Welcome to **E-XFL.COM** # **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 128300 | | Number of Logic Elements/Cells | 340000 | | Total RAM Bits | 19456000 | | Number of I/O | 600 | | Number of Gates | - | | Voltage - Supply | 0.87V ~ 0.93V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1152-BBGA, FCBGA | | Supplier Device Package | 1152-FBGA (35x35) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxma3h1f35c2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Electrical Characteristics Page 3 Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2) | Symbol | Description | Minimum | Maximum | Unit | |-----------------------|--------------------------------|---------|---------|------| | V _{CCD_FPLL} | PLL digital power supply | -0.5 | 1.8 | V | | V _{CCA_FPLL} | PLL analog power supply | -0.5 | 3.4 | V | | V _I | DC input voltage | -0.5 | 3.8 | V | | T _J | Operating junction temperature | -55 | 125 | °C | | T _{STG} | Storage temperature (No bias) | -65 | 150 | °C | | I _{OUT} | DC output current per pin | -25 | 40 | mA | Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices. Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices | Symbol | Description | Devices | Minimum | Maximum | Unit | |-----------------------|--|------------|---------|---------|------| | V _{CCA_GXBL} | Transceiver channel PLL power supply (left side) | GX, GS, GT | -0.5 | 3.75 | V | | V _{CCA_GXBR} | Transceiver channel PLL power supply (right side) | GX, GS | -0.5 | 3.75 | V | | V _{CCA_GTBR} | Transceiver channel PLL power supply (right side) | GT | -0.5 | 3.75 | V | | V _{CCHIP_L} | Transceiver hard IP power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHIP_R} | Transceiver hard IP power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHSSI_L} | Transceiver PCS power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCHSSI_R} | Transceiver PCS power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GXBL} | Receiver analog power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | -0.5 | 1.35 | V | | V _{CCT_GXBL} | Transmitter analog power supply (left side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCT_GXBR} | Transmitter analog power supply (right side) | GX, GS, GT | -0.5 | 1.35 | V | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | -0.5 | 1.35 | V | | V _{CCL_GTBR} | Transmitter clock network power supply (right side) | GT | -0.5 | 1.35 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | -0.5 | 1.8 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | -0.5 | 1.8 | V | # **Maximum Allowed Overshoot and Undershoot Voltage** During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. Electrical Characteristics Page 5 # **Recommended Operating Conditions** This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus. Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2) | Symbol | Description | Condition | Min ⁽⁴⁾ | Тур | Max ⁽⁴⁾ | Unit | |----------------------------------|--|------------------------|--------------------|------|--------------------|------| | | Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades) | _ | 0.87 | 0.9 | 0.93 | V | | V _{CC} | Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) (3) | _ | 0.82 | 0.85 | 0.88 | V | | V _{CCPT} | Power supply for programmable power technology | grammable power — 1.45 | | | | V | | V _{CC_AUX} | Auxiliary supply for the programmable power technology | _ | 2.375 | 2.5 | 2.625 | V | | V (1) | I/O pre-driver (3.0 V) power supply | | 2.85 | 3.0 | 3.15 | V | | V _{CCPD} ⁽¹⁾ | I/O pre-driver (2.5 V) power supply | | 2.375 | 2.5 | 2.625 | V | | | I/O buffers (3.0 V) power supply | _ | 2.85 | 3.0 | 3.15 | ٧ | | | I/O buffers (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | I/O buffers (1.8 V) power supply | _ | 1.71 | 1.8 | 1.89 | ٧ | | V_{CCIO} | I/O buffers (1.5 V) power supply | _ | 1.425 | 1.5 | 1.575 | V | | | I/O buffers (1.35 V) power supply | | 1.283 | 1.35 | 1.45 | V | | | I/O buffers (1.25 V) power supply | | 1.19 | 1.25 | 1.31 | V | | | I/O buffers (1.2 V) power supply | _ | 1.14 | 1.2 | 1.26 | V | | | Configuration pins (3.0 V) power supply | | 2.85 | 3.0 | 3.15 | V | | V_{CCPGM} | Configuration pins (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | Configuration pins (1.8 V) power supply | _ | 1.71 | 1.8 | 1.89 | V | | V _{CCA_FPLL} | PLL analog voltage regulator power supply | | 2.375 | 2.5 | 2.625 | V | | V _{CCD_FPLL} | PLL digital voltage regulator power supply | | 1.45 | 1.5 | 1.55 | V | | V _{CCBAT} (2) | Battery back-up power supply (For design security volatile key register) | _ | 1.2 | _ | 3.0 | V | | V _I | DC input voltage | _ | -0.5 | _ | 3.6 | V | | V ₀ | Output voltage | _ | 0 | _ | V _{CCIO} | V | | т. | Operating junction temperature | Commercial | 0 | _ | 85 | °C | | T _J | Operating junction temperature | Industrial | -40 | _ | 100 | °C | Page 10 Electrical Characteristics Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 2 of 2) | | | | | Calibratio | n Accuracy | | | |--|--|--|------------|------------|----------------|------------|------| | Symbol | Description | Conditions | C1 | C2,I2 | C3,I3,
I3YY | C4,I4 | Unit | | 50-Ω R _S | Internal series termination with calibration (50- Ω setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | $34\text{-}\Omega$ and $40\text{-}\Omega$ R_S | Internal series termination with calibration (34- Ω and 40- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | 48 - Ω , 60 - Ω , 80 - Ω , and 240 - Ω R _S | Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting) | V _{CCIO} = 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | 50-Ω R _T | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 2.5, 1.8,
1.5, 1.2 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | $\begin{array}{c} 20\text{-}\Omega,30\text{-}\Omega,\\ 40\text{-}\Omega,60\text{-}\Omega,\\ \text{and}\\ 120\text{-}\OmegaR_T \end{array}$ | Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | 60- Ω and 120- Ω R _T | Internal parallel termination with calibration (60- Ω and 120- Ω setting) | V _{CCIO} = 1.2 | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | $\begin{array}{c} \textbf{25-}\Omega \\ \textbf{R}_{S_left_shift} \end{array}$ | Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | ### Note to Table 11: Table 12 lists the Stratix V OCT without calibration resistance tolerance to PVT changes. Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 1 of 2) | | | | Re | esistance | Tolerance | ! | | |-----------------------------|--|-----------------------------------|------------|-----------|-----------------|--------|------| | Symbol | Description | Conditions | C 1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | 25-Ω R, 50-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 3.0 and 2.5 V | ±30 | ±30 | ±40 | ±40 | % | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | ⁽¹⁾ OCT calibration accuracy is valid at the time of calibration only. Page 12 Electrical Characteristics Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | | |--------|--|-----------------------|---------|------|--| | | | 3.0 | 0.189 | | | | | | 2.5 | 0.208 | | | | dR/dT | OCT variation with temperature without recalibration | 1.8 | 0.266 | %/°C | | | | Willout recalibration | 1.5 | 0.273 | 1 | | | | | 1.2 | 0.317 | | | #### Note to Table 13: (1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$ ### **Pin Capacitance** Table 14 lists the Stratix V device family pin capacitance. **Table 14. Pin Capacitance for Stratix V Devices** | Symbol | Description | Value | Unit | |--------------------|--|-------|------| | C _{IOTB} | Input capacitance on the top and bottom I/O pins | 6 | pF | | C _{IOLR} | Input capacitance on the left and right I/O pins | 6 | pF | | C _{OUTFB} | Input capacitance on dual-purpose clock output and feedback pins | 6 | pF | ### **Hot Socketing** Table 15 lists the hot socketing specifications for Stratix V devices. Table 15. Hot Socketing Specifications for Stratix V Devices | Symbol | Description | Maximum | |---------------------------|--|---------------------| | I _{IOPIN (DC)} | DC current per I/O pin | 300 μΑ | | I _{IOPIN (AC)} | AC current per I/O pin | 8 mA ⁽¹⁾ | | I _{XCVR-TX (DC)} | DC current per transceiver transmitter pin | 100 mA | | I _{XCVR-RX (DC)} | DC current per transceiver receiver pin | 50 mA | ### Note to Table 15: (1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate. Page 16 Electrical Characteristics Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 2 of 2) | I/O V _{CCIO} (V) | | | V _{DIF(I} | _{DC)} (V) | | V _{X(AC)} (V) | | | V _{CM(DC)} (V | V _{DIF(AC)} (V) | | | | |---------------------------|------|-----|--------------------|--------------------|-------------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------|---------------------------|------|-----------------------------| | Standard | Min | Тур | Max | Min | Max | Min | Тур | Max | Min | Тур | Max | Min | Max | | HSTL-12
Class I, II | 1.14 | 1.2 | 1.26 | 0.16 | V _{CCIO} + 0.3 | _ | 0.5*
V _{CCIO} | _ | 0.4*
V _{CCIO} | 0.5*
V _{CCIO} | 0.6*
V _{CCIO} | 0.3 | V _{CCIO}
+ 0.48 | | HSUL-12 | 1.14 | 1.2 | 1.3 | 0.26 | 0.26 | 0.5*V _{CCIO}
- 0.12 | 0.5*
V _{CCIO} | 0.5*V _{CCIO}
+ 0.12 | 0.4*
V _{CCIO} | 0.5*
V _{CCIO} | 0.6*
V _{CCIO} | 0.44 | 0.44 | Table 22. Differential I/O Standard Specifications for Stratix V Devices (7) | I/O | V _{CCIO} (V) ⁽¹⁰⁾ | | | | V _{ID} (mV) ⁽⁸⁾ | | | $V_{ICM(DC)}$ (V) | | Vo | D (V) (| 6) | V _{OCM} (V) ⁽⁶⁾ | | | |------------------------------|--|-----|-------|-----|-------------------------------------|-----|------|-----------------------------|-------|-------|---------|-----|-------------------------------------|------|-------| | Standard | Min | Тур | Max | Min | Condition | Max | Min | Condition | Max | Min | Тур | Max | Min | Тур | Max | | PCML | Transmitter, receiver, and input reference clock pins of the high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to Table 23 on page 18. | | | | | | | | | | | | | | | | 2.5 V | 2.375 | 2.5 | 2.625 | 100 | V _{CM} = | _ | 0.05 | D _{MAX} ≤ 700 Mbps | 1.8 | 0.247 | | 0.6 | 1.125 | 1.25 | 1.375 | | LVDS (1) | 2.373 | 2.3 | 2.023 | 100 | 1.25 V | | 1.05 | D _{MAX} > 700 Mbps | 1.55 | 0.247 | _ | 0.6 | 1.125 | 1.25 | 1.375 | | BLVDS (5) | 2.375 | 2.5 | 2.625 | 100 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | RSDS
(HIO) ⁽²⁾ | 2.375 | 2.5 | 2.625 | 100 | V _{CM} = 1.25 V | _ | 0.3 | _ | 1.4 | 0.1 | 0.2 | 0.6 | 0.5 | 1.2 | 1.4 | | Mini-
LVDS
(HIO) (3) | 2.375 | 2.5 | 2.625 | 200 | _ | 600 | 0.4 | _ | 1.325 | 0.25 | _ | 0.6 | 1 | 1.2 | 1.4 | | LVPECL (4 | _ | _ | _ | 300 | _ | _ | 0.6 | D _{MAX} ≤ 700 Mbps | 1.8 | _ | _ | _ | _ | _ | _ | |), (9) | _ | _ | _ | 300 | _ | _ | 1 | D _{MAX} > 700 Mbps | 1.6 | _ | _ | _ | _ | _ | _ | #### Notes to Table 22: - (1) For optimized LVDS receiver performance, the receiver voltage input range must be between 1.0 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps. - (2) For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V. - (3) For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V. - (4) For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps. - (5) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. They depend on the system topology. - (6) RL range: $90 \le RL \le 110 \Omega$. - (7) The 1.4-V and 1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 18. - (8) The minimum VID value is applicable over the entire common mode range, VCM. - (9) LVPECL is only supported on dedicated clock input pins. - (10) Differential inputs are powered by VCCPD which requires 2.5 $\rm V.$ # **Power Consumption** Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus[®] II PowerPlay Power Analyzer feature. Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 4 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Trai | nsceive
Grade | r Speed
3 | Unit | |---|---|-----|------------------|--------------|------|------------------|--------------|------|------------------|--------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | 85– Ω setting | _ | 85 ±
30% | _ | _ | 85 ± 30% | _ | _ | 85 ± 30% | _ | Ω | | Differential on-
chip termination
resistors ⁽²¹⁾ | 100–Ω
setting | _ | 100
±
30% | | _ | 100
±
30% | _ | _ | 100
±
30% | _ | Ω | | | 120–Ω
setting | _ | 120
±
30% | _ | _ | 120
±
30% | _ | _ | 120
±
30% | _ | Ω | | | 150-Ω
setting | _ | 150
±
30% | _ | _ | 150
±
30% | _ | _ | 150
±
30% | _ | Ω | | | V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth | _ | 600 | _ | _ | 600 | _ | _ | 600 | _ | mV | | V _{ICM}
(AC and DC
coupled) | V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth | _ | 600 | _ | _ | 600 | _ | _ | 600 | _ | mV | | coupleu) | $V_{CCR_GXB} = \\ 1.0 \text{ V/1.05 V} \\ \text{full} \\ \text{bandwidth}$ | _ | 700 | _ | _ | 700 | _ | _ | 700 | _ | mV | | | V _{CCR_GXB} = 1.0 V half bandwidth | _ | 750 | _ | _ | 750 | _ | _ | 750 | _ | mV | | t _{LTR} (11) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | t _{LTD} (12) | _ | 4 | _ | | 4 | | | 4 | | | μs | | t _{LTD_manual} (13) | _ | 4 | _ | | 4 | | | 4 | | | μs | | t _{LTR_LTD_manual} (14) | | 15 | | | 15 | | _ | 15 | _ | | μs | | Run Length | | _ | _ | 200 | _ | | 200 | _ | - | 200 | UI | | Programmable equalization (AC Gain) (10) | Full
bandwidth
(6.25 GHz)
Half
bandwidth
(3.125 GHz) | _ | _ | 16 | _ | _ | 16 | _ | _ | 16 | dB | Page 22 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | Trai | nsceive
Grade | r Speed
2 | Trai | nsceive
Grade | r Speed
3 | Unit | |---|---|-----|------------------|--------------|------|------------------|--------------|------|------------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | DC Gain
Setting = 0 | _ | 0 | _ | _ | 0 | _ | _ | 0 | _ | dB | | | DC Gain
Setting = 1 | _ | 2 | _ | _ | 2 | _ | _ | 2 | _ | dB | | Programmable
DC gain | DC Gain
Setting = 2 | | 4 | _ | _ | 4 | | _ | 4 | _ | dB | | | DC Gain
Setting = 3 | | 6 | | _ | 6 | _ | _ | 6 | _ | dB | | | DC Gain
Setting = 4 | _ | 8 | | _ | 8 | | _ | 8 | _ | dB | | Transmitter | | | | | | | | | | | | | Supported I/O
Standards | _ | | | | - | 1.4-V ar | nd 1.5-V PC | ML | | | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | | 85-Ω
setting | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | Ω | | Differential on- | 100-Ω
setting | | 100
±
20% | _ | _ | 100
±
20% | | _ | 100
±
20% | _ | Ω | | chip termination resistors | 120-Ω
setting | _ | 120
±
20% | _ | _ | 120
±
20% | _ | _ | 120
±
20% | _ | Ω | | | 150-Ω
setting | _ | 150
±
20% | _ | _ | 150
±
20% | _ | _ | 150
±
20% | _ | Ω | | V _{OCM} (AC coupled) | 0.65-V
setting | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | V _{OCM} (DC coupled) | _ | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | Rise time (7) | 20% to 80% | 30 | _ | 160 | 30 | _ | 160 | 30 | | 160 | ps | | Fall time ⁽⁷⁾ | 80% to 20% | 30 | _ | 160 | 30 | | 160 | 30 | _ | 160 | ps | | Intra-differential
pair skew | Tx V _{CM} = 0.5 V and slew rate of 15 ps | _ | _ | 15 | _ | _ | 15 | _ | _ | 15 | ps | | Intra-transceiver
block transmitter
channel-to-
channel skew | x6 PMA
bonded mode | _ | _ | 120 | _ | _ | 120 | _ | _ | 120 | ps | Table 24 shows the maximum transmitter data rate for the clock network. Table 24. Clock Network Maximum Data Rate Transmitter Specifications (1) | | | ATX PLL | | | CMU PLL (2) |) | | fPLL | | |-----------------------------------|----------------------------------|--------------------------|--|----------------------------------|--------------------------|-------------------------|----------------------------------|--------------------------|-------------------------| | Clock Network | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | Non-
bonded
Mode
(Gbps) | Bonded
Mode
(Gbps) | Channel
Span | | x1 ⁽³⁾ | 14.1 | _ | 6 | 12.5 | _ | 6 | 3.125 | _ | 3 | | x6 ⁽³⁾ | _ | 14.1 | 6 | _ | 12.5 | 6 | _ | 3.125 | 6 | | x6 PLL
Feedback ⁽⁴⁾ | _ | 14.1 | Side-
wide | _ | 12.5 | Side-
wide | _ | _ | _ | | xN (PCIe) | _ | 8.0 | 8 | _ | 5.0 | 8 | _ | _ | _ | | xN (Native PHY IP) | 8.0 | 8.0 | Up to 13
channels
above
and
below
PLL | 7.99 | 7.99 | Up to 13 channels above | 3.125 | 2 125 | Up to 13 channels above | | AN (NAUVE FITTIF) | П | 8.01 to
9.8304 | Up to 7
channels
above
and
below
PLL | · 7.55 | 7.88 | and
below
PLL | 3.123 | Bonded
Mode
(Gbps) | and
below
PLL | #### Notes to Table 24: ⁽¹⁾ Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation. ⁽²⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance. ⁽³⁾ Channel span is within a transceiver bank. ⁽⁴⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP. Table 26 shows the approximate maximum data rate using the 10G PCS. Table 26. Stratix V 10G PCS Approximate Maximum Data Rate (1) | Mode ⁽²⁾ | Transceiver | PMA Width | 64 | 40 | 40 | 40 | 32 | 32 | |---------------------|-------------|--|------|-------|--------|---------|----------|-------| | Widue (2) | Speed Grade | PCS Width | 64 | 66/67 | 50 | 40 | 64/66/67 | 32 | | | 1 | C1, C2, C2L, I2, I2L
core speed grade | 14.1 | 14.1 | 10.69 | 14.1 | 13.6 | 13.6 | | | 2 | C1, C2, C2L, I2, I2L
core speed grade | 12.5 | 12.5 | 10.69 | 12.5 | 12.5 | 12.5 | | | ۷ | C3, I3, I3L
core speed grade | 12.5 | 12.5 | 10.69 | 12.5 | 10.88 | 10.88 | | FIFO or
Register | | C1, C2, C2L, I2, I2L
core speed grade | | | | | | | | | 3 | C3, I3, I3L
core speed grade | | | 8.5 | Gbps | | | | | 3 | C4, I4
core speed grade | | | | | | | | | | I3YY
core speed grade | | | 10.312 | 25 Gbps | | | #### Notes to Table 26: ⁽¹⁾ The maximum data rate is in Gbps. ⁽²⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency. Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5) $^{(1)}$ | Symbol/ | Conditions | S | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | |--|---|--------|--------------------------|--------------|--------------|--------------------------|-------------|----------| | Description | | Min | Тур | Max | Min | Тур | Max | 1 | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | | | Transmitter REFCLK | 1 kHz | _ | _ | -90 | | _ | -90 | | | Phase Noise (622 | 10 kHz | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | MHz) ⁽¹⁸⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | | | | ≥1 MHz | | _ | -120 | _ | | -120 | 1 | | Transmitter REFCLK
Phase Jitter (100
MHz) ⁽¹⁵⁾ | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | ps (rms) | | RREF (17) | _ | _ | 1800
± 1% | _ | _ | 1800
± 1% | _ | Ω | | Transceiver Clocks | | | | | | | | | | fixedclk clock
frequency | PCIe
Receiver
Detect | _ | 100 or
125 | _ | _ | 100 or
125 | _ | MHz | | Reconfiguration clock
(mgmt_clk_clk)
frequency | | 100 | _ | 125 | 100 | | 125 | MHz | | Receiver | | | | | | | | | | Supported I/O
Standards | _ | | 1.4-V PCML | , 1.5-V PCML | _, 2.5-V PCI | ML, LVPEC | L, and LVDS | 6 | | Data rate
(Standard PCS) (21) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) (21) | GX channels | 600 | _ | 12,500 | 600 | _ | 12,500 | Mbps | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | Absolute V _{MAX} for a receiver pin ⁽³⁾ | GT channels | _ | _ | 1.2 | | _ | 1.2 | V | | Absolute V _{MIN} for a receiver pin | GT channels | -0.4 | _ | _ | -0.4 | _ | _ | V | | Maximum peak-to-peak | GT channels | | _ | 1.6 | _ | | 1.6 | V | | differential input
voltage V _{ID} (diff p-p)
before device
configuration ⁽²⁰⁾ | GX channels | | | | (8) | | | | | | GT channels | | | | | | | | | Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration (16), (20) | $V_{CCR_GTB} = 1.05 \text{ V} $ $(V_{ICM} = 0.65 \text{ V})$ | _ | _ | 2.2 | _ | _ | 2.2 | V | | oomiguration ', ' / | GX channels | | | | (8) | | • | • | | Minimum differential | GT channels | 200 | _ | _ | 200 | | _ | mV | | eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾ | GX channels | | | | (8) | | | | Page 36 Switching Characteristics Figure 4 shows the differential transmitter output waveform. Figure 4. Differential Transmitter/Receiver Output/Input Waveform Figure 5 shows the Stratix V AC gain curves for GT channels. Figure 5. AC Gain Curves for GT Channels # **PLL Specifications** Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85°C) and the industrial junction temperature range (-40° to 100° C). Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3) | Symbol | Parameter | Min | Тур | Max | Unit | |---------------------------------|--|-----|-----|--------------------|------| | | Input clock frequency (C1, C2, C2L, I2, and I2L speed grades) | 5 | _ | 800 (1) | MHz | | f _{IN} | Input clock frequency (C3, I3, I3L, and I3YY speed grades) | 5 | _ | 800 (1) | MHz | | | Input clock frequency (C4, I4 speed grades) | 5 | _ | 650 ⁽¹⁾ | MHz | | f _{INPFD} | Input frequency to the PFD | 5 | _ | 325 | MHz | | FINPFD | Fractional Input clock frequency to the PFD | 50 | _ | 160 | MHz | | | PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades) | 600 | _ | 1600 | MHz | | f _{vco} ⁽⁹⁾ | PLL VCO operating range (C3, I3, I3L, I3YY speed grades) | 600 | _ | 1600 | MHz | | | PLL VCO operating range (C4, I4 speed grades) | 600 | _ | 1300 | MHz | | EINDUTY | Input clock or external feedback clock input duty cycle | 40 | _ | 60 | % | | | Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades) | _ | _ | 717 (2) | MHz | | Гоит | Output frequency for an internal global or regional clock (C3, I3, I3L speed grades) | _ | _ | 650 ⁽²⁾ | MHz | | | Output frequency for an internal global or regional clock (C4, I4 speed grades) | _ | _ | 580 ⁽²⁾ | MHz | | | Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades) | _ | _ | 800 (2) | MHz | | f _{OUT_EXT} | Output frequency for an external clock output (C3, I3, I3L speed grades) | _ | _ | 667 (2) | MHz | | | Output frequency for an external clock output (C4, I4 speed grades) | _ | _ | 553 ⁽²⁾ | MHz | | t _{оитриту} | Duty cycle for a dedicated external clock output (when set to 50%) | 45 | 50 | 55 | % | | FCOMP | External feedback clock compensation time | _ | _ | 10 | ns | | DYCONFIGCLK | Dynamic Configuration Clock used for mgmt_clk and scanclk | _ | _ | 100 | MHz | | Lock | Time required to lock from the end-of-device configuration or deassertion of areset | _ | _ | 1 | ms | | DLOCK | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) | _ | _ | 1 | ms | | | PLL closed-loop low bandwidth | | 0.3 | | MHz | | :
CLBW | PLL closed-loop medium bandwidth | | 1.5 | | MHz | | | PLL closed-loop high bandwidth (7) | _ | 4 | _ | MHz | | PLL_PSERR | Accuracy of PLL phase shift | | _ | ±50 | ps | | ARESET | Minimum pulse width on the areset signal | 10 | _ | _ | ns | Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 2 of 4) | Cumbal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | I3, I3I | ., I3YY | | C4,I4 | 4 | II.a.i.k | |---|--|-----|-----|------|-----|--------|--------|-----|---------|---------|-----|-------|------|----------| | Symbol | Conditions | Min | Тур | Max | Unit | | Transmitter | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (9), (11),
(12), (13), (14), (15),
(16) | (6) | _ | 1600 | (6) | _ | 1434 | (6) | _ | 1250 | (6) | _ | 1050 | Mbps | | True
Differential
I/O Standards | SERDES factor J ≥ 4 LVDS TX with DPA (12), (14), (15), (16) | (6) | _ | 1600 | (6) | _ | 1600 | (6) | _ | 1600 | (6) | | 1250 | Mbps | | - f _{HSDR} (data
rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (10) | SERDES factor J
= 4 to 10 (17) | (6) | _ | 1100 | (6) | _ | 1100 | (6) | _ | 840 | (6) | | 840 | Mbps | | t _{x Jitter} - True
Differential | Total Jitter for
Data Rate
600 Mbps -
1.25 Gbps | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | ps | | I/O Standards | Total Jitter for
Data Rate
< 600 Mbps | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | UI | | t _{x Jitter} -
Emulated
Differential
I/O Standards | Total Jitter for
Data Rate
600 Mbps - 1.25
Gbps | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | _ | _ | 325 | ps | | with Three
External
Output
Resistor
Network | Total Jitter for
Data Rate
< 600 Mbps | _ | _ | 0.2 | _ | _ | 0.2 | _ | _ | 0.2 | _ | _ | 0.25 | UI | Page 46 Switching Characteristics Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4) | | | | C1 | | C2, | C2L, I | 2, I2L | C3, | 13, I3L | ., I3YY | C4,14 | | | | |---------------------------------------|---|-----|-----|------|-----|--------|--------|-----|---------|---------|-------|-----|------|------| | Symbol | Conditions | Min | Тур | Max | Unit | | t _{DUTY} | Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | % | | | True Differential
I/O Standards | _ | _ | 160 | _ | _ | 160 | _ | _ | 200 | _ | _ | 200 | ps | | t _{RISE} & t _{FALL} | Emulated Differential I/O Standards with three external output resistor networks | _ | | 250 | _ | _ | 250 | _ | | 250 | _ | | 300 | ps | | | True Differential
I/O Standards | _ | _ | 150 | _ | | 150 | | _ | 150 | | _ | 150 | ps | | TCCS | Emulated
Differential I/O
Standards | _ | _ | 300 | _ | _ | 300 | _ | | 300 | _ | | 300 | ps | | Receiver | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (11), (12),
(13), (14), (15), (16) | 150 | _ | 1434 | 150 | _ | 1434 | 150 | _ | 1250 | 150 | _ | 1050 | Mbps | | True
Differential
I/O Standards | SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16) | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1600 | 150 | _ | 1250 | Mbps | | - f _{HSDRDPA}
(data rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | | (7) | (6) | _ | (7) | Mbps | Page 50 Switching Characteristics Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 2 of 2) | Speed Grade | Min | Max | Unit | |-------------|-----|-----|------| | C4,I4 | 8 | 16 | ps | #### Notes to Table 40: - (1) The typical value equals the average of the minimum and maximum values. - (2) The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -2 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is [625 ps + (10 × 10 ps) ± 20 ps] = 725 ps ± 20 ps. Table 41 lists the DQS phase shift error for Stratix V devices. Table 41. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Stratix V Devices (1) | Number of DQS Delay
Buffers | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |--------------------------------|-----|------------------|-------------------|-------|------| | 1 | 28 | 28 | 30 | 32 | ps | | 2 | 56 | 56 | 60 | 64 | ps | | 3 | 84 | 84 | 90 | 96 | ps | | 4 | 112 | 112 | 120 | 128 | ps | #### Notes to Table 41: Table 42 lists the memory output clock jitter specifications for Stratix V devices. Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 1 of 2) (2), (3) | Clock
Network | Parameter | Symbol | C1 | | C2, C2L, I2, I2L | | C3, I3, I3L,
I3YY | | C4,I4 | | Unit | |------------------|------------------------------|------------------------|-----------------|-----|------------------|-----|----------------------|------|-------|------|------| | NEIWUIK | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | Clock period jitter | t _{JIT(per)} | -50 | 50 | -50 | 50 | -55 | 55 | -55 | 55 | ps | | Regional | Cycle-to-cycle period jitter | t _{JIT(cc)} | -100 | 100 | -100 | 100 | -110 | 110 | -110 | 110 | ps | | | Duty cycle jitter | $t_{JIT(duty)}$ | -50 | 50 | -50 | 50 | -82.5 | 82.5 | -82.5 | 82.5 | ps | | | Clock period jitter | t _{JIT(per)} | -75 | 75 | - 75 | 75 | -82.5 | 82.5 | -82.5 | 82.5 | ps | | Global | Cycle-to-cycle period jitter | t _{JIT(cc)} | -150 | 150 | -150 | 150 | -165 | 165 | -165 | 165 | ps | | | Duty cycle jitter | t _{JIT(duty)} | - 75 | 75 | -75 | 75 | -90 | 90 | -90 | 90 | ps | ⁽¹⁾ This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a −2 speed grade is ±78 ps or ±39 ps. Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3) | Clock
Network | Parameter | Symbol | C | C 1 | | C2, C2L, I2, I2L | | 8, I3L,
YY | C4,I4 | | Unit | |------------------|------------------------------|------------------------|-------|------------|-------|------------------|-----|---------------|-------|-----|------| | NELWURK | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | Clock period jitter | t _{JIT(per)} | -25 | 25 | -25 | 25 | -30 | 30 | -35 | 35 | ps | | PHY
Clock | Cycle-to-cycle period jitter | t _{JIT(cc)} | -50 | 50 | -50 | 50 | -60 | 60 | -70 | 70 | ps | | | Duty cycle jitter | t _{JIT(duty)} | -37.5 | 37.5 | -37.5 | 37.5 | -45 | 45 | -56 | 56 | ps | #### Notes to Table 42: - (1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible. - (2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL. - (3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma. # **OCT Calibration Block Specifications** Table 43 lists the OCT calibration block specifications for Stratix V devices. Table 43. OCT Calibration Block Specifications for Stratix V Devices | Symbol | Description | Min | Тур | Max | Unit | |-----------------------|--|-----|------|-----|--------| | OCTUSRCLK | Clock required by the OCT calibration blocks | | _ | 20 | MHz | | T _{OCTCAL} | Number of OCTUSRCLK clock cycles required for OCT $\ensuremath{R}_{\ensuremath{S}}/\ensuremath{R}_{\ensuremath{T}}$ calibration | _ | 1000 | _ | Cycles | | T _{OCTSHIFT} | Number of OCTUSRCLK clock cycles required for the OCT code to shift out | _ | 32 | _ | Cycles | | T _{RS_RT} | Time required between the $\mathtt{dyn_term_ctrl}$ and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10) | _ | 2.5 | _ | ns | Figure 10 shows the timing diagram for the oe and dyn term ctrl signals. Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals Glossary Page 65 Table 58. IOE Programmable Delay for Stratix V Devices (Part 2 of 2) | Parameter | Available
Settings | Min
Offset | Fast Model | | Slow Model | | | | | | | | |-----------|-----------------------|---------------|------------|------------|------------|-------|-------|-------|-------|-------------|-------|------| | (1) | | | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | D3 | 8 | 0 | 1.587 | 1.699 | 2.793 | 2.793 | 2.992 | 3.192 | 2.811 | 3.047 | 3.257 | ns | | D4 | 64 | 0 | 0.464 | 0.492 | 0.838 | 0.838 | 0.924 | 1.011 | 0.843 | 0.920 | 1.006 | ns | | D5 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D6 | 32 | 0 | 0.229 | 0.244 | 0.415 | 0.415 | 0.458 | 0.503 | 0.418 | 0.456 | 0.499 | ns | #### Notes to Table 58: - (1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor. - (2) Minimum offset does not include the intrinsic delay. # **Programmable Output Buffer Delay** Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps. Table 59. Programmable Output Buffer Delay for Stratix V Devices (1) | Symbol | Parameter | Typical | Unit | |---------------------|----------------------------|-------------|------| | | | 0 (default) | ps | | D | Rising and/or falling edge | 25 | ps | | D _{OUTBUF} | delay | 50 | ps | | | | 75 | ps | ### Note to Table 59: # **Glossary** Table 60 lists the glossary for this chapter. Table 60. Glossary (Part 1 of 4) | Letter | Subject | Definitions | | | |--------|----------------------|---|--|--| | Α | | | | | | В | _ | _ | | | | С | | | | | | D | _ | _ | | | | E | _ | | | | | | f _{HSCLK} | Left and right PLL input clock frequency. | | | | F | f _{HSDR} | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA. | | | | | f _{HSDRDPA} | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA. | | | ⁽¹⁾ You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment. Glossary Page 67 Table 60. Glossary (Part 3 of 4) | Letter | Subject | Definitions | | | | | | | |--------|---|--|--|--|--|--|--|--| | | SW (sampling window) | Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window (SW) 0.5 x TCCS | | | | | | | | S | Single-ended
voltage
referenced I/O
standard | The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard VIHACO VIHACO VILLOCO V | | | | | | | | | t _C | High-speed receiver and transmitter input and output clock period. | | | | | | | | | TCCS (channel-
to-channel-skew) | The timing difference between the fastest and slowest output edges, including t _{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table). | | | | | | | | | t _{DUTY} | High-speed I/O block—Duty cycle on the high-speed transmitter output clock. | | | | | | | | Т | | Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{receiver input clock frequency multiplication factor}) = t_c/w)$ | | | | | | | | | t _{FALL} | Signal high-to-low transition time (80-20%) | | | | | | | | | t _{INCCJ} | Cycle-to-cycle jitter tolerance on the PLL clock input. | | | | | | | | | t _{OUTPJ_IO} | Period jitter on the general purpose I/O driven by a PLL. | | | | | | | | | t _{OUTPJ_DC} | Period jitter on the dedicated clock output driven by a PLL. | | | | | | | | | t _{RISE} | Signal low-to-high transition time (20-80%) | | | | | | | | U | _ | _ | | | | | | | Page 70 Document Revision History Table 61. Document Revision History (Part 2 of 3) | Date | Version | Changes | | | | | | |---------------|---------|---|--|--|--|--|--| | | | ■ Added the I3YY speed grade and changed the data rates for the GX channel in Table 1. | | | | | | | | | ■ Added the I3YY speed grade to the V _{CC} description in Table 6. | | | | | | | | | ■ Added the I3YY speed grade to V _{CCHIP_L} , V _{CCHIP_R} , V _{CCHSSI_L} , and V _{CCHSSI_R} descriptions in Table 7. | | | | | | | | | ■ Added 240-Ω to Table 11. | | | | | | | | | ■ Changed CDR PPM tolerance in Table 23. | | | | | | | | | ■ Added additional max data rate for fPLL in Table 23. | | | | | | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 25. | | | | | | | | | ■ Added the I3YY speed grade and changed the data rates for transceiver speed grade 3 in Table 26. | | | | | | | | | ■ Changed CDR PPM tolerance in Table 28. | | | | | | | | | ■ Added additional max data rate for fPLL in Table 28. | | | | | | | | | ■ Changed the mode descriptions for MLAB and M20K in Table 33. | | | | | | | | | ■ Changed the Max value of f _{HSCLK_OUT} for the C2, C2L, I2, I2L speed grades in Table 36. | | | | | | | November 2014 | 3.3 | ■ Changed the frequency ranges for C1 and C2 in Table 39. | | | | | | | | | ■ Changed the .rbf file sizes for 5SGSD6 and 5SGSD8 in Table 47. | | | | | | | | | ■ Added note about nSTATUS to Table 50, Table 51, Table 54. | | | | | | | | | ■ Changed the available settings in Table 58. | | | | | | | | | ■ Changed the note in "Periphery Performance". | | | | | | | | | ■ Updated the "I/O Standard Specifications" section. | | | | | | | | | ■ Updated the "Raw Binary File Size" section. | | | | | | | | | ■ Updated the receiver voltage input range in Table 22. | | | | | | | | | ■ Updated the max frequency for the LVDS clock network in Table 36. | | | | | | | | | ■ Updated the DCLK note to Figure 11. | | | | | | | | | ■ Updated Table 23 VO _{CM} (DC Coupled) condition. | | | | | | | | | ■ Updated Table 6 and Table 7. | | | | | | | | | ■ Added the DCLK specification to Table 55. | | | | | | | | | ■ Updated the notes for Table 47. | | | | | | | | | ■ Updated the list of parameters for Table 56. | | | | | | | November 2013 | 3.2 | ■ Updated Table 28 | | | | | | | November 2013 | 3.1 | ■ Updated Table 33 | | | | | | | November 2013 | 3.0 | ■ Updated Table 23 and Table 28 | | | | | | | October 2013 | 2.9 | ■ Updated the "Transceiver Characterization" section | | | | | | | | | ■ Updated Table 3, Table 12, Table 14, Table 19, Table 20, Table 23, Table 24, Table 28, Table 30, Table 31, Table 32, Table 33, Table 36, Table 39, Table 40, Table 41, Table 42, Table 47, Table 53, Table 58, and Table 59 | | | | | | | October 2013 | 2.8 | ■ Added Figure 1 and Figure 3 | | | | | | | | | ■ Added the "Transceiver Characterization" section | | | | | | | | | ■ Removed all "Preliminary" designations. | | | | | | Page 72 Document Revision History