | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | 0 | _ | ns | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f | DCLK frequency (FPP ×8/×16) | _ | 125 | MHz | | f _{MAX} | DCLK frequency (FPP ×32) | _ | 100 | MHz | | t _{CD2UM} | CONF_DONE high to user mode (4) | 175 | 437 | μS | | + | GOVER DOVER high to GUVERN anabled | 4 × maximum | | | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t _{CD2CU} + (8576 × CLKUSR period) ⁽⁵⁾ | _ | _ | #### Notes to Table 50: - (1) Use these timing parameters when the decompression and design security features are disabled. - (2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width. - (3) This value is applicable if you do not delay configuration by externally holding the nstatus low. - (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device. - (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. # FPP Configuration Timing when DCLK-to-DATA [] > 1 Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1. Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2) #### Notes to Figure 13: - (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55. - (2) The beginning of this waveform shows the device in user mode. In user mode, nconfig, nstatus, and conf_done are at logic high levels. When nconfig is pulled low, a reconfiguration cycle begins. - (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay. - (4) After power-up, before and during configuration, CONF DONE is low. - (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (6) "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55. - (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge. - (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. # **Active Serial Configuration Timing** Table 52 lists the DCLK frequency specification in the AS configuration scheme. Table 52. DCLK Frequency Specification in the AS Configuration Scheme (1), (2) | Minimum | Typical | Maximum | Unit | |---------|---------|---------|------| | 5.3 | 7.9 | 12.5 | MHz | | 10.6 | 15.7 | 25.0 | MHz | | 21.3 | 31.4 | 50.0 | MHz | | 42.6 | 62.9 | 100.0 | MHz | #### Notes to Table 52: - (1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source. - (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz. Figure 14 shows the single-device configuration setup for an AS ×1 mode. Figure 14. AS Configuration Timing ### Notes to Figure 14: - (1) If you are using AS ×4 mode, this signal represents the AS_DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle. - (2) The initialization clock can be from internal oscillator or ${\tt CLKUSR}$ pin. - (3) After the option bit to enable the $INIT_DONE$ pin is configured into the device, the $INIT_DONE$ goes low. Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices. Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 1 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |-----------------|---|---------|---------|-------| | t _{CO} | DCLK falling edge to AS_DATAO/ASDO output | _ | 2 | ns | | t _{SU} | Data setup time before falling edge on DCLK | 1.5 | _ | ns | | t _H | Data hold time after falling edge on DCLK | 0 | _ | ns | Table 54 lists the PS configuration timing parameters for Stratix V devices. Table 54. PS Timing Parameters for Stratix V Devices | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nCONFIG low to CONF_DONE low | _ | 600 | ns | | t _{CF2ST0} | nCONFIG low to nSTATUS low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽¹⁾ | μS | | t _{CF2ST1} | nCONFIG high to nSTATUS high | _ | 1,506 ⁽²⁾ | μS | | t _{CF2CK} (5) | nCONFIG high to first rising edge on DCLK | 1,506 | | μS | | t _{ST2CK} (5) | nstatus high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | 0 | _ | ns | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f _{MAX} | DCLK frequency | _ | 125 | MHz | | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μ\$ | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 × CLKUSR period) $^{(4)}$ | _ | _ | #### Notes to Table 54: - (1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width. - (2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low. - (3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section. - (5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. ### Initialization Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency. Table 55. Initialization Clock Source Option and the Maximum Frequency | Initialization Clock
Source | Configuration Schemes | Maximum
Frequency | Minimum Number of Clock
Cycles ⁽¹⁾ | |--------------------------------|-----------------------|----------------------|--| | Internal Oscillator | AS, PS, FPP | 12.5 MHz | | | CLKUSR | AS, PS, FPP (2) | 125 MHz | 8576 | | DCLK | PS, FPP | 125 MHz | | #### Notes to Table 55: - $(1) \quad \text{The minimum number of clock cycles required for device initialization}.$ - (2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box. Glossary Page 65 Table 58. IOE Programmable Delay for Stratix V Devices (Part 2 of 2) | Parameter | Available Settings Min Offset | Min | Fast Model | | Slow Model | | | | | | | | |-----------|-------------------------------|------------|------------|-------|------------|-------|-------|-------|-------------|-------|-------|----| | (1) | | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | | D3 | 8 | 0 | 1.587 | 1.699 | 2.793 | 2.793 | 2.992 | 3.192 | 2.811 | 3.047 | 3.257 | ns | | D4 | 64 | 0 | 0.464 | 0.492 | 0.838 | 0.838 | 0.924 | 1.011 | 0.843 | 0.920 | 1.006 | ns | | D5 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D6 | 32 | 0 | 0.229 | 0.244 | 0.415 | 0.415 | 0.458 | 0.503 | 0.418 | 0.456 | 0.499 | ns | #### Notes to Table 58: - (1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor. - (2) Minimum offset does not include the intrinsic delay. # **Programmable Output Buffer Delay** Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps. Table 59. Programmable Output Buffer Delay for Stratix V Devices (1) | Symbol | Parameter | Typical | Unit | | |---------------------|----------------------------------|-------------|------|--| | | | 0 (default) | ps | | | D | Rising and/or falling edge delay | 25 | ps | | | D _{OUTBUF} | | 50 | ps | | | | | 75 | ps | | ### Note to Table 59: # **Glossary** Table 60 lists the glossary for this chapter. Table 60. Glossary (Part 1 of 4) | Letter | Subject | Definitions | | | |--------|---|--|--|--| | Α | | | | | | В | _ | _ | | | | С | | | | | | D | | | | | | E | | | | | | | f _{HSCLK} Left and right PLL input clock frequency. | | | | | F | f_{HSDR} High-speed I/O block—Maximum and minimum LVDS data transfer rate ($f_{HSDR} = 1/TUI$), non-DPA. | | | | | | f _{HSDRDPA} | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA. | | | ⁽¹⁾ You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment. Document Revision History Page 69 # **Document Revision History** Table 61 lists the revision history for this chapter. Table 61. Document Revision History (Part 1 of 3) | Date | Version | Changes | |---------------|---------|---| | June 2018 | 3.9 | ■ Added the "Stratix V Device Overshoot Duration" figure. | | | | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | | | ■ Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. | | | | ■ Changed the condition for 100-Ω R _D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. | | April 2017 | 3.8 | ■ Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | ■ Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. | | June 2016 | 3.7 | ■ Added the V _{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table | | Julie 2010 | | ■ Added the I _{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. | | December 2015 | 3.6 | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | December 2015 | 5 3.5 | ■ Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | December 2013 | | ■ Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. | | | | ■ Changed the data rate specification for transceiver speed grade 3 in the following tables: | | | | "Transceiver Specifications for Stratix V GX and GS Devices" | | | | ■ "Stratix V Standard PCS Approximate Maximum Date Rate" | | | | ■ "Stratix V 10G PCS Approximate Maximum Data Rate" | | July 2015 | 3.4 | ■ Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | - | | ■ Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | ■ Changed the t _{CO} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. | | | | ■ Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. |