Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 128300 | | Number of Logic Elements/Cells | 340000 | | Total RAM Bits | 19456000 | | Number of I/O | 600 | | Number of Gates | - | | Voltage - Supply | 0.87V ~ 0.93V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxma3k1f40c1n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Electrical Characteristics Page 9 # I/O Pin Leakage Current Table 9 lists the Stratix V I/O pin leakage current specifications. Table 9. I/O Pin Leakage Current for Stratix V Devices (1) | Symbol | Description | Conditions | Min | Тур | Max | Unit | |-----------------|--------------------|--|-----|-----|-----|------| | I _I | Input pin | $V_I = 0 V to V_{CCIOMAX}$ | -30 | _ | 30 | μΑ | | I _{OZ} | Tri-stated I/O pin | $V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$ | -30 | | 30 | μΑ | ### Note to Table 9: (1) If $V_0 = V_{CCIO}$ to $V_{CCIOMax}$, 100 μA of leakage current per I/O is expected. # **Bus Hold Specifications** Table 10 lists the Stratix V device family bus hold specifications. Table 10. Bus Hold Parameters for Stratix V Devices | | | bol Conditions | V _{CC10} | | | | | | | | | | | |-------------------------------|-------------------|--|-------------------|------|-------|------|-------|------|-------|------|-------|------|------| | Parameter | Symbol | | 1.2 V | | 1.5 V | | 1.8 V | | 2.5 V | | 3.0 V | | Unit | | | | | Min | Max | | | Low
sustaining
current | I _{SUSL} | V _{IN} > V _{IL}
(maximum) | 22.5 | _ | 25.0 | _ | 30.0 | _ | 50.0 | _ | 70.0 | _ | μА | | High
sustaining
current | I _{SUSH} | V _{IN} < V _{IH}
(minimum) | -22.5 | _ | -25.0 | _ | -30.0 | _ | -50.0 | | -70.0 | _ | μА | | Low
overdrive
current | I _{ODL} | 0V < V _{IN} < V _{CCIO} | _ | 120 | _ | 160 | _ | 200 | _ | 300 | _ | 500 | μА | | High
overdrive
current | I _{ODH} | 0V < V _{IN} < V _{CCIO} | _ | -120 | _ | -160 | _ | -200 | _ | -300 | _ | -500 | μА | | Bus-hold
trip point | V_{TRIP} | _ | 0.45 | 0.95 | 0.50 | 1.00 | 0.68 | 1.07 | 0.70 | 1.70 | 0.80 | 2.00 | V | # **On-Chip Termination (OCT) Specifications** If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block. Table 11 lists the Stratix V OCT termination calibration accuracy specifications. Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 1 of 2) | | | | Calibration Accuracy | | | | | | | |---------------------|---|--|----------------------|-------|----------------|-------|------|--|--| | Symbol | Description | Conditions | C 1 | C2,I2 | C3,I3,
I3YY | C4,I4 | Unit | | | | 25-Ω R _S | Internal series termination with calibration (25- Ω setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | | Page 10 Electrical Characteristics Table 11. OCT Calibration Accuracy Specifications for Stratix V Devices (1) (Part 2 of 2) | | | | | Calibratio | n Accuracy | | | |--|--|--|------------|------------|----------------|------------|------| | Symbol | Description | Conditions | C1 | C2,I2 | C3,I3,
I3YY | C4,I4 | Unit | | 50-Ω R _S | Internal series termination with calibration (50- Ω setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | $34\text{-}\Omega$ and $40\text{-}\Omega$ R_S | Internal series termination with calibration (34- Ω and 40- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | 48 - Ω , 60 - Ω , 80 - Ω , and 240 - Ω R _S | Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting) | V _{CCIO} = 1.2 V | ±15 | ±15 | ±15 | ±15 | % | | 50-Ω R _T | Internal parallel termination with calibration (50-Ω setting) | V _{CCIO} = 2.5, 1.8,
1.5, 1.2 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | $\begin{array}{c} 20\text{-}\Omega,30\text{-}\Omega,\\ 40\text{-}\Omega,60\text{-}\Omega,\\ \text{and}\\ 120\text{-}\OmegaR_T \end{array}$ | Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting) | V _{CCIO} = 1.5, 1.35,
1.25 V | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | 60- Ω and 120- Ω R _T | Internal parallel termination with calibration (60- Ω and 120- Ω setting) | V _{CCIO} = 1.2 | -10 to +40 | -10 to +40 | -10 to +40 | -10 to +40 | % | | $\begin{array}{c} \textbf{25-}\Omega \\ \textbf{R}_{S_left_shift} \end{array}$ | Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting) | V _{CCIO} = 3.0, 2.5,
1.8, 1.5, 1.2 V | ±15 | ±15 | ±15 | ±15 | % | # Note to Table 11: Table 12 lists the Stratix V OCT without calibration resistance tolerance to PVT changes. Table 12. OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices (Part 1 of 2) | | | | Resistance Tolerance | | | | | | |-----------------------------|--|-----------------------------------|----------------------|-------|-----------------|--------|------|--| | Symbol | Description | Conditions | C 1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | | 25-Ω R, 50-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 3.0 and 2.5 V | ±30 | ±30 | ±40 | ±40 | % | | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CC10} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | | 25-Ω R _S | Internal series termination without calibration (25- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | | ⁽¹⁾ OCT calibration accuracy is valid at the time of calibration only. Page 12 Electrical Characteristics Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | |--------|--|-----------------------|---------|------| | | | 3.0 | 0.189 | | | | | 2.5 | 0.208 | | | dR/dT | OCT variation with temperature without recalibration | 1.8 | 0.266 | %/°C | | | Willout recalibration | 1.5 | 0.273 | 1 | | | | 1.2 | 0.317 | | ### Note to Table 13: (1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$ # **Pin Capacitance** Table 14 lists the Stratix V device family pin capacitance. **Table 14. Pin Capacitance for Stratix V Devices** | Symbol | Description | Value | Unit | |--------------------|--|-------|------| | C _{IOTB} | Input capacitance on the top and bottom I/O pins | 6 | pF | | C _{IOLR} | Input capacitance on the left and right I/O pins | 6 | pF | | C _{OUTFB} | Input capacitance on dual-purpose clock output and feedback pins | 6 | pF | # **Hot Socketing** Table 15 lists the hot socketing specifications for Stratix V devices. Table 15. Hot Socketing Specifications for Stratix V Devices | Symbol | Description | Maximum | |---------------------------|--|---------------------| | I _{IOPIN (DC)} | DC current per I/O pin | 300 μΑ | | I _{IOPIN (AC)} | AC current per I/O pin | 8 mA ⁽¹⁾ | | I _{XCVR-TX (DC)} | DC current per transceiver transmitter pin | 100 mA | | I _{XCVR-RX (DC)} | DC current per transceiver receiver pin | 50 mA | # Note to Table 15: (1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate. Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 2 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | Transceiver Speed
Grade 2 | | | nsceive
Grade | r Speed
3 | Unit | |---|--|------------------|------------------|-----------------------|-----------------------|------------------------------|--------------------|-------|------------------|-----------------------|-------------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Spread-spectrum
downspread | PCle | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | % | | On-chip
termination
resistors (21) | _ | _ | 100 | _ | _ | 100 | _ | _ | 100 | _ | Ω | | Absolute V _{MAX} ⁽⁵⁾ | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | | RX reference clock pin | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | | | Absolute V _{MIN} | _ | -0.4 | | _ | -0.4 | _ | | -0.4 | _ | 1 | V | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | | 1600 | 200 | _ | 1600 | mV | | V _{ICM} (AC coupled) (3) | Dedicated
reference
clock pin | 1050/ | 1000/90 | 00/850 ⁽²⁾ | 1050/1000/900/850 (2) | | | 1050/ | 1000/90 | 00/850 ⁽²⁾ | mV | | - Joupleu) | RX reference clock pin | 1.0/0.9/0.85 (4) | | | 1. | 0/0.9/0 | .85 ⁽⁴⁾ | 1. | 0/0.9/0 | .85 ⁽⁴⁾ | V | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | 250 | _ | 550 | mV | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | _ | _ | -70 | dBc/Hz | | Transmitter | 1 kHz | _ | _ | -90 | _ | _ | -90 | _ | _ | -90 | dBc/Hz | | REFCLK Phase
Noise | 10 kHz | | _ | -100 | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | (622 MHz) ⁽²⁰⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | _ | _ | -110 | dBc/Hz | | | ≥1 MHz | _ | _ | -120 | _ | _ | -120 | _ | _ | -120 | dBc/Hz | | Transmitter
REFCLK Phase
Jitter
(100 MHz) (17) | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | _ | _ | 3 | ps
(rms) | | R _{REF} (19) | _ | _ | 1800
±1% | _ | _ | 1800
±1% | _ | _ | 180
0
±1% | _ | Ω | | Transceiver Clock | <u> </u> | | | _ | | | _ | | | _ | | | fixedclk clock frequency | PCIe
Receiver
Detect | _ | 100
or
125 | _ | _ | 100
or
125 | _ | _ | 100
or
125 | _ | MHz | Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 6 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
e 1 | Trar | sceive
Grade | r Speed
2 | Tran | sceive
Grade | er Speed
e 3 | Unit | |---|--|------|------------------|-------------------------------|------|-----------------|-------------------------------|------|-----------------|-------------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Inter-transceiver
block transmitter
channel-to-
channel skew | xN PMA
bonded mode | ı | ı | 500 | _ | ı | 500 | _ | _ | 500 | ps | | CMU PLL | | | | | | | | | | | | | Supported Data
Range | _ | 600 | _ | 12500 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (16) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | ATX PLL | | | | | | | | | | | | | | VCO
post-divider
L=2 | 8000 | | 14100 | 8000 | | 12500 | 8000 | _ | 8500/
10312.5
(24) | Mbps | | Currented Date | L=4 | 4000 | _ | 7050 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | Supported Data
Rate Range | L=8 | 2000 | _ | 3525 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | S | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (16) | _ | | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | fPLL | | | | | | | | | | | | | Supported Data
Range | _ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | | 1 | _ | | 1 | | | μs | Page 24 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 7 of 7) | Symbol/
Description | Conditions | Transceiver Speed
Grade 1 | | Transceiver Speed
Grade 2 | | | Tran | Unit | | | | |----------------------------|------------|------------------------------|-----|------------------------------|-----|-----|------|------|-----|-----|----| | | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | t _{pll_lock} (16) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | #### Notes to Table 23: - (1) Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*. - (2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level. - (3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V. - (4) This supply follows VCCR_GXB. - (5) The device cannot tolerate prolonged operation at this absolute maximum. - (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. - (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode. - (8) The input reference clock frequency options depend on the data rate and the device speed grade. - (9) The line data rate may be limited by PCS-FPGA interface speed grade. - (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain. - (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset. - (12) t_{I TD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high. - (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode. - (14) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode. - (15) $t_{pll\ powerdown}$ is the PLL powerdown minimum pulse width. - (16) t_{nll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset. - (17) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f. - (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}). - (19) For ES devices, R_{REF} is 2000 Ω ±1%. - (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622). - (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (22) Refer to Figure 2. - (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only. - (24) I3YY devices can achieve data rates up to 10.3125 Gbps. - (25) When you use fPLL as a TXPLL of the transceiver. - (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification. - (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition. Page 28 Switching Characteristics Table 27 shows the $\ensuremath{V_{OD}}$ settings for the GX channel. Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$ | Symbol | V _{OD} Setting | V _{op} Value
(mV) | V _{op} Setting | V _{op} Value
(mV) | |---------------------------------------|-------------------------|-------------------------------|-------------------------|-------------------------------| | | 0 (1) | 0 | 32 | 640 | | | 1 (1) | 20 | 33 | 660 | | | 2 (1) | 40 | 34 | 680 | | | 3 (1) | 60 | 35 | 700 | | | 4 (1) | 80 | 36 | 720 | | | 5 ⁽¹⁾ | 100 | 37 | 740 | | | 6 | 120 | 38 | 760 | | | 7 | 140 | 39 | 780 | | | 8 | 160 | 40 | 800 | | | 9 | 180 | 41 | 820 | | | 10 | 200 | 42 | 840 | | | 11 | 220 | 43 | 860 | | | 12 | 240 | 44 | 880 | | | 13 | 260 | 45 | 900 | | | 14 | 280 | 46 | 920 | | V op differential peak to peak | 15 | 300 | 47 | 940 | | typical ⁽³⁾ | 16 | 320 | 48 | 960 | | | 17 | 340 | 49 | 980 | | | 18 | 360 | 50 | 1000 | | | 19 | 380 | 51 | 1020 | | | 20 | 400 | 52 | 1040 | | | 21 | 420 | 53 | 1060 | | | 22 | 440 | 54 | 1080 | | | 23 | 460 | 55 | 1100 | | | 24 | 480 | 56 | 1120 | | | 25 | 500 | 57 | 1140 | | | 26 | 520 | 58 | 1160 | | | 27 | 540 | 59 | 1180 | | | 28 | 560 | 60 | 1200 | | | 29 | 580 | 61 | 1220 | | | 30 | 600 | 62 | 1240 | | | 31 | 620 | 63 | 1260 | ### Note to Table 27: - (1) If TX termination resistance = 100Ω , this VOD setting is illegal. - (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below. - (3) Refer to Figure 2. Page 32 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 3 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceiver
Speed Grade | | | Transceive
peed Grade | | Unit | |---|----------------------------------|-----|----------------------------|--------|-------------|--------------------------|--------|-------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Differential on-chip termination resistors (7) | GT channels | _ | 100 | _ | _ | 100 | _ | Ω | | | 85-Ω setting | _ | 85 ± 30% | _ | _ | 85
± 30% | _ | Ω | | Differential on-chip termination resistors | 100-Ω
setting | _ | 100
± 30% | _ | _ | 100
± 30% | _ | Ω | | for GX channels ⁽¹⁹⁾ | 120-Ω
setting | _ | 120
± 30% | _ | _ | 120
± 30% | _ | Ω | | | 150-Ω
setting | _ | 150
± 30% | _ | _ | 150
± 30% | _ | Ω | | V _{ICM} (AC coupled) | GT channels | _ | 650 | _ | _ | 650 | _ | mV | | | VCCR_GXB =
0.85 V or
0.9 V | _ | 600 | _ | _ | 600 | _ | mV | | VICM (AC and DC coupled) for GX Channels | VCCR_GXB = 1.0 V full bandwidth | _ | 700 | _ | _ | 700 | _ | mV | | | VCCR_GXB = 1.0 V half bandwidth | _ | 750 | _ | _ | 750 | _ | mV | | t _{LTR} ⁽⁹⁾ | _ | _ | _ | 10 | _ | _ | 10 | μs | | t _{LTD} ⁽¹⁰⁾ | _ | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTD_manual} (11) | | 4 | _ | _ | 4 | _ | _ | μs | | t _{LTR_LTD_manual} (12) | | 15 | _ | _ | 15 | _ | _ | μs | | Run Length | GT channels | _ | _ | 72 | _ | _ | 72 | CID | | nuii Leiigiii | GX channels | | | | (8) | | | | | CDR PPM | GT channels | _ | _ | 1000 | _ | _ | 1000 | ± PPM | | ODITITIVI | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 14 | _ | _ | 14 | dB | | equalization
(AC Gain) ⁽⁵⁾ | GX channels | | | | (8) | | | | | Programmable | GT channels | _ | _ | 7.5 | _ | _ | 7.5 | dB | | DC gain ⁽⁶⁾ | GX channels | | | | (8) | | | | | Differential on-chip termination resistors ⁽⁷⁾ | GT channels | | 100 | _ | _ | 100 | _ | Ω | | Transmitter | · ' | | • | | | • | • | | | Supported I/O
Standards | _ | | | 1.4-V | and 1.5-V F | PCML | | | | Data rate
(Standard PCS) | GX channels | 600 | _ | 8500 | 600 | _ | 8500 | Mbps | | Data rate
(10G PCS) | GX channels | 600 | _ | 12,500 | 600 | | 12,500 | Mbps | Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | | |--|--|--------|--------------------------|--------------------------------|--------|--------------------------|--------------------------------|------|--| | Description | | Min | Тур | Max | Min | Тур | Max | | | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | | Differential on-chip | GT channels | _ | 100 | _ | | 100 | <u> </u> | Ω | | | termination resistors | GX channels | | | • | (8) | | <u>'</u> | | | | \/ | GT channels | _ | 500 | _ | _ | 500 | _ | mV | | | V _{OCM} (AC coupled) | GX channels | | | • | (8) | | <u>'</u> | | | | Diag/Fall time | GT channels | _ | 15 | _ | _ | 15 | _ | ps | | | Rise/Fall time | GX channels | | <u>I</u> | | (8) | | | | | | Intra-differential pair
skew | GX channels | (8) | | | | | | | | | Intra-transceiver block
transmitter channel-to-
channel skew | GX channels | | (8) | | | | | | | | Inter-transceiver block
transmitter channel-to-
channel skew | GX channels | (8) | | | | | | | | | CMU PLL | | | | | | | | | | | Supported Data Range | _ | 600 | _ | 12500 | 600 | _ | 8500 | Mbps | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | | ATX PLL | | | | | | | | | | | | VCO post-
divider L=2 | 8000 | _ | 12500 | 8000 | _ | 8500 | Mbps | | | | L=4 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | | Supported Data Rate | L=8 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | | Range for GX Channels | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | | Supported Data Rate
Range for GT Channels | VCO post-
divider L=2 | 9800 | _ | 14025 | 9800 | _ | 12890 | Mbps | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | | fPLL | | | • | | | | | | | | Supported Data Range | _ | 600 | _ | 3250/
3.125 ⁽²³⁾ | 600 | _ | 3250/
3.125 ⁽²³⁾ | Mbps | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | Figure 6 shows the Stratix V DC gain curves for GT channels. # Figure 6. DC Gain Curves for GT Channels # **Transceiver Characterization** This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols: - Interlaken - 40G (XLAUI)/100G (CAUI) - 10GBase-KR - QSGMII - XAUI - SFI - Gigabit Ethernet (Gbe / GIGE) - SPAUI - Serial Rapid IO (SRIO) - CPRI - OBSAI - Hyper Transport (HT) - SATA - SAS - CEI Page 38 Switching Characteristics - XFI - ASI - HiGig/HiGig+ - HiGig2/HiGig2+ - Serial Data Converter (SDC) - GPON - SDI - SONET - Fibre Channel (FC) - PCIe - QPI - SFF-8431 Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols. # **Core Performance Specifications** This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications. # **Clock Tree Specifications** Table 30 lists the clock tree specifications for Stratix V devices. Table 30. Clock Tree Performance for Stratix V Devices (1) | | Performance | | | | | | | | | |------------------------------|--------------------------|--------------------------|--------|------|--|--|--|--|--| | Symbol | C1, C2, C2L, I2, and I2L | C3, I3, I3L, and
I3YY | C4, I4 | Unit | | | | | | | Global and
Regional Clock | 717 | 650 | 580 | MHz | | | | | | | Periphery Clock | 550 | 500 | 500 | MHz | | | | | | ### Note to Table 30: (1) The Stratix V ES devices are limited to 600 MHz core clock tree performance. Table 31. PLL Specifications for Stratix V Devices (Part 3 of 3) | | Symbol | Parameter | Min | Тур | Max | Unit | |---|--------|--|--------|------|-------|------| | f | RES | Resolution of VCO frequency (f _{INPFD} = 100 MHz) | 390625 | 5.96 | 0.023 | Hz | #### Notes to Table 31: - (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard. - (2) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL. - (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps. - (4) f_{REF} is fIN/N when N = 1. - (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 44 on page 52. - (6) The cascaded PLL specification is only applicable with the following condition: - a. Upstream PLL: 0.59Mhz \le Upstream PLL BW < 1 MHz - b. Downstream PLL: Downstream PLL BW > 2 MHz - (7) High bandwidth PLL settings are not supported in external feedback mode. - (8) The external memory interface clock output jitter specifications use a different measurement method, which is available in Table 42 on page 50. - (9) The VCO frequency reported by the Quartus II software in the PLL Usage Summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification. - (10) This specification only covers fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05 0.95 must be \geq 1000 MHz, while f_{VCO} for fractional value range 0.20 0.80 must be \geq 1200 MHz. - (11) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05-0.95 must be ≥ 1000 MHz. - (12) This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20-0.80 must be ≥ 1200 MHz. # **DSP Block Specifications** Table 32 lists the Stratix V DSP block performance specifications. Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 1 of 2) | | | | F | Peformano | e | | | | |--|-----|---------|------------|-----------|------------------|-----|-----|------| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | Modes ı | ısing one | DSP | | | | | | Three 9 x 9 | 600 | 600 | 600 | 480 | 480 | 420 | 420 | MHz | | One 18 x 18 | 600 | 600 | 600 | 480 | 480 | 420 | 400 | MHz | | Two partial 18 x 18 (or 16 x 16) | 600 | 600 | 600 | 480 | 480 | 420 | 400 | MHz | | One 27 x 27 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One 36 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One sum of two 18 x 18(One sum of 2 16 x 16) | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One sum of square | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One 18 x 18 plus 36 (a x b) + c | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | | | Modes u | sing two I |)SPs | | | | • | | Three 18 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One sum of four 18 x 18 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | One sum of two 27 x 27 | 465 | 465 | 450 | 380 | 380 | 300 | 290 | MHz | | One sum of two 36 x 18 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | | One complex 18 x 18 | 500 | 500 | 500 | 400 | 400 | 350 | 350 | MHz | | One 36 x 36 | 475 | 475 | 475 | 380 | 380 | 300 | 300 | MHz | Page 42 Switching Characteristics Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 2 of 2) | | | Peformance | | | | | | | | |-----------------------|-----|------------|-----------|------|------------------|-----|-----|------|--| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | | Modes us | ing Three | DSPs | • | | | | | | One complex 18 x 25 | 425 | 425 | 415 | 340 | 340 | 275 | 265 | MHz | | | Modes using Four DSPs | | | | | | | | | | | One complex 27 x 27 | 465 | 465 | 465 | 380 | 380 | 300 | 290 | MHz | | # **Memory Block Specifications** Table 33 lists the Stratix V memory block specifications. Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 1 of 2) | | | Resources Used | | Performance | | | | | | | | |--------|------------------------------------|----------------|--------|-------------|------------|------------|-----|---------|---------------------|-----|------| | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C 3 | C4 | 12, I2L | 13,
13L,
13YY | 14 | Unit | | | Single port, all supported widths | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | MLAB | Simple dual-port,
x32/x64 depth | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | IVILAD | Simple dual-port, x16 depth (3) | 0 | 1 | 675 | 675 | 533 | 400 | 675 | 533 | 400 | MHz | | | ROM, all supported widths | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 2 of 4) | Combal | Conditions | | C1 | | C2, | C2L, I | 2, I2L | C3, | I3, I3I | ., I3YY | | C4,I4 | 4 | II.a.i.k | |---|--|-----|-----|------|-----|--------|--------|-----|---------|---------|-----|-------|------|----------| | Symbol | Collultions | Min | Тур | Max | Unit | | Transmitter | | | | | | | | | | | | | | | | | SERDES factor J
= 3 to 10 (9), (11),
(12), (13), (14), (15),
(16) | (6) | _ | 1600 | (6) | _ | 1434 | (6) | _ | 1250 | (6) | _ | 1050 | Mbps | | True
Differential
I/O Standards | SERDES factor J ≥ 4 LVDS TX with DPA (12), (14), (15), (16) | (6) | _ | 1600 | (6) | _ | 1600 | (6) | _ | 1600 | (6) | | 1250 | Mbps | | - f _{HSDR} (data
rate) | SERDES factor J
= 2,
uses DDR
Registers | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | | SERDES factor J
= 1,
uses SDR
Register | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | (6) | _ | (7) | Mbps | | Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (10) | SERDES factor J
= 4 to 10 (17) | (6) | _ | 1100 | (6) | _ | 1100 | (6) | _ | 840 | (6) | | 840 | Mbps | | t _{x Jitter} - True
Differential | Total Jitter for
Data Rate
600 Mbps -
1.25 Gbps | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | ps | | I/O Standards | Total Jitter for
Data Rate
< 600 Mbps | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | UI | | t _{x Jitter} -
Emulated
Differential
I/O Standards | Total Jitter for
Data Rate
600 Mbps - 1.25
Gbps | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | _ | _ | 325 | ps | | with Three
External
Output
Resistor
Network | Total Jitter for
Data Rate
< 600 Mbps | _ | _ | 0.2 | _ | _ | 0.2 | _ | _ | 0.2 | _ | _ | 0.25 | UI | Table 38. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate \geq 1.25 Gbps | Jitter F | Jitter Frequency (Hz) | | | | | |----------|-----------------------|--------|--|--|--| | F1 | 10,000 | 25.000 | | | | | F2 | 17,565 | 25.000 | | | | | F3 | 1,493,000 | 0.350 | | | | | F4 | 50,000,000 | 0.350 | | | | Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps. Figure 9. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate < 1.25 Gbps # DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices. Table 39. DLL Range Specifications for Stratix V Devices (1) | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |---------|------------------|-------------------|---------|------| | 300-933 | 300-933 | 300-890 | 300-890 | MHz | ### Note to Table 39: (1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL. Table 40 lists the DQS phase offset delay per stage for Stratix V devices. Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 1 of 2) | Speed Grade | Min | Max | Unit | |------------------|-----|-----|------| | C1 | 8 | 14 | ps | | C2, C2L, I2, I2L | 8 | 14 | ps | | C3,I3, I3L, I3YY | 8 | 15 | ps | Configuration Specification Page 59 Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2) #### Notes to Figure 13: - (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55. - (2) The beginning of this waveform shows the device in user mode. In user mode, nconfig, nstatus, and conf_done are at logic high levels. When nconfig is pulled low, a reconfiguration cycle begins. - (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay. - (4) After power-up, before and during configuration, CONF DONE is low. - (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (6) "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55. - (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge. - (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Configuration Specification Page 61 # **Active Serial Configuration Timing** Table 52 lists the DCLK frequency specification in the AS configuration scheme. Table 52. DCLK Frequency Specification in the AS Configuration Scheme (1), (2) | Minimum | Typical | Maximum | Unit | |---------|---------|---------|------| | 5.3 | 7.9 | 12.5 | MHz | | 10.6 | 15.7 | 25.0 | MHz | | 21.3 | 31.4 | 50.0 | MHz | | 42.6 | 62.9 | 100.0 | MHz | #### Notes to Table 52: - (1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source. - (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz. Figure 14 shows the single-device configuration setup for an AS ×1 mode. Figure 14. AS Configuration Timing # Notes to Figure 14: - (1) If you are using AS ×4 mode, this signal represents the AS_DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle. - (2) The initialization clock can be from internal oscillator or ${\tt CLKUSR}$ pin. - (3) After the option bit to enable the $INIT_DONE$ pin is configured into the device, the $INIT_DONE$ goes low. Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices. Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 1 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |-----------------|---|---------|---------|-------| | t _{CO} | DCLK falling edge to AS_DATAO/ASDO output | _ | 2 | ns | | t _{SU} | Data setup time before falling edge on DCLK | 1.5 | _ | ns | | t _H | Data hold time after falling edge on DCLK | 0 | _ | ns | Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. # **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) #### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Configuration Specification Page 63 Table 54 lists the PS configuration timing parameters for Stratix V devices. Table 54. PS Timing Parameters for Stratix V Devices | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nCONFIG low to CONF_DONE low | _ | 600 | ns | | t _{CF2ST0} | nCONFIG low to nSTATUS low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽¹⁾ | μS | | t _{CF2ST1} | nCONFIG high to nSTATUS high | _ | 1,506 ⁽²⁾ | μS | | t _{CF2CK} (5) | nCONFIG high to first rising edge on DCLK | 1,506 | | μS | | t _{ST2CK} (5) | nstatus high to first rising edge of DCLK | 2 | _ | μS | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | 0 | _ | ns | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f _{MAX} | DCLK frequency | _ | 125 | MHz | | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μ\$ | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 × CLKUSR period) $^{(4)}$ | _ | _ | ### Notes to Table 54: - (1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width. - (2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low. - (3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section. - (5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. # Initialization Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency. Table 55. Initialization Clock Source Option and the Maximum Frequency | Initialization Clock
Source | Configuration Schemes | Maximum
Frequency | Minimum Number of Clock
Cycles ⁽¹⁾ | |--------------------------------|-----------------------|----------------------|--| | Internal Oscillator | AS, PS, FPP | 12.5 MHz | | | CLKUSR | AS, PS, FPP (2) | 125 MHz | 8576 | | DCLK | PS, FPP | 125 MHz | | ### Notes to Table 55: - $(1) \quad \text{The minimum number of clock cycles required for device initialization}.$ - (2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box. Page 66 Glossary Table 60. Glossary (Part 2 of 4) | Letter | Subject | Definitions | | |------------------|-----------------------------------|--|--| | G | | | | | Н | _ | - | | | 1 | | | | | J | J
TAG Timing
Specifications | High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS TDI TCK TJPSU TJ | | | K
L
M
N | _ | | | | P | PLL
Specifications | Diagram of PLL Specifications (1) CLKOUT Pins Four Core Clock Reconfigurable in User Mode External Feedback Note: (1) Core Clock can only be fed by dedicated clock input pins or PLL outputs. | | | Q | _ | - | | | R | R _L | Receiver differential input discrete resistor (external to the Stratix V device). | | | | | 1 | |