

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	317000
Number of Logic Elements/Cells	840000
Total RAM Bits	53248000
Number of I/O	600
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1760-BBGA, FCBGA
Supplier Device Package	1760-HBGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxeb9r3h43c3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Page 6 Electrical Characteristics

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 2 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
t	Power supply ramp time	Standard POR	200 μs	_	100 ms	_
LRAMP	Fower supply rainp line	Fast POR	200 μs	_	4 ms	_

Notes to Table 6:

- (1) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.
- (2) If you do not use the design security feature in Stratix V devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Stratix V power-on-reset (POR) circuitry monitors V_{CCBAT}. Stratix V devices will not exit POR if V_{CCBAT} stays at logic low.
- (3) C2L and I2L can also be run at 0.90 V for legacy boards that were designed for the C2 and I2 speed grades.
- (4) The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Table 7 lists the transceiver power supply recommended operating conditions for Stratix V GX, GS, and GT devices.

Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 1 of 2)

Symbol	Description	Devices	Minimum ⁽⁴⁾	Typical	Maximum ⁽⁴⁾	Unit	
V _{CCA_GXBL}	Transceiver channel PLL power supply (left	GX, GS, GT	2.85	3.0	3.15	V	
(1), (3)	side)	७४, ७७, ७१	2.375	2.5	2.625	V	
V _{CCA_GXBR}	Transceiver channel PLL power supply (right	GX, GS	2.85	3.0	3.15	V	
$(1), (\overline{3})$	side)	রম, রহ	2.375	2.5	2.625	V	
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	2.85	3.0	3.15	V	
	Transceiver hard IP power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHIP_L} Transc C2L, C2 grades V _{CCHIP_R} Transc C1, C2 V _{CCHIP_R} Transc C2L, C2 grades	Transceiver hard IP power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
	Transceiver hard IP power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHIP_R} T	Transceiver hard IP power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
	Transceiver PCS power supply (left side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHSSI_L}	Transceiver PCS power supply (left side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
	Transceiver PCS power supply (right side; C1, C2, I2, and I3YY speed grades)	GX, GS, GT	0.87	0.9	0.93	V	
V _{CCHSSI_R}	Transceiver PCS power supply (right side; C2L, C3, C4, I2L, I3, I3L, and I4 speed grades)	GX, GS, GT	0.82	0.85	0.88	V	
			0.82	0.85	0.88		
V _{CCR_GXBL}	Receiver analog power supply (left side)	CV CC CT	0.87	0.90	0.93	V	
(2)	Treceiver arialog power supply (left side)	GX, GS, GT	0.97	1.0	1.03] v	
			1.03	1.05	1.07		

Page 8 Electrical Characteristics

Table 8 shows the transceiver power supply voltage requirements for various conditions.

Table 8. Transceiver Power Supply Voltage Requirements

Conditions	Core Speed Grade	VCCR_GXB & VCCT_GXB (2)	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:					
■ Data rate > 10.3 Gbps.	All	1.05			
■ DFE is used.					
If ANY of the following conditions are true ⁽¹⁾ :			3.0		
ATX PLL is used.					
■ Data rate > 6.5Gbps.	All	1.0			
■ DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used.				1.5	V
If ALL of the following	C1, C2, I2, and I3YY	0.90	2.5		
conditions are true: ATX PLL is not used.					
■ Data rate ≤ 6.5Gbps.	C2L, C3, C4, I2L, I3, I3L, and I4	0.85	2.5		
DFE, AEQ, and EyeQ are not used.					

Notes to Table 8:

- (1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.
- (2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply.

DC Characteristics

This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications.

Supply Current

Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Page 12 Electrical Characteristics

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1)

Symbol	Description	V _{CCIO} (V)	Typical	Unit
		3.0	0.189	
		2.5	0.208	
dR/dT	OCT variation with temperature without recalibration	1.8	0.266	%/°C
	Willout recalibration	1.5	0.273	1
		1.2	0.317	

Note to Table 13:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$

Pin Capacitance

Table 14 lists the Stratix V device family pin capacitance.

Table 14. Pin Capacitance for Stratix V Devices

Symbol	Description	Value	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	6	pF

Hot Socketing

Table 15 lists the hot socketing specifications for Stratix V devices.

Table 15. Hot Socketing Specifications for Stratix V Devices

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Note to Table 15:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 4 of 7)

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	85– Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-	100–Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	_	100 ± 30%	_	Ω
chip termination resistors ⁽²¹⁾	120–Ω setting	_	120 ± 30%		_	120 ± 30%		_	120 ± 30%	_	Ω
	150-Ω setting	_	150 ± 30%	_	_	150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC and DC	V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth	_	600	_	_	600	_	_	600	_	mV
	V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth	_	600	_	_	600	_	_	600	_	mV
coupled)	V _{CCR_GXB} = 1.0 V/1.05 V full bandwidth	_	700	_	_	700	_	_	700	_	mV
	V _{CCR_GXB} = 1.0 V half bandwidth	_	750	_	_	750	_	_	750	_	mV
t _{LTR} (11)	_	_	_	10	_	_	10	_	_	10	μs
t _{LTD} (12)	_	4	_		4			4		_	μs
t _{LTD_manual} (13)	_	4	_		4	_		4	_		μs
t _{LTR_LTD_manual} (14)	_	15	_	_	15		_	15		_	μs
Run Length	_		_	200		_	200	_		200	UI
Programmable equalization (AC Gain) ⁽¹⁰⁾	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)	_	_	16	_	_	16	_	_	16	dB

Page 22 Switching Characteristics

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7)

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Transceiver Speed Grade 3			Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
	DC Gain Setting = 0		0	_	_	0		_	0	_	dB
	DC Gain Setting = 1		2	_	_	2		_	2	_	dB
Programmable DC gain	DC Gain Setting = 2		4	_	_	4	_	_	4	_	dB
	DC Gain Setting = 3	_	6	_	_	6	_	_	6	_	dB
	DC Gain Setting = 4	_	8	_	_	8	_	_	8	_	dB
Transmitter											
Supported I/O Standards	_				-	1.4-V an	ıd 1.5-V PC	ML			
Data rate (Standard PCS)	_	600	_	12200	600	_	12200	600	_	8500/ 10312.5 (24)	Mbps
Data rate (10G PCS)	_	600	_	14100	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
	85- Ω setting		85 ± 20%	_	_	85 ± 20%	_	_	85 ± 20%	_	Ω
Differential on-	100-Ω setting		100 ± 20%	_	_	100 ± 20%	_	_	100 ± 20%	_	Ω
chip termination resistors	120-Ω setting	_	120 ± 20%	_	_	120 ± 20%	_	_	120 ± 20%	_	Ω
	150-Ω setting		150 ± 20%	_	_	150 ± 20%	_	_	150 ± 20%	_	Ω
V _{OCM} (AC coupled)	0.65-V setting	_	650	_	_	650	_	_	650	_	mV
V _{OCM} (DC coupled)	_		650	_	_	650	_	_	650	_	mV
Rise time (7)	20% to 80%	30	_	160	30	_	160	30	_	160	ps
Fall time ⁽⁷⁾	80% to 20%	30	_	160	30	_	160	30		160	ps
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps	_	_	15	_	_	15	_	_	15	ps
Intra-transceiver block transmitter channel-to- channel skew	x6 PMA bonded mode	_	_	120	_	_	120	_	_	120	ps

Table 24 shows the maximum transmitter data rate for the clock network.

Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1)

		ATX PLL			CMU PLL (2))	fPLL			
Clock Network	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	
x1 ⁽³⁾	14.1	_	6	12.5	_	6	3.125	_	3	
x6 ⁽³⁾	_	14.1	6	_	12.5	6	_	3.125	6	
x6 PLL Feedback ⁽⁴⁾	_	14.1	Side- wide	_	12.5	Side- wide	_	_	_	
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_	
xN (Native PHY IP)	8.0	8.0	Up to 13 channels above and below PLL	7.99	7.99	Up to 13 channels above	3.125	3.125	Up to 13 channels above	
XIV (IVALIVE PRY IP)	_	8.01 to 9.8304	Up to 7 channels above and below PLL	7.99	7.99	and below PLL	J. 125		and below PLL	

Notes to Table 24:

⁽¹⁾ Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation.

⁽²⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽³⁾ Channel span is within a transceiver bank.

⁽⁴⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP.

Page 26 Switching Characteristics

Table 25 shows the approximate maximum data rate using the standard PCS.

Table 25. Stratix V Standard PCS Approximate Maximum Date Rate (1), (3)

Made (2)	Transceiver	PMA Width	20	20	16	16	10	10	8	8
Mode ⁽²⁾	Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8
	1	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.5	5.8	5.2	4.72
	2	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.5	5.8	5.2	4.72
	2	C3, I3, I3L core speed grade	9.8	9.0	7.84	7.2	5.3	4.7	4.24	3.76
FIFO		C1, C2, C2L, I2, I2L core speed grade	8.5	8.5	8.5	8.5	6.5	5.8	5.2	4.72
	3	I3YY core speed grade	10.3125	10.3125	7.84	7.2	5.3	4.7	4.24	3.76
	3	C3, I3, I3L core speed grade	8.5	8.5	7.84	7.2	5.3	4.7	4.24	3.76
		C4, I4 core speed grade	8.5	8.2	7.04	6.56	4.8	4.2	3.84	3.44
	1	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.1	5.7	4.88	4.56
	2	C1, C2, C2L, I2, I2L core speed grade	12.2	11.4	9.76	9.12	6.1	5.7	4.88	4.56
	2	C3, I3, I3L core speed grade	9.8	9.0	7.92	7.2	4.9	4.5	3.96	3.6
Register		C1, C2, C2L, I2, I2L core speed grade	10.3125	10.3125	10.3125	10.3125	6.1	5.7	4.88	4.56
	3	I3YY core speed grade	10.3125	10.3125	7.92	7.2	4.9	4.5	3.96	3.6
	ა	C3, I3, I3L core speed grade	8.5	8.5	7.92	7.2	4.9	4.5	3.96	3.6
		C4, I4 core speed grade	8.5	8.2	7.04	6.56	4.4	4.1	3.52	3.28

Notes to Table 25:

⁽¹⁾ The maximum data rate is in Gbps.

⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

⁽³⁾ The maximum data rate is also constrained by the transceiver speed grade. Refer to Table 1 for the transceiver speed grade.

Figure 2 shows the differential transmitter output waveform.

Figure 2. Differential Transmitter Output Waveform

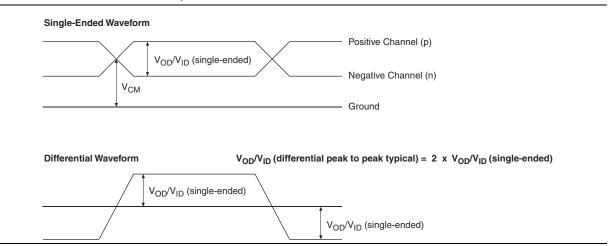


Figure 3 shows the Stratix V AC gain curves for GX channels.

Figure 3. AC Gain Curves for GX Channels (full bandwidth)

Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23.

Table 28 lists the Stratix V GT transceiver specifications.

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5) $^{(1)}$

Symbol/	Conditions	S	Transceive peed Grade			Transceive Deed Grade		Unit	
Description		Min	Тур	Max	Min	Тур	Max	1	
	100 Hz	_	_	-70	_	_	-70		
Transmitter REFCLK	1 kHz	_	_	-90		_	-90		
Phase Noise (622	10 kHz	_	_	-100	_	_	-100	dBc/Hz	
MHz) ⁽¹⁸⁾	100 kHz	_	_	-110	_	_	-110		
	≥1 MHz		_	-120	_		-120	1	
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁵⁾	10 kHz to 1.5 MHz (PCle)	_	_	3	_	_	3	ps (rms)	
RREF (17)	_	_	1800 ± 1%	_	_	1800 ± 1%	_	Ω	
Transceiver Clocks									
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	MHz	
Reconfiguration clock (mgmt_clk_clk) frequency		100	_	125	100		125	MHz	
Receiver									
Supported I/O Standards	_	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS							
Data rate (Standard PCS) (21)	GX channels	600	_	8500	600	_	8500	Mbps	
Data rate (10G PCS) (21)	GX channels	600	_	12,500	600	_	12,500	Mbps	
Data rate	GT channels	19,600	_	28,050	19,600	_	25,780	Mbps	
Absolute V _{MAX} for a receiver pin ⁽³⁾	GT channels	_	_	1.2	_	_	1.2	V	
Absolute V _{MIN} for a receiver pin	GT channels	-0.4	_	_	-0.4	_	_	V	
Maximum peak-to-peak	GT channels		_	1.6	_		1.6	V	
differential input voltage V _{ID} (diff p-p) before device configuration ⁽²⁰⁾	GX channels				(8)				
	GT channels								
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration (16), (20)	$V_{CCR_GTB} = 1.05 \text{ V} $ $(V_{ICM} = 0.65 \text{ V})$	_	_	2.2	_	_	2.2	V	
oomiguration ', ' /	GX channels			<u> </u>	(8)		•	•	
Minimum differential	GT channels	200	_	_	200		_	mV	
eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾	GX channels				(8)				

Page 32 Switching Characteristics

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5) $^{(1)}$

Symbol/	Conditions		Transceiver Speed Grade			Transceive peed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	
Differential on-chip termination resistors (7)	GT channels	_	100	_	_	100	_	Ω
	85-Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-chip termination resistors	100-Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	Ω
for GX channels (19)	120-Ω setting	_	120 ± 30%	_	_	120 ± 30%	_	Ω
	150-Ω setting	_	150 ± 30%	_	_	150 ± 30%	_	Ω
V _{ICM} (AC coupled)	GT channels	_	650	_	_	650	_	mV
	VCCR_GXB = 0.85 V or 0.9 V	_	600	_	_	600	_	mV
VICM (AC and DC coupled) for GX Channels	VCCR_GXB = 1.0 V full bandwidth	_	700	_	_	700	_	mV
	VCCR_GXB = 1.0 V half bandwidth	_	750	_	_	750	_	mV
t _{LTR} ⁽⁹⁾	_	_	_	10	_	_	10	μs
t _{LTD} ⁽¹⁰⁾	_	4	_	_	4	_	_	μs
t _{LTD_manual} (11)		4	_	_	4	_	_	μs
t _{LTR_LTD_manual} (12)		15	_	_	15	_	_	μs
Run Length	GT channels	_	_	72	_	_	72	CID
nuii Leiigiii	GX channels				(8)			
CDR PPM	GT channels	_	_	1000	_	_	1000	± PPM
ODITITIVI	GX channels				(8)			
Programmable	GT channels	_	_	14	_	_	14	dB
equalization (AC Gain) ⁽⁵⁾	GX channels				(8)			
Programmable	GT channels	_	_	7.5	_	_	7.5	dB
DC gain ⁽⁶⁾	GX channels				(8)			
Differential on-chip termination resistors ⁽⁷⁾	GT channels		100	_	_	100	_	Ω
Transmitter	· '		•			•	•	
Supported I/O Standards	_			1.4-V	and 1.5-V F	PCML		
Data rate (Standard PCS)	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS)	GX channels	600	_	12,500	600		12,500	Mbps

Page 36 Switching Characteristics

Figure 4 shows the differential transmitter output waveform.

Figure 4. Differential Transmitter/Receiver Output/Input Waveform

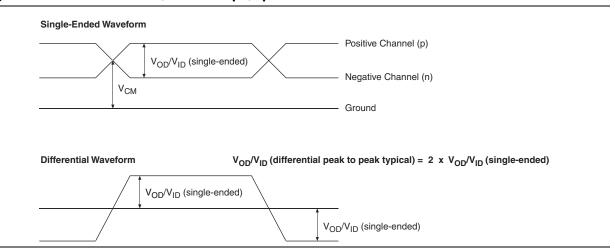


Figure 5 shows the Stratix V AC gain curves for GT channels.

Figure 5. AC Gain Curves for GT Channels

Table 31. PLL Specifications for Stratix V Devices (Part 3 of 3)

	Symbol	Parameter	Min	Тур	Max	Unit
f	RES	Resolution of VCO frequency (f _{INPFD} = 100 MHz)	390625	5.96	0.023	Hz

Notes to Table 31:

- (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.
- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps.
- (4) f_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 44 on page 52.
- (6) The cascaded PLL specification is only applicable with the following condition:
 - a. Upstream PLL: 0.59Mhz \le Upstream PLL BW < 1 MHz
 - b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) The external memory interface clock output jitter specifications use a different measurement method, which is available in Table 42 on page 50.
- (9) The VCO frequency reported by the Quartus II software in the PLL Usage Summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (10) This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05 0.95 must be \geq 1000 MHz, while f_{VCO} for fractional value range 0.20 0.80 must be \geq 1200 MHz.
- (11) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05-0.95 must be ≥ 1000 MHz.
- (12) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20-0.80 must be ≥ 1200 MHz.

DSP Block Specifications

Table 32 lists the Stratix V DSP block performance specifications.

Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 1 of 2)

			F	Peformano	e			
Mode	C1	C2, C2L	12, 12L	C3	13, 13L, 13YY	C4	14	Unit
		Modes ı	ısing one	DSP				
Three 9 x 9	600	600	600	480	480	420	420	MHz
One 18 x 18	600	600	600	480	480	420	400	MHz
Two partial 18 x 18 (or 16 x 16)	600	600	600	480	480	420	400	MHz
One 27 x 27	500	500	500	400	400	350	350	MHz
One 36 x 18	500	500	500	400	400	350	350	MHz
One sum of two 18 x 18(One sum of 2 16 x 16)	500	500	500	400	400	350	350	MHz
One sum of square	500	500	500	400	400	350	350	MHz
One 18 x 18 plus 36 (a x b) + c	500	500	500	400	400	350	350	MHz
		Modes u	sing two I)SPs				•
Three 18 x 18	500	500	500	400	400	350	350	MHz
One sum of four 18 x 18	475	475	475	380	380	300	300	MHz
One sum of two 27 x 27	465	465	450	380	380	300	290	MHz
One sum of two 36 x 18	475	475	475	380	380	300	300	MHz
One complex 18 x 18	500	500	500	400	400	350	350	MHz
One 36 x 36	475	475	475	380	380	300	300	MHz

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 4 of 4)

Cumbal	Symbol Conditions		C1		C2,	C2L, I	2, I2L	C3,	I3, I3I	., I3YY	C4,I4		Unit	
Symbol	Conuntions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ullit
	SERDES factor J = 3 to 10	(6)	_	(8)	(6)		(8)	(6)		(8)	(6)	_	(8)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)		(7)	(6)		(7)	(6)		(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
DPA Mode														
DPA run length	_		_	1000 0			1000 0	_		1000 0	_	_	1000 0	UI
Soft CDR mode	•													
Soft-CDR PPM tolerance	_	_	_	300	_	_	300	_	_	300	_	_	300	± PPM
Non DPA Mode	Non DPA Mode													
Sampling Window	_	_	_	300	_		300	_		300	_	_	300	ps

Notes to Table 36:

- (1) When J = 3 to 10, use the serializer/deserializer (SERDES) block.
- (2) When J = 1 or 2, bypass the SERDES block.
- (3) This only applies to DPA and soft-CDR modes.
- (4) Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.
- (5) This is achieved by using the **LVDS** clock network.
- (6) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (7) The maximum ideal frequency is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.
- (8) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.
- (9) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.
- (10) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- (11) The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design-dependent and requires timing analysis.
- (12) Stratix V RX LVDS will need DPA. For Stratix V TX LVDS, the receiver side component must have DPA.
- (13) Stratix V LVDS serialization and de-serialization factor needs to be x4 and above.
- (14) Requires package skew compensation with PCB trace length.
- (15) Do not mix single-ended I/O buffer within LVDS I/O bank.
- (16) Chip-to-chip communication only with a maximum load of 5 pF.
- (17) When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3)

Clock	Parameter	Symbol	C1		C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,I4		Unit
Network			Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	$t_{\text{JIT(per)}}$	-25	25	-25	25	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	t _{JIT(cc)}	-50	50	-50	50	-60	60	-70	70	ps
	Duty cycle jitter	$t_{JIT(duty)}$	-37.5	37.5	-37.5	37.5	-45	45	-56	56	ps

Notes to Table 42:

- (1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.
- (2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.
- (3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

OCT Calibration Block Specifications

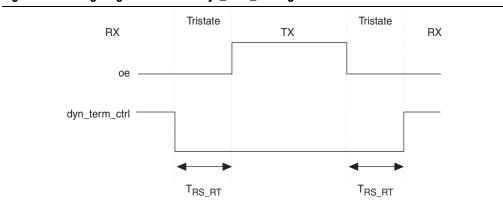

Table 43 lists the OCT calibration block specifications for Stratix V devices.

Table 43. OCT Calibration Block Specifications for Stratix V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	_	_	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT $\ensuremath{R}_{\ensuremath{S}}/\ensuremath{R}_{\ensuremath{T}}$ calibration		1000	_	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out		32	_	Cycles
T _{RS_RT}	Time required between the $\mathtt{dyn_term_ctrl}$ and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10)	_	2.5	_	ns

Figure 10 shows the timing diagram for the oe and dyn term ctrl signals.

Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals

Configuration Specification Page 53

Table 46.	JTAG Timino	Parameters a	nd Values	for Stratix V Devices
-----------	-------------	--------------	-----------	-----------------------

Symbol	Description	Min	Max	Unit
t _{JPH}	JTAG port hold time	5	_	ns
t _{JPCO}	JTAG port clock to output	_	11 ⁽¹⁾	ns
t _{JPZX}	JTAG port high impedance to valid output	_	14 ⁽¹⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽¹⁾	ns

Notes to Table 46:

- (1) A 1 ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, t_{JPCO} = 12 ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.
- (2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

Raw Binary File Size

For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices".

Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices.

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) (4), (5)	
	ECCVAO	H35, F40, F35 ⁽²⁾	213,798,880	562,392	
	5SGXA3	H29, F35 ⁽³⁾	137,598,880	564,504	
	5SGXA4	_	213,798,880	563,672	
	5SGXA5	_	269,979,008	562,392	
	5SGXA7	_	269,979,008	562,392	
Stratix V GX	5SGXA9	_	342,742,976	700,888	
	5SGXAB	_	342,742,976	700,888	
	5SGXB5	_	270,528,640	584,344	
	5SGXB6	_	270,528,640	584,344	
	5SGXB9	_	342,742,976	700,888	
	5SGXBB	_	342,742,976	700,888	
Chrotin V CT	5SGTC5	_	269,979,008	562,392	
Stratix V GT	5SGTC7	_	269,979,008	562,392	
	5SGSD3	_	137,598,880	564,504	
	FCCCD4	F1517	213,798,880	563,672	
Ctrativ V CC	5SGSD4	_	137,598,880	564,504	
Stratix V GS	5SGSD5	_	213,798,880	563,672	
	5SGSD6	_	293,441,888	565,528	
	5SGSD8	_	293,441,888	565,528	

Page 54 Configuration Specification

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) ^{(4), (5)}	
Stratix V E (1)	5SEE9	_	342,742,976	700,888	
Stratix V L 17	5SEEB	_	342,742,976	700,888	

Notes to Table 47:

- (1) Stratix V E devices do not have PCI Express® (PCIe®) hard IP. Stratix V E devices do not support the CvP configuration scheme.
- (2) 36-transceiver devices.
- (3) 24-transceiver devices.
- (4) File size for the periphery image.
- (5) The IOCSR .rbf size is specifically for the CvP feature.

Use the data in Table 47 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal (.hex) or tabular text file (.ttf) format, have different file sizes. For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size. If you are using compression, the file size can vary after each compilation because the compression ratio depends on your design.

For more information about setting device configuration options, refer to *Configuration, Design Security, and Remote System Upgrades in Stratix V Devices.* For creating configuration files, refer to the *Quartus II Help*.

Table 48 lists the minimum configuration time estimates for Stratix V devices.

Table 48. Minimum Configuration Time Estimation for Stratix V Devices

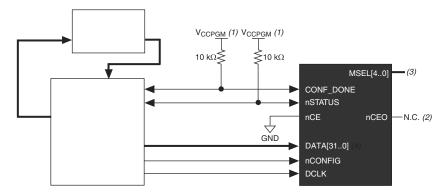
	Member Code		Active Serial (1))	Fast Passive Parallel ⁽²⁾			
Variant		Width	DCLK (MHz)	Min Config Time (s)	Width	DCLK (MHz)	Min Config Time (s)	
	A3	4	100	0.534	32	100	0.067	
	AS	4	100	0.344	32	100	0.043	
	A4	4	100	0.534	32	100	0.067	
	A5	4	100	0.675	32	100	0.084	
	A7	4	100	0.675	32	100	0.084	
GX	A9	4	100	0.857	32	100	0.107	
	AB	4	100	0.857	32	100	0.107	
	B5	4	100	0.676	32	100	0.085	
	B6	4	100	0.676	32	100	0.085	
	В9	4	100	0.857	32	100	0.107	
	BB	4	100	0.857	32	100	0.107	
GT	C5	4	100	0.675	32	100	0.084	
G1	C7	4	100	0.675	32	100	0.084	

Page 56 Configuration Specification

Table 49. DCLK-to-DATA[] Ratio (1) (Part 2 of 2)

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio	
	Disabled	Disabled	1	
FPP ×32	Disabled	Enabled	4	
FPP ×32	Enabled	Disabled	8	
	Enabled	Enabled	8	

Note to Table 49:


(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.

If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio -1) clock cycles after the last data is latched into the Stratix V device.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.

Figure 11. Single Device FPP Configuration Using an External Host

Notes to Figure 11:

- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM}.
- (2) You can leave the nceo pin unconnected or use it as a user I/O pin when it does not feed another device's nce pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP $\times 8$, use DATA [7..0]. If you use FPP $\times 16$, use DATA [15..0].

Page 64 I/O Timing

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specifications

Parameter	Minimum	Maximum	Unit	
t _{RU_nCONFIG} (1)	250	_	ns	
t _{RU_nRSTIMER} (2)	250	_	ns	

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum	Typical	Maximum	Units	
5.3	7.9	12.5	MHz	

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Doromotor	romotor Avoilable		Fast	Model				Slow M	lodel			
Parameter (1)	Available Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit	
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns

Page 68 Glossary

Table 60. Glossary (Part 4 of 4)

Letter	Subject	Definitions			
	V _{CM(DC)}	DC common mode input voltage.			
	V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.			
	V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.			
	V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.			
	V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.			
	V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.			
	V _{IH(AC)}	High-level AC input voltage			
	V _{IH(DC)}	High-level DC input voltage			
V	V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.			
	V _{IL(AC)}	Low-level AC input voltage			
	V _{IL(DC)}	Low-level DC input voltage			
	V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.			
	V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.			
	V _{SWING}	Differential input voltage			
	V _X	Input differential cross point voltage			
	V _{OX}	Output differential cross point voltage			
W	W	High-speed I/O block—clock boost factor			
Χ					
Υ		_			
Z					

Page 70 Document Revision History

Table 61. Document Revision History (Part 2 of 3)

Date	Version	Changes
		■ Added the I3YY speed grade and changed the data rates for the GX channel in Table 1.
		■ Added the I3YY speed grade to the V _{CC} description in Table 6.
		■ Added the I3YY speed grade to V _{CCHIP_L} , V _{CCHIP_R} , V _{CCHSSI_L} , and V _{CCHSSI_R} descriptions in Table 7.
		■ Added 240-Ω to Table 11.
		■ Changed CDR PPM tolerance in Table 23.
		■ Added additional max data rate for fPLL in Table 23.
		■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25.
		■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26.
		■ Changed CDR PPM tolerance in Table 28.
		■ Added additional max data rate for fPLL in Table 28.
		■ Changed the mode descriptions for MLAB and M20K in Table 33.
		■ Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36.
November 2014	3.3	■ Changed the frequency ranges for C1 and C2 in Table 39.
		■ Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47.
		■ Added note about nSTATUS to Table 50, Table 51, Table 54.
		■ Changed the available settings in Table 58.
		■ Changed the note in "Periphery Performance".
		■ Updated the "I/O Standard Specifications" section.
		■ Updated the "Raw Binary File Size" section.
		■ Updated the receiver voltage input range in Table 22.
		■ Updated the max frequency for the LVDS clock network in Table 36.
		■ Updated the DCLK note to Figure 11.
		■ Updated Table 23 VO _{CM} (DC Coupled) condition.
		■ Updated Table 6 and Table 7.
		■ Added the DCLK specification to Table 55.
		■ Updated the notes for Table 47.
		■ Updated the list of parameters for Table 56.
November 2013	3.2	■ Updated Table 28
November 2013	3.1	■ Updated Table 33
November 2013	3.0	■ Updated Table 23 and Table 28
October 2013	2.9	■ Updated the "Transceiver Characterization" section
		■ Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59
October 2013	2.8	■ Added Figure 1 and Figure 3
		■ Added the "Transceiver Characterization" section
		■ Removed all "Preliminary" designations.