E·XFL

Intel - 5SGXMA3E3H29C3N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	128300
Number of Logic Elements/Cells	340000
Total RAM Bits	19456000
Number of I/O	600
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-HBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxma3e3h29c3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
	Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades)	_	0.87	0.9	0.93	V
V _{CC}	Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) ⁽³⁾	_	0.82	0.85	0.88	V
V _{CCPT}	Power supply for programmable power technology	_	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	_	2.375	2.5	2.625	V
VI (1)	I/O pre-driver (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPD} ⁽¹⁾	I/O pre-driver (2.5 V) power supply	_	2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply		2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply	_	2.375	2.5	2.625	V
	I/O buffers (1.8 V) power supply		1.71	1.8	1.89	V
V _{CCIO}	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply	_	1.283	1.35	1.45	V
	I/O buffers (1.25 V) power supply	_	1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply	_	1.45	1.5	1.55	V
V _{CCBAT} (2)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.0	V
VI	DC input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	—	0	—	V _{CCIO}	V
т	Operating junction temperature	Commercial	0	—	85	°C
TJ	Operating junction temperature	Industrial	-40	_	100	°C

				Calibratio	n Accuracy		
Symbol	Description	Conditions	C1	C2,12	C3,I3, I3YY	C4,14	Unit
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%
34-Ω and 40-Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCI0} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	±15	±15	%
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	V _{CCI0} = 1.2 V	±15	±15	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50-Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
20- $Ω$, 30- $Ω$, 40- $Ω$,60- $Ω$, and 120- $Ω$ R _T	Internal parallel termination with calibration ($20 \cdot \Omega$, $30 \cdot \Omega$, $40 \cdot \Omega$, $60 \cdot \Omega$, and $120 \cdot \Omega$ setting)	V _{CCI0} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
60-Ω and 120-Ω R_T	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	V _{CCI0} = 1.2	-10 to +40	-10 to +40	-10 to +40	-10 to +40	%
$\begin{array}{l} \textbf{25-}\Omega\\ \textbf{R}_{S_left_shift} \end{array}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	±15	±15	%

Table 11. OCT Calibration Accurat	y Specifications for Stratix V Devices ⁽¹⁾ ((Part 2 of 2)
-----------------------------------	---	---------------

Note to Table 11:

(1) OCT calibration accuracy is valid at the time of calibration only.

Table 12 lists the Stratix V OCT without calibration resistance to PVT changes.

			Resistance Tolerance				
Symbol	Description	Conditions	C1	C2,I2	C3, I3, I3YY	C4, I4	Unit
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 3.0$ and 2.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	$V_{CCI0} = 1.8$ and 1.5 V	±30	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%

Symbol Description Conditions			Resistance Tolerance				
		C1	C2,I2	C3, I3, I3YY	C4, I4	Unit	
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCIO} = 1.8$ and 1.5 V	±30	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCI0} = 1.2 V	±35	±35	±50	±50	%
100-Ω R _D	Internal differential termination (100- Ω setting)	V _{CCPD} = 2.5 V	±25	±25	±25	±25	%

Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 2 of 2)

Calibration accuracy for the calibrated series and parallel OCTs are applicable at the moment of calibration. When voltage and temperature conditions change after calibration, the tolerance may change.

OCT calibration is automatically performed at power-up for OCT-enabled I/Os. Table 13 lists the OCT variation with temperature and voltage after power-up calibration. Use Table 13 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration.

Equation 1. OCT Variation Without Recalibration for Stratix V Devices (1), (2), (3), (4), (5), (6)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$

Notes to Equation 1:

- (1) The R_{OCT} value shows the range of OCT resistance with the variation of temperature and V_{CCIO} .
- (2) R_{SCAL} is the OCT resistance value at power-up.
- (3) ΔT is the variation of temperature with respect to the temperature at power-up.
- (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power-up.
- (5) dR/dT is the percentage change of R_{SCAL} with temperature.
- (6) dR/dV is the percentage change of $\mathsf{R}_{\mathsf{SCAL}}$ with voltage.

Table 13 lists the on-chip termination variation after power-up calibration.

Table 13.	OCT Variation after Power-U	Calibration for Stratix V Devices	(Part 1 of 2) ⁽¹⁾
-----------	-----------------------------	-----------------------------------	------------------------------

Symbol	Description	V _{CCIO} (V)	Typical	Unit
		3.0	0.0297	
dR/dV OCT variation with voltage without recalibration		2.5	0.0344	
	-	1.8	0.0499	%/mV
		1.5	0.0744	
		1.2	0.1241	

Symbol	Description	V _{CCIO} (V)	Typical	Unit
dR/dT		3.0	0.189	
		2.5	0.208	%/°C
	OCT variation with temperature without recalibration	1.8	0.266	
	without rooalibration	1.5	0.273	
		1.2	1.2 0.317	

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2)⁽¹⁾

Note to Table 13:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to 85°C.

Pin Capacitance

Table 14 lists the Stratix V device family pin capacitance.

Table 14. Pin Capacitance for Stratix V Devices

Symbol Description		Value	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	6	рF

Hot Socketing

Table 15 lists the hot socketing specifications for Stratix V devices.

Table 15.	Hot Socketing Specifications for Stratix V Devices
-----------	--

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μA
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Note to Table 15:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{10PIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

I/O Standard	V _{IL(DI}	_{c)} (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{ol} (V)	V _{oh} (V)	I (mA)	I _{oh}
i/U Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	l _{oi} (mA)	(mA)
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	$V_{REF} - 0.2$	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCI0}	0.75* V _{CCI0}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCI0}	16	-16
HSUL-12	_	V _{REF} – 0.13	V _{REF} + 0.13	_	V _{REF} – 0.22	V _{REF} + 0.22	0.1* V _{CCIO}	0.9* V _{CCI0}	_	_

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 2 of 2)

Table 20. Differential SSTL I/O Standards for Stratix V Devices

I/O Standard		V _{ccio} (V)		V _{SWIN}	_{G(DC)} (V)	V _{X(AC)} (V)			V _{SWING(AC)} (V)		
ijo Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCI0} + 0.6	V _{CCI0} /2- 0.2	_	V _{CCI0} /2 + 0.2	0.62	V _{CCI0} + 0.6	
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCI0} + 0.6	V _{CCI0} /2- 0.175	_	V _{CCI0} /2 + 0.175	0.5	V _{CCI0} + 0.6	
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(1)	V _{CCI0} /2- 0.15	_	V _{CCI0} /2 + 0.15	0.35	_	
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(1)	V _{CCI0} /2- 0.15	V _{CCI0} /2	V _{CCI0} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	2(V _{IL(AC)} - V _{REF})	
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(1)	V _{CCI0} /2- 0.15	V _{CCI0} /2	V _{CCI0} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_	
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	_	V _{REF} -0.15	V _{CCI0} /2	V _{REF} + 0.15	-0.30	0.30	

Note to Table 20:

(1) The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits $(V_{IH(DC)} \text{ and } V_{IL(DC)})$.

I/O		V _{ccio} (V)		V _{DIF(I}	_{DC)} (V)	V _{X(AC)} (V)		V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78	_	1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68	_	0.9	0.68	_	0.9	0.4	_

- You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.
- ***** For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Table 24 shows the maximum transmitter data rate for the clock network.

Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1)

		ATX PLL			CMU PLL ⁽²⁾)		fPLL	
Clock Network	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non- bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span
x1 ⁽³⁾	14.1	—	6	12.5	_	6	3.125	_	3
x6 ⁽³⁾	_	14.1	6	_	12.5	6	_	3.125	6
x6 PLL Feedback ⁽⁴⁾	_	14.1	Side- wide	_	12.5	Side- wide		_	_
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_
VN (Native DHV ID)	8.0	8.0	Up to 13 channels above and below PLL	7.99	7.99	Up to 13 channels above	3.125	3.125	Up to 13 channels above
xN (Native PHY IP)	_	8.01 to 9.8304	Up to 7 channels above and below PLL	7.55	7.55	and below PLL	3.120	0.120	and below PLL

Notes to Table 24:

(1) Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation.

(2) ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

(3) Channel span is within a transceiver bank.

(4) Side-wide channel bonding is allowed up to the maximum supported by the PHY IP.

Table 26 shows the approximate maximum data rate using the 10G PCS.

Table 26. Stratix V 10G PCS Approximate Maximum Data Rate (1)

Mada (2)	Transceiver	PMA Width	64	40	40	40	32	32
Mode ⁽²⁾	Speed Grade	PCS Width	64	66/67	50	40	64/66/67	32
	1	C1, C2, C2L, I2, I2L core speed grade	14.1	14.1	10.69	14.1	13.6	13.6
	2	C1, C2, C2L, I2, I2L core speed grade	12.5	12.5	10.69	12.5	12.5	12.5
	2	C3, I3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
FIFO or Register		C1, C2, C2L, I2, I2L core speed grade						
	3	C3, I3, I3L core speed grade	- 8.5 Gbps					
	3	C4, I4 core speed grade						
		I3YY core speed grade			10.31	25 Gbps		

Notes to Table 26:

(1) The maximum data rate is in Gbps.

(2) The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 5 of 5) (Fransceiver Specifications for Stratix V GT Devices (Part 5 of 5) ⁽¹⁾
---	--

Symbol/ Description	Conditions		Transceivei peed Grade			Fransceive Deed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	
t _{pll_lock} ⁽¹⁴⁾	—	—	_	10	—	—	10	μs

Notes to Table 28:

- (1) Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Stratix V Device Overview.
- (2) The reference clock common mode voltage is equal to the VCCR_GXB power supply level.
- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The differential eye opening specification at the receiver input pins assumes that receiver equalization is disabled. If you enable receiver equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (5) Refer to Figure 5 for the GT channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (6) Refer to Figure 6 for the GT channel DC gain curves.
- (7) CFP2 optical modules require the host interface to have the receiver data pins differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (8) Specifications for this parameter are the same as for Stratix V GX and GS devices. See Table 23 for specifications.
- (9) t_{1 TR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (10) t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high.
- (11) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (12) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (13) tpll_powerdown is the PLL powerdown minimum pulse width.
- (14) tpll lock is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (15) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (16) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (17) For ES devices, RREF is 2000 $\Omega \pm 1\%$.
- (18) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (19) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (20) Refer to Figure 4.
- (21) For oversampling design to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (22) This supply follows VCCR_GXB for both GX and GT channels.
- (23) When you use fPLL as a TXPLL of the transceiver.

Table 29 shows the V_{OD} settings for the GT channel.

Table 29.	Typical Von Setting	g for GT Channel, 1	EX Termination = 100 Ω
-----------	---------------------	---------------------	--------------------------------------

Symbol	V _{OD} Setting	V _{op} Value (mV)
	0	0
	1	200
\mathbf{V}_{0D} differential peak to peak typical (1)	2	400
VOD unicicilitat peak to peak typical (*)	3	600
	4	800
	5	1000

Note:

(1) Refer to Figure 4.

- XFI
- ASI
- HiGig/HiGig+
- HiGig2/HiGig2+
- Serial Data Converter (SDC)
- GPON
- SDI
- SONET
- Fibre Channel (FC)
- PCIe
- QPI
- SFF-8431

Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols.

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications.

Clock Tree Specifications

Table 30 lists the clock tree specifications for Stratix V devices.

Table 30. Clock Tree Performance for Stratix V Devices (1)

	Performance				
Symbol	C1, C2, C2L, I2, and I2L	C3, I3, I3L, and I3YY	C4, I4	Unit	
Global and Regional Clock	717	650	580	MHz	
Periphery Clock	550	500	500	MHz	

Note to Table 30:

(1) The Stratix V ES devices are limited to 600 MHz core clock tree performance.

Symbol	Parameter	Min	Тур	Max	Unit
+ (3) (4)	Input clock cycle-to-cycle jitter ($f_{REF} \ge 100 \text{ MHz}$)	_	—	0.15	UI (p-p)
t _{INCCJ} ^{(3),} ⁽⁴⁾	Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz)	-750	_	+750	ps (p-p)
t _{outpj_dc} ⁽⁵⁾	Period Jitter for dedicated clock output (f_{OUT} \geq 100 MHz)	_	_	175 ⁽¹⁾	ps (p-p)
LOUTPJ_DC	Period Jitter for dedicated clock output (f _{OUT} < 100 MHz)	_		17.5 ⁽¹⁾	mUI (p-p)
+ (5)	Period Jitter for dedicated clock output in fractional PLL ($f_{0UT} \geq 100 \mbox{ MHz})$	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{foutpj_dc} ⁽⁵⁾	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
+	Cycle-to-Cycle Jitter for a dedicated clock output ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{outccj_dc} ⁽⁵⁾	Cycle-to-Cycle Jitter for a dedicated clock output (f _{0UT} < 100 MHz)	_	_	17.5	mUI (p-p)
+ <i>(5)</i>	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f_{OUT} \geq 100 MHz)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)+	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
t _{outpj_10} (5),	Period Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} \geq 100 MHz)	_	_	600	ps (p-p)
(8)	Period Jitter for a clock output on a regular I/O (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{FOUTPJ_IO} (5),	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600 (10)	ps (p-p)
(8), (11)	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{outccj_lo} (5),	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} \geq 100 MHz)	_	_	600	ps (p-p)
(8)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{foutccj_10} ^{(5),}	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{0UT} \geq 100 \mbox{ MHz})$	_	_	600 ⁽¹⁰⁾	ps (p-p)
(8), (11)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)	_	_	60	mUI (p-p)
t _{casc_outpj_dc}	Period Jitter for a dedicated clock output in cascaded PLLs (f_{0UT} \geq 100 MHz)		_	175	ps (p-p)
(5), (6)	Period Jitter for a dedicated clock output in cascaded PLLs (f _{OUT} < 100 MHz)		_	17.5	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits
k _{value}	Numerator of Fraction	128	8388608	2147483648	

Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3)

Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled.

Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled

rx_reset	i		
rx_dpa_locked			

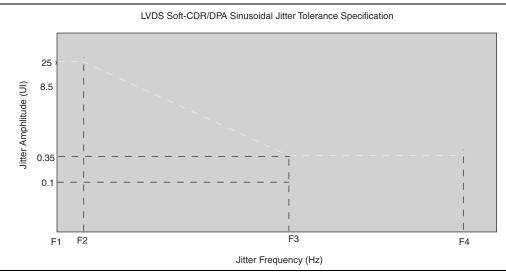
Table 37 lists the DPA lock time specifications for Stratix V devices.

Table 37. DPA Lock Time Specifications for Stratix V GX Devices Only (1), (2), (3)

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁴⁾	Maximum
SPI-4	0000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
WISCENdieous	01010101	8	32	640 data transitions

Notes to Table 37:

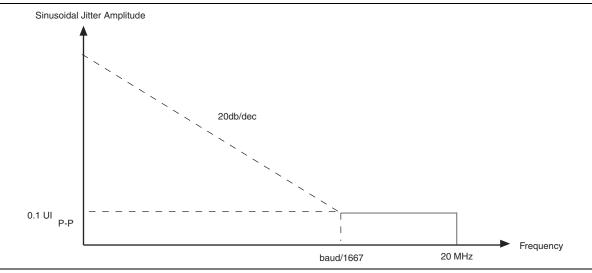
(1) The DPA lock time is for one channel.


(2) One data transition is defined as a 0-to-1 or 1-to-0 transition.

(3) The DPA lock time stated in this table applies to both commercial and industrial grade.

(4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 8 shows the **LVDS** soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps.



Jitter Fre	Sinusoidal Jitter (UI)	
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Table 38.	LVDS Soft-CDR/D	PA Sinusoidal	Jitter Mask Valu	es for a Data Ra	te > 1.25 Gbps
-----------	-----------------	---------------	-------------------------	------------------	----------------

Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps.

DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications

Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices.

Table 39. DLL Range Specifications for Stratix V Devices (1)

C1	C2, C2L, I2, I2L	C3, I3, I3L, I3YY	C4,I4	Unit
300-933	300-933	300-890	300-890	MHz

Note to Table 39:

(1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL.

Table 40 lists the DQS phase offset delay per stage for Stratix V devices.

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices ^{(1), (2)} (Part 1 of 2)

Speed Grade	Min	Max	Unit
C1	8	14	ps
C2, C2L, I2, I2L	8	14	ps
C3,I3, I3L, I3YY	8	15	ps

Clock	Parameter Symbol		C1		C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,14		Unit
Network			Min	Max	Min	Max	Min	Max	Min	Max	
PHY Clock	Clock period jitter	$t_{JIT(per)}$	-25	25	-25	25	-30	30	-35	35	ps
	Cycle-to-cycle period jitter	$t_{\text{JIT(cc)}}$	-50	50	-50	50	-60	60	-70	70	ps
	Duty cycle jitter	$t_{\text{JIT}(\text{duty})}$	-37.5	37.5	-37.5	37.5	-45	45	-56	56	ps

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3)

Notes to Table 42:

(1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

(2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

(3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

OCT Calibration Block Specifications

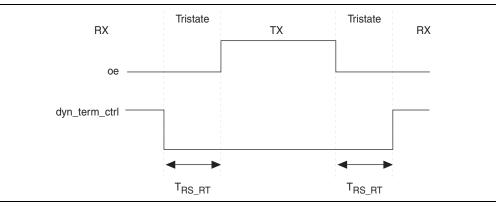

Table 43 lists the OCT calibration block specifications for Stratix V devices.

Table 43. OCT Calibration Block Specifications for Stratix V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks		_	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT $\rm R_S/R_T$ calibration	_	1000	_	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	—	32	_	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10)	_	2.5		ns

Figure 10 shows the timing diagram for the oe and dyn_term_ctrl signals.

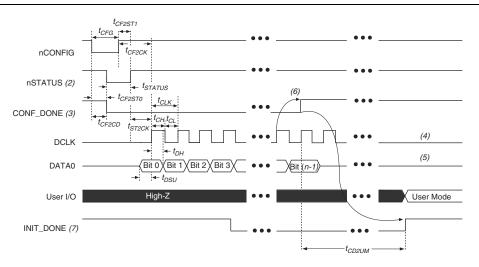
Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals

Symbol	Parameter	Minimum	Maximum	Units
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{cd2cu} + (8576 × clkusr period)	_	—

Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices ^{(1), (2)} (Part 2 of 2)

Notes to Table 53:

(1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.


(2) t_{CF2CD}, t_{CF2ST0}, t_{CF2ST0}, t_{CF6}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63.

(3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

Passive Serial Configuration Timing

Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Figure 15. PS Configuration Timing Waveform ⁽¹⁾

Notes to Figure 15:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power-up, the Stratix V device holds <code>nSTATUS</code> low for the time of the POR delay.
- (3) After power-up, before and during configuration, CONF DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**.
- (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Table 54 lists the PS configuration timing parameters for Stratix V devices.

Table 54. PS Timing Parameters for Stratix V Devices

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μS
t _{status}	nSTATUS low pulse width	268	1,506 ⁽¹⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μS
t _{CF2CK} (5)	nCONFIG high to first rising edge on DCLK	1,506	—	μS
t _{ST2CK} ⁽⁵⁾	nSTATUS high to first rising edge of DCLK	2	—	μS
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	—	ns
t _{CH}	DCLK high time	$0.45\times 1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45\times 1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f _{MAX}	DCLK frequency	—	125	MHz
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) ⁽⁴⁾	_	_

Notes to Table 54:

(1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

(3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

(4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section.

(5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Initialization

Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency.

Table 55. Initialization Clock Source Option and the Maximu	m Frequency
---	-------------

Initialization Clock Source	Configuration Schemes	Maximum Frequency	Minimum Number of Clock Cycles ⁽¹⁾
Internal Oscillator	AS, PS, FPP	12.5 MHz	
CLKUSR	AS, PS, FPP ⁽²⁾	125 MHz	8576
DCLK	PS, FPP	125 MHz	

Notes to Table 55:

(1) The minimum number of clock cycles required for device initialization.

(2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box.

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specifications	Table 56.	Remote System	Upgrade Circuitry	y Timing S	Specifications
---	-----------	----------------------	-------------------	------------	-----------------------

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} ⁽¹⁾	250	—	ns
t _{RU_nRSTIMER} ⁽²⁾	250	—	ns

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum	Typical	Maximum	Units
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

 You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Deremeter	Available	Min	Fast	Model				Slow N	lodel			
Parameter (1)	Available Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns

Parameter	Available	Min	Fast	Model				Slow N	lodel			
(1)	Settings	Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit
D3	8	0	1.587	1.699	2.793	2.793	2.992	3.192	2.811	3.047	3.257	ns
D4	64	0	0.464	0.492	0.838	0.838	0.924	1.011	0.843	0.920	1.006	ns
D5	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns
D6	32	0	0.229	0.244	0.415	0.415	0.458	0.503	0.418	0.456	0.499	ns

Notes to Table 58:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor.

(2) Minimum offset does not include the intrinsic delay.

Programmable Output Buffer Delay

Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

Table 55. Flugiallillable Uulput Duffel Delay für Stratix V Devices'	Table 59.). Programmable Output Buffer Delay for	r Stratix V Devices (†
--	-----------	---	------------------------

Symbol	Parameter	Typical	Unit
		0 (default)	ps
D	Rising and/or falling edge	25	ps
D _{OUTBUF}	delay	50	ps
		75	ps

Note to Table 59:

(1) You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

Glossary

Table 60 lists the glossary for this chapter.

Table 60. Glossary (Part 1 of 4)

Letter	Subject	Definitions
Α		
В	—	—
С		
D	_	_
E	—	_
	f _{HSCLK}	Left and right PLL input clock frequency.
F	f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.
	f _{hsdrdpa}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.

Table 60. Glossary (Part 2 of 4)

Letter	Subject	Definitions
G		
Н	_	_
Ι		
J	J JTAG Timing Specifications	High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS
K L M N O	_	_
Ρ	PLL Specifications	Diagram of PLL Specifications ⁽¹⁾
Q	—	_
		Receiver differential input discrete resistor (external to the Stratix V device).