Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 128300 | | Number of Logic Elements/Cells | 340000 | | Total RAM Bits | 19456000 | | Number of I/O | 600 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxma3k3f40c2ln | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Electrical Characteristics Page 7 Table 7. Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, GS, and GT Devices (Part 2 of 2) | Symbol | Description | Devices | Minimum ⁽⁴⁾ | Typical | Maximum ⁽⁴⁾ | Unit | |-----------------------|--|------------|------------------------|---------|------------------------|------| | | | | 0.82 | 0.85 | 0.88 | | | V _{CCR_GXBR} | Receiver analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | neceiver analog power supply (right side) | ux, us, u1 | 0.97 | 1.0 | 1.03 | v | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCR_GTBR} | Receiver analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBL} | Transmitter analog newer supply (left side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | | Transmitter analog power supply (left side) | | 0.97 | 1.0 | 1.03 | | | | | | 1.03 | 1.05 | 1.07 | | | | | | 0.82 | 0.85 | 0.88 | | | V _{CCT_GXBR} | Transmitter analog power supply (right side) | GX, GS, GT | 0.87 | 0.90 | 0.93 | V | | (2) | Transmitter analog power supply (right side) | রম, রহ, র। | 0.97 | 1.0 | 1.03 | \ \ | | | | | 1.03 | 1.05 | 1.07 | | | V _{CCT_GTBR} | Transmitter analog power supply for GT channels (right side) | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCL_GTBR} | Transmitter clock network power supply | GT | 1.02 | 1.05 | 1.08 | V | | V _{CCH_GXBL} | Transmitter output buffer power supply (left side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | | V _{CCH_GXBR} | Transmitter output buffer power supply (right side) | GX, GS, GT | 1.425 | 1.5 | 1.575 | V | #### Notes to Table 7: ⁽¹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V. ⁽²⁾ Refer to Table 8 to select the correct power supply level for your design. ⁽³⁾ When using ATX PLLs, the supply must be 3.0 V. ⁽⁴⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Page 8 Electrical Characteristics Table 8 shows the transceiver power supply voltage requirements for various conditions. **Table 8. Transceiver Power Supply Voltage Requirements** | Conditions | Core Speed Grade | VCCR_GXB & VCCT_GXB (2) | VCCA_GXB | VCCH_GXB | Unit | |--|-----------------------------------|-------------------------|----------|----------|------| | If BOTH of the following conditions are true: | | 4.05 | | | | | ■ Data rate > 10.3 Gbps. | All | 1.05 | | | | | ■ DFE is used. | | | | | | | If ANY of the following conditions are true (1): | | | 3.0 | | | | ATX PLL is used. | | | | | | | ■ Data rate > 6.5Gbps. | All | 1.0 | | | | | ■ DFE (data rate ≤
10.3 Gbps), AEQ, or
EyeQ feature is used. | | | | 1.5 | V | | If ALL of the following | C1, C2, I2, and I3YY | 0.90 | 2.5 | | | | conditions are true: ATX PLL is not used. | | | | | | | ■ Data rate ≤ 6.5Gbps. | C2L, C3, C4, I2L, I3, I3L, and I4 | 0.85 | 2.5 | | | | DFE, AEQ, and EyeQ are
not used. | | | | | | ### Notes to Table 8: - (1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions. - (2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply. ## **DC Characteristics** This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications. ## **Supply Current** Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use. For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*. Electrical Characteristics Page 11 | | | | Resistance Tolerance | | | | | | |----------------------|--|-----------------------------------|----------------------|-------|-----------------|--------|------|--| | Symbol | Description | Conditions | C1 | C2,I2 | C3, I3,
I3YY | C4, I4 | Unit | | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.8 and 1.5 V | ±30 | ±30 | ±40 | ±40 | % | | | 50-Ω R _S | Internal series termination without calibration (50- Ω setting) | V _{CCIO} = 1.2 V | ±35 | ±35 | ±50 | ±50 | % | | | 100-Ω R _D | Internal differential termination (100-Ω setting) | V _{CCPD} = 2.5 V | ±25 | ±25 | ±25 | ±25 | % | | Calibration accuracy for the calibrated series and parallel OCTs are applicable at the moment of calibration. When voltage and temperature conditions change after calibration, the tolerance may change. OCT calibration is automatically performed at power-up for OCT-enabled I/Os. Table 13 lists the OCT variation with temperature and voltage after power-up calibration. Use Table 13 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration. Equation 1. OCT Variation Without Recalibration for Stratix V Devices (1), (2), (3), (4), (5), (6) $$R_{OCT} = R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$ ## Notes to Equation 1: - (1) The R_{OCT} value shows the range of OCT resistance with the variation of temperature and V_{CCIO} . - (2) R_{SCAL} is the OCT resistance value at power-up. - (3) ΔT is the variation of temperature with respect to the temperature at power-up. - (4) ΔV is the variation of voltage with respect to the V_{CCIO} at power-up. - (5) dR/dT is the percentage change of R_{SCAL} with temperature. - (6) dR/dV is the percentage change of R_{SCAL} with voltage. Table 13 lists the on-chip termination variation after power-up calibration. Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 1 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | | |--------|--|-----------------------|---------|------|--| | | | 3.0 | 0.0297 | | | | | 007 | 2.5 | 0.0344 | | | | dR/dV | OCT variation with voltage without recalibration | 1.8 | 0.0499 | %/mV | | | | | 1.5 | 0.0744 | | | | | | 1.2 | 0.1241 | | | Page 12 Electrical Characteristics Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | |--------|--|-----------------------|---------|------| | | | 3.0 | 0.189 | | | | | 2.5 | 0.208 | | | dR/dT | OCT variation with temperature without recalibration | 1.8 | 0.266 | %/°C | | | Willout recalibration | 1.5 | 0.273 | 1 | | | | 1.2 | 0.317 | | ### Note to Table 13: (1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$ ## **Pin Capacitance** Table 14 lists the Stratix V device family pin capacitance. **Table 14. Pin Capacitance for Stratix V Devices** | Symbol | Description | Value | Unit | |--------------------|--|-------|------| | C _{IOTB} | Input capacitance on the top and bottom I/O pins | 6 | pF | | C _{IOLR} | Input capacitance on the left and right I/O pins | 6 | pF | | C _{OUTFB} | Input capacitance on dual-purpose clock output and feedback pins | 6 | pF | ### **Hot Socketing** Table 15 lists the hot socketing specifications for Stratix V devices. Table 15. Hot Socketing Specifications for Stratix V Devices | Symbol | Description | Maximum | |---------------------------|--|---------------------| | I _{IOPIN (DC)} | DC current per I/O pin | 300 μΑ | | I _{IOPIN (AC)} | AC current per I/O pin | 8 mA ⁽¹⁾ | | I _{XCVR-TX (DC)} | DC current per transceiver transmitter pin | 100 mA | | I _{XCVR-RX (DC)} | DC current per transceiver receiver pin | 50 mA | ## Note to Table 15: (1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate. Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 2 of 7) | Symbol/
Description | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | Transceiver Speed
Grade 2 | | | Transceiver Speed
Grade 3 | | | |---|--|---|------------------|--------------------|------|------------------------------|-----------------------|------------------|------------------------------|------|-------------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Spread-spectrum
downspread | PCle | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | % | | On-chip
termination
resistors (21) | _ | _ | 100 | _ | _ | 100 | _ | _ | 100 | _ | Ω | | Absolute V _{MAX} ⁽⁵⁾ | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | | RX reference clock pin | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | | | Absolute V _{MIN} | _ | -0.4 | | _ | -0.4 | _ | | -0.4 | _ | 1 | V | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | | 1600 | 200 | _ | 1600 | mV | | V _{ICM} (AC | Dedicated
reference
clock pin | 1050/1000/900/850 ⁽²⁾ 1050/1000/900/850 ⁽²⁾ 1050/1000/900/850 | | | | | 00/850 ⁽²⁾ | mV | | | | | coupled) ⁽³⁾ | RX reference clock pin | 1. | .0/0.9/0 | .85 ⁽⁴⁾ | 1. | 0/0.9/0 | .85 ⁽⁴⁾ | 1.0/0.9/0.85 (4) | | | V | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | 250 | _ | 550 | mV | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | _ | _ | -70 | dBc/Hz | | Transmitter | 1 kHz | _ | _ | -90 | _ | _ | -90 | _ | _ | -90 | dBc/Hz | | REFCLK Phase
Noise | 10 kHz | | _ | -100 | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | (622 MHz) ⁽²⁰⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | _ | _ | -110 | dBc/Hz | | | ≥1 MHz | _ | _ | -120 | _ | _ | -120 | _ | _ | -120 | dBc/Hz | | Transmitter
REFCLK Phase
Jitter
(100 MHz) (17) | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | _ | _ | 3 | ps
(rms) | | R _{REF} (19) | _ | _ | 1800
±1% | _ | _ | 1800
±1% | _ | _ | 180
0
±1% | _ | Ω | | Transceiver Clock | <u> </u> | | | _ | | | _ | | | _ | | | fixedclk clock frequency | PCIe
Receiver
Detect | _ | 100
or
125 | _ | _ | 100
or
125 | _ | _ | 100
or
125 | _ | MHz | Page 22 Switching Characteristics Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | ed Transceiver Speed
Grade 2 | | Trai | Unit | | | | |---|---|-----|------------------|--------------|---------------------------------|-----------------|-------------|------|-----------------|--------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | DC Gain
Setting = 0 | _ | 0 | _ | _ | 0 | _ | _ | 0 | _ | dB | | | DC Gain
Setting = 1 | _ | 2 | _ | _ | 2 | _ | _ | 2 | _ | dB | | Programmable
DC gain | DC Gain
Setting = 2 | | 4 | _ | _ | 4 | | _ | 4 | _ | dB | | | DC Gain
Setting = 3 | | 6 | | _ | 6 | _ | _ | 6 | _ | dB | | | DC Gain
Setting = 4 | _ | 8 | | _ | 8 | | _ | 8 | _ | dB | | Transmitter | | | | | | | | | | | | | Supported I/O
Standards | _ | | | | - | 1.4-V ar | nd 1.5-V PC | ML | | | | | Data rate
(Standard PCS) | _ | 600 | _ | 12200 | 600 | | 12200 | 600 | _ | 8500/
10312.5
(24) | Mbps | | Data rate
(10G PCS) | _ | 600 | _ | 14100 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | | 85-Ω
setting | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | _ | 85 ± 20% | _ | Ω | | Differential on- | 100-Ω
setting | | 100
±
20% | _ | _ | 100
±
20% | | _ | 100
±
20% | _ | Ω | | chip termination resistors | 120-Ω
setting | _ | 120
±
20% | _ | _ | 120
±
20% | _ | _ | 120
±
20% | _ | Ω | | | 150-Ω
setting | _ | 150
±
20% | _ | _ | 150
±
20% | _ | _ | 150
±
20% | _ | Ω | | V _{OCM} (AC coupled) | 0.65-V
setting | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | V _{OCM} (DC coupled) | _ | _ | 650 | _ | _ | 650 | _ | _ | 650 | _ | mV | | Rise time (7) | 20% to 80% | 30 | _ | 160 | 30 | _ | 160 | 30 | | 160 | ps | | Fall time ⁽⁷⁾ | 80% to 20% | 30 | _ | 160 | 30 | | 160 | 30 | _ | 160 | ps | | Intra-differential
pair skew | Tx V _{CM} = 0.5 V and slew rate of 15 ps | _ | _ | 15 | _ | _ | 15 | _ | _ | 15 | ps | | Intra-transceiver
block transmitter
channel-to-
channel skew | x6 PMA
bonded mode | _ | _ | 120 | _ | _ | 120 | _ | _ | 120 | ps | Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 6 of 7) | Symbol/
Description | Conditions | Trai | nsceive
Grade | r Speed
e 1 | Trar | sceive
Grade | r Speed
2 | Tran | sceive
Grade | er Speed
e 3 | Unit | |---|--|------|------------------|-------------------------------|------|-----------------|-------------------------------|------|-----------------|-------------------------------|------| | | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Inter-transceiver
block transmitter
channel-to-
channel skew | xN PMA
bonded mode | ı | ı | 500 | _ | ı | 500 | _ | _ | 500 | ps | | CMU PLL | | | | | | | | | | | | | Supported Data
Range | _ | 600 | _ | 12500 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (16) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | ATX PLL | | | | | | | | | | | | | | VCO
post-divider
L=2 | 8000 | | 14100 | 8000 | | 12500 | 8000 | _ | 8500/
10312.5
(24) | Mbps | | Currented Date | L=4 | 4000 | _ | 7050 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | Supported Data
Rate Range | L=8 | 2000 | _ | 3525 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | G | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (16) | _ | | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | fPLL | | | | | | | | | | | | | Supported Data
Range | _ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | | 1 | _ | | 1 | | | μs | Page 28 Switching Characteristics Table 27 shows the $\ensuremath{V_{OD}}$ settings for the GX channel. Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$ | Symbol | V _{OD} Setting | V _{op} Value
(mV) | V _{op} Setting | V _{op} Value
(mV) | |---------------------------------------|-------------------------|-------------------------------|-------------------------|-------------------------------| | | 0 (1) | 0 | 32 | 640 | | | 1 (1) | 20 | 33 | 660 | | | 2 (1) | 40 | 34 | 680 | | | 3 (1) | 60 | 35 | 700 | | | 4 (1) | 80 | 36 | 720 | | | 5 ⁽¹⁾ | 100 | 37 | 740 | | | 6 | 120 | 38 | 760 | | | 7 | 140 | 39 | 780 | | | 8 | 160 | 40 | 800 | | | 9 | 180 | 41 | 820 | | | 10 | 200 | 42 | 840 | | | 11 | 220 | 43 | 860 | | | 12 | 240 | 44 | 880 | | | 13 | 260 | 45 | 900 | | | 14 | 280 | 46 | 920 | | V op differential peak to peak | 15 | 300 | 47 | 940 | | typical ⁽³⁾ | 16 | 320 | 48 | 960 | | | 17 | 340 | 49 | 980 | | | 18 | 360 | 50 | 1000 | | | 19 | 380 | 51 | 1020 | | | 20 | 400 | 52 | 1040 | | | 21 | 420 | 53 | 1060 | | | 22 | 440 | 54 | 1080 | | | 23 | 460 | 55 | 1100 | | | 24 | 480 | 56 | 1120 | | | 25 | 500 | 57 | 1140 | | | 26 | 520 | 58 | 1160 | | | 27 | 540 | 59 | 1180 | | | 28 | 560 | 60 | 1200 | | | 29 | 580 | 61 | 1220 | | | 30 | 600 | 62 | 1240 | | | 31 | 620 | 63 | 1260 | ### Note to Table 27: - (1) If TX termination resistance = 100Ω , this VOD setting is illegal. - (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below. - (3) Refer to Figure 2. Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | |--|--|--------|--------------------------|--------------------------------|--------|--------------------------|--------------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | Differential on-chip | GT channels | _ | 100 | _ | | 100 | <u> </u> | Ω | | termination resistors | GX channels | | | • | (8) | | <u>'</u> | | | \/ | GT channels | _ | 500 | _ | _ | 500 | _ | mV | | V _{OCM} (AC coupled) | GX channels | | | • | (8) | | <u>'</u> | | | Diag/Fall time | GT channels | _ | 15 | _ | _ | 15 | _ | ps | | Rise/Fall time | GX channels | | <u>I</u> | | (8) | | | | | Intra-differential pair
skew | GX channels | | | | (8) | | | | | Intra-transceiver block
transmitter channel-to-
channel skew | GX channels | | | | (8) | | | | | Inter-transceiver block
transmitter channel-to-
channel skew | GX channels | | | | (8) | | | | | CMU PLL | | | | | | | | | | Supported Data Range | _ | 600 | _ | 12500 | 600 | _ | 8500 | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | ATX PLL | | | | | | | | | | | VCO post-
divider L=2 | 8000 | _ | 12500 | 8000 | _ | 8500 | Mbps | | | L=4 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | Supported Data Rate | L=8 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | Range for GX Channels | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | Supported Data Rate
Range for GT Channels | VCO post-
divider L=2 | 9800 | _ | 14025 | 9800 | _ | 12890 | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | fPLL | | | • | | | | | | | Supported Data Range | _ | 600 | _ | 3250/
3.125 ⁽²³⁾ | 600 | _ | 3250/
3.125 ⁽²³⁾ | Mbps | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | Page 34 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 5 of 5) (1) | Symbol/
Description | Conditions | | Transceiver
Speed Grade 2 | | | Transceiver
Speed Grade 3 | | | |----------------------------|------------|-----|------------------------------|-----|-----|------------------------------|-----|----| | Description | | Min | Тур | Max | Min | Тур | Max | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | #### Notes to Table 28: - (1) Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*. - (2) The reference clock common mode voltage is equal to the VCCR_GXB power supply level. - (3) The device cannot tolerate prolonged operation at this absolute maximum. - (4) The differential eye opening specification at the receiver input pins assumes that receiver equalization is disabled. If you enable receiver equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. - (5) Refer to Figure 5 for the GT channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain. - (6) Refer to Figure 6 for the GT channel DC gain curves. - (7) CFP2 optical modules require the host interface to have the receiver data pins differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (8) Specifications for this parameter are the same as for Stratix V GX and GS devices. See Table 23 for specifications. - (9) t_{LTB} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset. - (10) tLTD is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high. - (11) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode. - (12) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode. - (13) tpll powerdown is the PLL powerdown minimum pulse width. - (14) tpll lock is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset. - (15) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f. - (16) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}). - (17) For ES devices, RREF is 2000 Ω ±1%. - (18) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622). - (19) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices. - (20) Refer to Figure 4. - (21) For oversampling design to support data rates less than the minimum specification, the CDR needs to be in LTR mode only. - (22) This supply follows VCCR_GXB for both GX and GT channels. - (23) When you use fPLL as a TXPLL of the transceiver. # **PLL Specifications** Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85°C) and the industrial junction temperature range (-40° to 100° C). Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3) | Symbol | Parameter | Min | Тур | Max | Unit | |---------------------------------|--|-----|-----|--------------------|------| | | Input clock frequency (C1, C2, C2L, I2, and I2L speed grades) | 5 | _ | 800 (1) | MHz | | f _{IN} | Input clock frequency (C3, I3, I3L, and I3YY speed grades) | 5 | _ | 800 (1) | MHz | | | Input clock frequency (C4, I4 speed grades) | 5 | _ | 650 ⁽¹⁾ | MHz | | f _{INPFD} | Input frequency to the PFD | 5 | _ | 325 | MHz | | FINPFD | Fractional Input clock frequency to the PFD | 50 | _ | 160 | MHz | | | PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades) | 600 | _ | 1600 | MHz | | f _{vco} ⁽⁹⁾ | PLL VCO operating range (C3, I3, I3L, I3YY speed grades) | 600 | _ | 1600 | MHz | | | PLL VCO operating range (C4, I4 speed grades) | 600 | _ | 1300 | MHz | | EINDUTY | Input clock or external feedback clock input duty cycle | 40 | _ | 60 | % | | | Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades) | _ | _ | 717 (2) | MHz | | Гоит | Output frequency for an internal global or regional clock (C3, I3, I3L speed grades) | _ | _ | 650 ⁽²⁾ | MHz | | | Output frequency for an internal global or regional clock (C4, I4 speed grades) | _ | _ | 580 ⁽²⁾ | MHz | | | Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades) | _ | _ | 800 (2) | MHz | | f _{OUT_EXT} | Output frequency for an external clock output (C3, I3, I3L speed grades) | _ | _ | 667 (2) | MHz | | | Output frequency for an external clock output (C4, I4 speed grades) | _ | _ | 553 ⁽²⁾ | MHz | | t _{оитриту} | Duty cycle for a dedicated external clock output (when set to 50%) | 45 | 50 | 55 | % | | FCOMP | External feedback clock compensation time | _ | _ | 10 | ns | | DYCONFIGCLK | Dynamic Configuration Clock used for mgmt_clk and scanclk | _ | _ | 100 | MHz | | Lock | Time required to lock from the end-of-device configuration or deassertion of areset | _ | _ | 1 | ms | | DLOCK | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) | _ | _ | 1 | ms | | | PLL closed-loop low bandwidth | | 0.3 | | MHz | | :
CLBW | PLL closed-loop medium bandwidth | | 1.5 | | MHz | | | PLL closed-loop high bandwidth (7) | _ | 4 | _ | MHz | | PLL_PSERR | Accuracy of PLL phase shift | | _ | ±50 | ps | | ARESET | Minimum pulse width on the areset signal | 10 | _ | _ | ns | Page 42 Switching Characteristics Table 32. Block Performance Specifications for Stratix V DSP Devices (Part 2 of 2) | | | Peformance | | | | | | | |-----------------------|-----|------------|-----------|------|------------------|-----|-----|------| | Mode | C1 | C2, C2L | 12, 12L | C3 | 13, 13L,
13YY | C4 | 14 | Unit | | | | Modes us | ing Three | DSPs | • | | | | | One complex 18 x 25 | 425 | 425 | 415 | 340 | 340 | 275 | 265 | MHz | | Modes using Four DSPs | | | | | | | | | | One complex 27 x 27 | 465 | 465 | 465 | 380 | 380 | 300 | 290 | MHz | # **Memory Block Specifications** Table 33 lists the Stratix V memory block specifications. Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 1 of 2) | | | Resour | ces Used | Performance | | | | | | | | |--------|------------------------------------|--------|----------|-------------|------------|------------|-----|---------|---------------------|-----|------| | Memory | Mode | ALUTS | Memory | C1 | C2,
C2L | C 3 | C4 | 12, I2L | 13,
13L,
13YY | 14 | Unit | | | Single port, all supported widths | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | MLAB | Simple dual-port,
x32/x64 depth | 0 | 1 | 450 | 450 | 400 | 315 | 450 | 400 | 315 | MHz | | IVILAD | Simple dual-port, x16 depth (3) | 0 | 1 | 675 | 675 | 533 | 400 | 675 | 533 | 400 | MHz | | | ROM, all supported widths | 0 | 1 | 600 | 600 | 500 | 450 | 600 | 500 | 450 | MHz | Page 48 Switching Characteristics Figure 7 shows the dynamic phase alignment (DPA) lock time specifications with the DPA PLL calibration option enabled. Figure 7. DPA Lock Time Specification with DPA PLL Calibration Enabled Table 37 lists the DPA lock time specifications for Stratix V devices. Table 37. DPA Lock Time Specifications for Stratix V GX Devices Only (1), (2), (3) | Standard | Training Pattern | Number of Data
Transitions in One
Repetition of the
Training Pattern | Number of
Repetitions per 256
Data Transitions ⁽⁴⁾ | Maximum | |--------------------|----------------------|---|---|----------------------| | SPI-4 | 00000000001111111111 | 2 | 128 | 640 data transitions | | Parallel Rapid I/O | 00001111 | 2 | 128 | 640 data transitions | | Faranei napiu 1/0 | 10010000 | 4 | 64 | 640 data transitions | | Miscellaneous | 10101010 | 8 | 32 | 640 data transitions | | IVIISCEIIAITEOUS | 01010101 | 8 | 32 | 640 data transitions | #### Notes to Table 37: - (1) The DPA lock time is for one channel. - (2) One data transition is defined as a 0-to-1 or 1-to-0 transition. - (3) The DPA lock time stated in this table applies to both commercial and industrial grade. - (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions. Figure 8 shows the **LVDS** soft-clock data recovery (CDR)/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Table 38 lists the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate \geq 1.25 Gbps. Figure 8. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate \geq 1.25 Gbps LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification 25 8.5 0.35 0.1 F1 F2 F3 F4 Jitter Frequency (Hz) Table 38. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate \geq 1.25 Gbps | Jitter F | requency (Hz) | Sinusoidal Jitter (UI) | |----------|---------------|------------------------| | F1 | 10,000 | 25.000 | | F2 | 17,565 | 25.000 | | F3 | 1,493,000 | 0.350 | | F4 | 50,000,000 | 0.350 | Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps. Figure 9. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate < 1.25 Gbps ## DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices. Table 39. DLL Range Specifications for Stratix V Devices (1) | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |---------|------------------|-------------------|---------|------| | 300-933 | 300-933 | 300-890 | 300-890 | MHz | ### Note to Table 39: (1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL. Table 40 lists the DQS phase offset delay per stage for Stratix V devices. Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 1 of 2) | Speed Grade | Min | Max | Unit | |------------------|-----|-----|------| | C1 | 8 | 14 | ps | | C2, C2L, I2, I2L | 8 | 14 | ps | | C3,I3, I3L, I3YY | 8 | 15 | ps | Configuration Specification Page 57 ## FPP Configuration Timing when DCLK-to-DATA [] = 1 Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1. Figure 12. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1 (1), (2) ### Notes to Figure 12: - (1) Use this timing waveform when the DCLK-to-DATA[] ratio is 1. - (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (3) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (4) After power-up, before and during configuration, CONF DONE is low. - (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required. - (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings. - (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (8) After the option bit to enable the <code>INIT_DONE</code> pin is configured into the device, the <code>INIT_DONE</code> goes low. Configuration Specification Page 61 # **Active Serial Configuration Timing** Table 52 lists the DCLK frequency specification in the AS configuration scheme. Table 52. DCLK Frequency Specification in the AS Configuration Scheme (1), (2) | Minimum | Typical | Maximum | Unit | |---------|---------|---------|------| | 5.3 | 7.9 | 12.5 | MHz | | 10.6 | 15.7 | 25.0 | MHz | | 21.3 | 31.4 | 50.0 | MHz | | 42.6 | 62.9 | 100.0 | MHz | #### Notes to Table 52: - (1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source. - (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz. Figure 14 shows the single-device configuration setup for an AS ×1 mode. Figure 14. AS Configuration Timing ## Notes to Figure 14: - (1) If you are using AS ×4 mode, this signal represents the AS_DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle. - (2) The initialization clock can be from internal oscillator or ${\tt CLKUSR}$ pin. - (3) After the option bit to enable the $INIT_DONE$ pin is configured into the device, the $INIT_DONE$ goes low. Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices. Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 1 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |-----------------|---|---------|---------|-------| | t _{CO} | DCLK falling edge to AS_DATAO/ASDO output | _ | 2 | ns | | t _{SU} | Data setup time before falling edge on DCLK | 1.5 | _ | ns | | t _H | Data hold time after falling edge on DCLK | 0 | _ | ns | Page 64 I/O Timing # **Remote System Upgrades** Table 56 lists the timing parameter specifications for the remote system upgrade circuitry. **Table 56. Remote System Upgrade Circuitry Timing Specifications** | Parameter | Minimum | Maximum | Unit | | |------------------------------|---------|---------|------|--| | t _{RU_nCONFIG} (1) | 250 | _ | ns | | | t _{RU_nRSTIMER} (2) | 250 | _ | ns | | #### Notes to Table 56: - (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ## **User Watchdog Internal Circuitry Timing Specification** Table 57 lists the operating range of the 12.5-MHz internal oscillator. Table 57. 12.5-MHz Internal Oscillator Specifications | Minimum | Typical | Maximum | Units | | |---------|---------|---------|-------|--| | 5.3 | 7.9 | 12.5 | MHz | | # I/O Timing Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer. Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route. You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page. # **Programmable IOE Delay** Table 58 lists the Stratix V IOE programmable delay settings. Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2) | Doromotor | Aveilable Min | | Fast | Model | | | | Slow M | lodel | | | | |---------------|-----------------------|---------------|------------|------------|-------|-------|-------|--------|-------|-------------|-------|------| | Parameter (1) | Available
Settings | Offset
(2) | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | D1 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D2 | 32 | 0 | 0.230 | 0.244 | 0.415 | 0.415 | 0.459 | 0.503 | 0.417 | 0.456 | 0.500 | ns | Glossary Page 65 Table 58. IOE Programmable Delay for Stratix V Devices (Part 2 of 2) | Daramotor | Parameter Available Settings Min Offset | Min | Fast | Slow Model | | | | | | | | | |-----------|---|------------|------------|------------|-------|-------|-------|-------|-------------|-------|-------|----| | | | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | | D3 | 8 | 0 | 1.587 | 1.699 | 2.793 | 2.793 | 2.992 | 3.192 | 2.811 | 3.047 | 3.257 | ns | | D4 | 64 | 0 | 0.464 | 0.492 | 0.838 | 0.838 | 0.924 | 1.011 | 0.843 | 0.920 | 1.006 | ns | | D5 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D6 | 32 | 0 | 0.229 | 0.244 | 0.415 | 0.415 | 0.458 | 0.503 | 0.418 | 0.456 | 0.499 | ns | ### Notes to Table 58: - (1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor. - (2) Minimum offset does not include the intrinsic delay. ## **Programmable Output Buffer Delay** Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps. Table 59. Programmable Output Buffer Delay for Stratix V Devices (1) | Symbol | Parameter | Typical | Unit | |---------------------|----------------------------------|-------------|------| | | | 0 (default) | ps | | D | Rising and/or falling edge delay | 25 | ps | | D _{OUTBUF} | | 50 | ps | | | | 75 | ps | ## Note to Table 59: # **Glossary** Table 60 lists the glossary for this chapter. Table 60. Glossary (Part 1 of 4) | Letter | Subject | Definitions | | | | |--------|---|--|--|--|--| | Α | | | | | | | В | _ | _ | | | | | С | | | | | | | D | _ | | | | | | E | _ | | | | | | | f _{HSCLK} | Left and right PLL input clock frequency. | | | | | F | f_{HSDR} High-speed I/O block—Maximum and minimum LVDS data transfer rate ($f_{HSDR} = 1/TUI$), non-DPA. | | | | | | | f _{HSDRDPA} | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA. | | | | ⁽¹⁾ You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment. Page 68 Glossary ## Table 60. Glossary (Part 4 of 4) | Letter | Subject | Definitions | |--------|------------------------|--| | | V _{CM(DC)} | DC common mode input voltage. | | | V _{ICM} | Input common mode voltage—The common mode of the differential signal at the receiver. | | | V _{ID} | Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver. | | | V _{DIF(AC)} | AC differential input voltage—Minimum AC input differential voltage required for switching. | | | V _{DIF(DC)} | DC differential input voltage— Minimum DC input differential voltage required for switching. | | | V _{IH} | Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high. | | | V _{IH(AC)} | High-level AC input voltage | | | V _{IH(DC)} | High-level DC input voltage | | V | V _{IL} | Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low. | | | V _{IL(AC)} | Low-level AC input voltage | | | V _{IL(DC)} | Low-level DC input voltage | | | V _{OCM} | Output common mode voltage—The common mode of the differential signal at the transmitter. | | | V _{OD} | Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. | | | V _{SWING} | Differential input voltage | | | V _X | Input differential cross point voltage | | | V _{OX} | Output differential cross point voltage | | W | W | High-speed I/O block—clock boost factor | | Χ | | | | Υ | | _ | | Z | | | Document Revision History Page 69 # **Document Revision History** Table 61 lists the revision history for this chapter. Table 61. Document Revision History (Part 1 of 3) | Date | Version | Changes | | | | |---------------|---------|---|--|--|--| | June 2018 | 3.9 | ■ Added the "Stratix V Device Overshoot Duration" figure. | | | | | | | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. | | | | | | | ■ Changed the condition for 100-Ω R _D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. | | | | | April 2017 | 3.8 | ■ Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | | | | ■ Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. | | | | | June 2016 | 3.7 | ■ Added the V _{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table | | | | | Julie 2010 | | ■ Added the I _{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. | | | | | December 2015 | 3.6 | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | | | | December 2015 | 3.5 | ■ Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | December 2013 | | ■ Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. | | | | | | | ■ Changed the data rate specification for transceiver speed grade 3 in the following tables: | | | | | | | "Transceiver Specifications for Stratix V GX and GS Devices" | | | | | | | ■ "Stratix V Standard PCS Approximate Maximum Date Rate" | | | | | | | ■ "Stratix V 10G PCS Approximate Maximum Data Rate" | | | | | July 2015 | 3.4 | ■ Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | ■ Changed the t _{CO} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. | | | | | | | ■ Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | |