

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	128300
Number of Logic Elements/Cells	340000
Total RAM Bits	19456000
Number of I/O	600
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxma3k3f40i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics Page 5

Recommended Operating Conditions

This section lists the functional operating limits for the AC and DC parameters for Stratix V devices. Table 6 lists the steady-state voltage and current values expected from Stratix V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 6. Recommended Operating Conditions for Stratix V Devices (Part 1 of 2)

Symbol	Description	Condition	Min ⁽⁴⁾	Тур	Max ⁽⁴⁾	Unit
	Core voltage and periphery circuitry power supply (C1, C2, I2, and I3YY speed grades)	_	0.87	0.9	0.93	V
V _{CC}	Core voltage and periphery circuitry power supply (C2L, C3, C4, I2L, I3, I3L, and I4 speed grades) (3)	_	0.82	0.85	0.88	V
V _{CCPT}	Power supply for programmable power technology	_	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	_	2.375	2.5	2.625	V
V (1)	I/O pre-driver (3.0 V) power supply		2.85	3.0	3.15	V
V _{CCPD} ⁽¹⁾	I/O pre-driver (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	٧
	I/O buffers (2.5 V) power supply	_	2.375	2.5	2.625	V
	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	٧
V_{CCIO}	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply		1.283	1.35	1.45	V
	I/O buffers (1.25 V) power supply		1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply		2.85	3.0	3.15	V
V_{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply		2.375	2.5	2.625	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply		1.45	1.5	1.55	V
V _{CCBAT} (2)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.0	V
V _I	DC input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
т.	Operating junction temperature	Commercial	0	_	85	°C
T _J	Operating junction temperature	Industrial	-40	_	100	°C

Electrical Characteristics Page 15

Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices (Part 2 of 2)

I/O Standard	V _{IL(D(}	; ₎ (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I _{ol} (mA)	l _{oh}
i/O Stanuaru	Min	Max	Min	Max	Max	Min	Max	Min	I _{OI} (IIIA)	(mA)
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	0.25* V _{CCIO}	0.75* V _{CCIO}	16	-16
HSUL-12	_	V _{REF} – 0.13	V _{REF} + 0.13	_	V _{REF} – 0.22	V _{REF} + 0.22	0.1* V _{CCIO}	0.9* V _{CCIO}	_	

Table 20. Differential SSTL I/O Standards for Stratix V Devices

I/O Standard		V _{CCIO} (V)		V _{SWING(DC)} (V)			V _{X(AC)} (V)		V _{SWING(AC)} (V)	
I/O Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.2	_	V _{CCIO} /2 + 0.2	0.62	V _{CCIO} + 0.6
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.175	_	V _{CCIO} /2 + 0.175	0.5	V _{CCIO} + 0.6
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(1)	V _{CCIO} /2 – 0.15	_	V _{CCIO} /2 + 0.15	0.35	_
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(1)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	2(V _{IL(AC)} - V _{REF})
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(1)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	_	V _{REF} -0.15	V _{CCIO} /2	V _{REF} + 0.15	-0.30	0.30

Note to Table 20:

Table 21. Differential HSTL and HSUL I/O Standards for Stratix V Devices (Part 1 of 2)

I/O		V _{CCIO} (V)		V _{DIF(}	_{DC)} (V)	V _{X(AC)} (V)			V _{CM(DC)} (V	V _{DIF(AC)} (V)			
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78	_	1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2		0.68	_	0.9	0.68		0.9	0.4	_

⁽¹⁾ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits $(V_{IH(DC)})$ and $V_{IL(DC)})$.

Electrical Characteristics Page 17

You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Page 22 Switching Characteristics

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 5 of 7)

Symbol/	Conditions	Tra	nsceive Grade	r Speed 1	Trai	nsceive Grade	r Speed 2	Trai	nsceive Grade	r Speed 3	Unit	
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		
	DC Gain Setting = 0	_	0	_	_	0	_	_	0	_	dB	
	DC Gain Setting = 1	_	2	_	_	2	_	_	2	_	dB	
Programmable DC gain	DC Gain Setting = 2		4	_	_	4		_	4	_	dB	
	DC Gain Setting = 3		6		_	6	_	_	6	_	dB	
	DC Gain Setting = 4	_	8		_	8		_	8	_	dB	
Transmitter												
Supported I/O Standards	_		1.4-V and 1.5-V PCML									
Data rate (Standard PCS)	_	600	_	12200	600		12200	600	_	8500/ 10312.5 (24)	Mbps	
Data rate (10G PCS)	_	600	_	14100	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps	
	85-Ω setting	_	85 ± 20%	_	_	85 ± 20%	_	_	85 ± 20%	_	Ω	
Differential on-	100-Ω setting		100 ± 20%	_	_	100 ± 20%		_	100 ± 20%	_	Ω	
chip termination resistors	120-Ω setting	_	120 ± 20%	_	_	120 ± 20%	_	_	120 ± 20%	_	Ω	
	150-Ω setting	_	150 ± 20%	_	_	150 ± 20%	_	_	150 ± 20%	_	Ω	
V _{OCM} (AC coupled)	0.65-V setting	_	650	_	_	650	_	_	650	_	mV	
V _{OCM} (DC coupled)	_	_	650	_	_	650	_	_	650	_	mV	
Rise time (7)	20% to 80%	30	_	160	30	_	160	30		160	ps	
Fall time ⁽⁷⁾	80% to 20%	30	_	160	30		160	30	_	160	ps	
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps	_	_	15	_	_	15	_	_	15	ps	
Intra-transceiver block transmitter channel-to- channel skew	x6 PMA bonded mode	_	_	120	_	_	120	_	_	120	ps	

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 6 of 7)

Symbol/	Conditions	Trai	nsceive Grade	r Speed e 1	Trar	sceive Grade	r Speed 2	Tran	sceive Grade	er Speed e 3	Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Inter-transceiver block transmitter channel-to- channel skew	xN PMA bonded mode	ı	ı	500	_	ı	500	_	_	500	ps
CMU PLL											
Supported Data Range	_	600	_	12500	600	_	12500	600	_	8500/ 10312.5 (24)	Mbps
t _{pll_powerdown} (15)	_	1	_	_	1	_	_	1	_	_	μs
t _{pll_lock} (16)	_	_	_	10	_	_	10	_	_	10	μs
ATX PLL	•										
	VCO post-divider L=2	8000		14100	8000		12500	8000	_	8500/ 10312.5 (24)	Mbps
Currented Date	L=4	4000	_	7050	4000	_	6600	4000		6600	Mbps
Supported Data Rate Range	L=8	2000	_	3525	2000	_	3300	2000	_	3300	Mbps
S	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	1000	_	1762.5	Mbps
t _{pll_powerdown} (15)	_	1	_	_	1	_	_	1	_	_	μs
t _{pll_lock} (16)				10	_		10	_		10	μs
fPLL											
Supported Data Range	_	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	600	_	3250/ 3125 ⁽²⁵⁾	Mbps
t _{pll_powerdown} (15)		1	_		1	_	_	1			μs

Page 24 Switching Characteristics

Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 7 of 7)

Symbol/ Description Con	Conditions	Transceiver Speed Grade 1			Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{pll_lock} (16)	_	_	_	10	_	_	10	_	_	10	μs

Notes to Table 23:

- (1) Speed grades shown in Table 23 refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Stratix V Device Overview*.
- (2) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
- (3) This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rates up to 6.5 Gbps, you can connect this supply to 0.85 V.
- (4) This supply follows VCCR_GXB.
- (5) The device cannot tolerate prolonged operation at this absolute maximum.
- (6) The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (7) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (8) The input reference clock frequency options depend on the data rate and the device speed grade.
- (9) The line data rate may be limited by PCS-FPGA interface speed grade.
- (10) Refer to Figure 1 for the GX channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (11) t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (12) t_{I TD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.
- (13) t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (14) t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (15) $t_{pll\ powerdown}$ is the PLL powerdown minimum pulse width.
- (16) t_{nll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (17) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (18) The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin V_{ICM}).
- (19) For ES devices, R_{REF} is 2000 Ω ±1%.
- (20) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20*log(f/622).
- (21) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (22) Refer to Figure 2.
- (23) For oversampling designs to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (24) I3YY devices can achieve data rates up to 10.3125 Gbps.
- (25) When you use fPLL as a TXPLL of the transceiver.
- (26) REFCLK performance requires to meet transmitter REFCLK phase noise specification.
- (27) Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Page 28 Switching Characteristics

Table 27 shows the $\ensuremath{V_{OD}}$ settings for the GX channel.

Table 27. Typical V $_{\text{OD}}$ Setting for GX Channel, TX Termination = 100 Ω $^{(2)}$

Symbol	V _{OD} Setting	V _{op} Value (mV)	V _{op} Setting	V _{op} Value (mV)
	0 (1)	0	32	640
	1 (1)	20	33	660
	2 (1)	40	34	680
	3 (1)	60	35	700
	4 (1)	80	36	720
	5 ⁽¹⁾	100	37	740
	6	120	38	760
	7	140	39	780
	8	160	40	800
	9	180	41	820
	10	200	42	840
	11	220	43	860
	12	240	44	880
	13	260	45	900
	14	280	46	920
V op differential peak to peak	15	300	47	940
typical ⁽³⁾	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

Note to Table 27:

- (1) If TX termination resistance = 100Ω , this VOD setting is illegal.
- (2) The tolerance is +/-20% for all VOD settings except for settings 2 and below.
- (3) Refer to Figure 2.

Figure 2 shows the differential transmitter output waveform.

Figure 2. Differential Transmitter Output Waveform

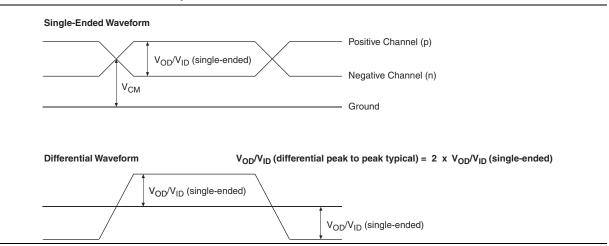


Figure 3 shows the Stratix V AC gain curves for GX channels.

Figure 3. AC Gain Curves for GX Channels (full bandwidth)

Stratix V GT devices contain both GX and GT channels. All transceiver specifications for the GX channels not listed in Table 28 are the same as those listed in Table 23.

Table 28 lists the Stratix V GT transceiver specifications.

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 2 of 5) $^{(1)}$

Symbol/	Conditions	S	Transceive peed Grade			Transceive Deed Grade		Unit
Description		Min	Тур	Max	Min	Тур	Max	1
	100 Hz	_	_	-70	_	_	-70	
Transmitter REFCLK	1 kHz	_	_	-90		_	-90	
Phase Noise (622	10 kHz	_	_	-100	_	_	-100	dBc/Hz
MHz) ⁽¹⁸⁾	100 kHz	_	_	-110	_	_	-110	
	≥1 MHz		_	-120	_		-120	1
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁵⁾	10 kHz to 1.5 MHz (PCle)	_	_	3	_	_	3	ps (rms)
RREF (17)	_	_	1800 ± 1%	_	_	1800 ± 1%	_	Ω
Transceiver Clocks								
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_clk) frequency		100	_	125	100		125	MHz
Receiver								
Supported I/O Standards	_		1.4-V PCML	, 1.5-V PCML	_, 2.5-V PCI	ML, LVPEC	L, and LVDS	6
Data rate (Standard PCS) (21)	GX channels	600	_	8500	600	_	8500	Mbps
Data rate (10G PCS) (21)	GX channels	600	_	12,500	600	_	12,500	Mbps
Data rate	GT channels	19,600	_	28,050	19,600	_	25,780	Mbps
Absolute V _{MAX} for a receiver pin ⁽³⁾	GT channels	_	_	1.2		_	1.2	V
Absolute V _{MIN} for a receiver pin	GT channels	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak	GT channels		_	1.6	_		1.6	V
differential input voltage V _{ID} (diff p-p) before device configuration ⁽²⁰⁾	GX channels				(8)			
	GT channels							
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration (16), (20)	$V_{CCR_GTB} = 1.05 \text{ V} $ $(V_{ICM} = 0.65 \text{ V})$	_	_	2.2	_	_	2.2	V
Johnguration 7, 17	GX channels			<u> </u>	(8)		•	•
Minimum differential	GT channels	200	_	_	200		_	mV
eye opening at receiver serial input pins ⁽⁴⁾ , ⁽²⁰⁾	GX channels				(8)			

Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$

Symbol/	Conditions		Transceive peed Grade			Transceive Deed Grade		Unit	
Description		Min	Тур	Max	Min	Тур	Max		
Data rate	GT channels	19,600	_	28,050	19,600	_	25,780	Mbps	
Differential on-chip	GT channels	_	100	_		100	_	Ω	
termination resistors	GX channels			•	(8)		<u>'</u>		
\/	GT channels	_	500	_	_	500	—	mV	
V _{OCM} (AC coupled)	GX channels			•	(8)		<u>'</u>		
Diag/Fall time	GT channels	_	15	_	_	15	_	ps	
Rise/Fall time	GX channels		<u>I</u>		(8)				
Intra-differential pair skew	GX channels		(8)						
Intra-transceiver block transmitter channel-to- channel skew	GX channels		(8)						
Inter-transceiver block transmitter channel-to- channel skew	GX channels	(8)							
CMU PLL									
Supported Data Range	_	600	_	12500	600	_	8500	Mbps	
t _{pll_powerdown} (13)	_	1	_	_	1	_	_	μs	
t _{pll_lock} (14)	_	_	_	10	_	_	10	μs	
ATX PLL									
	VCO post- divider L=2	8000	_	12500	8000	_	8500	Mbps	
	L=4	4000	_	6600	4000	_	6600	Mbps	
Supported Data Rate	L=8	2000	_	3300	2000	_	3300	Mbps	
Range for GX Channels	L=8, Local/Central Clock Divider =2	1000	_	1762.5	1000	_	1762.5	Mbps	
Supported Data Rate Range for GT Channels	VCO post- divider L=2	9800	_	14025	9800	_	12890	Mbps	
t _{pll_powerdown} (13)	_	1	_	_	1	_	_	μs	
t _{pll_lock} (14)	_	_	_	10	_	_	10	μs	
fPLL			•						
Supported Data Range	_	600	_	3250/ 3.125 ⁽²³⁾	600	_	3250/ 3.125 ⁽²³⁾	Mbps	
t _{pll_powerdown} (13)	_	1	_	_	1	_	_	μs	

PLL Specifications

Table 31 lists the Stratix V PLL specifications when operating in both the commercial junction temperature range (0° to 85°C) and the industrial junction temperature range (-40° to 100° C).

Table 31. PLL Specifications for Stratix V Devices (Part 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (C1, C2, C2L, I2, and I2L speed grades)	5	_	800 (1)	MHz
f _{IN}	Input clock frequency (C3, I3, I3L, and I3YY speed grades)	5	_	800 (1)	MHz
	Input clock frequency (C4, I4 speed grades)	5	_	650 ⁽¹⁾	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
FINPFD	Fractional Input clock frequency to the PFD	50	_	160	MHz
	PLL VCO operating range (C1, C2, C2L, I2, I2L speed grades)	600	_	1600	MHz
f _{vco} ⁽⁹⁾	PLL VCO operating range (C3, I3, I3L, I3YY speed grades)	600	_	1600	MHz
	PLL VCO operating range (C4, I4 speed grades)	600	_	1300	MHz
EINDUTY	Input clock or external feedback clock input duty cycle	40	_	60	%
	Output frequency for an internal global or regional clock (C1, C2, C2L, I2, I2L speed grades)	_	_	717 (2)	MHz
Гоит	Output frequency for an internal global or regional clock (C3, I3, I3L speed grades)	_	_	650 ⁽²⁾	MHz
	Output frequency for an internal global or regional clock (C4, I4 speed grades)	_	_	580 ⁽²⁾	MHz
	Output frequency for an external clock output (C1, C2, C2L, I2, I2L speed grades)	_	_	800 (2)	MHz
f _{OUT_EXT}	Output frequency for an external clock output (C3, I3, I3L speed grades)	_	_	667 (2)	MHz
	Output frequency for an external clock output (C4, I4 speed grades)	_	_	553 ⁽²⁾	MHz
t _{оитриту}	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
FCOMP	External feedback clock compensation time	_	_	10	ns
DYCONFIGCLK	Dynamic Configuration Clock used for mgmt_clk and scanclk	_	_	100	MHz
Lock	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
DLOCK	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth		0.3		MHz
: CLBW	PLL closed-loop medium bandwidth		1.5		MHz
	PLL closed-loop high bandwidth (7)	_	4	_	MHz
PLL_PSERR	Accuracy of PLL phase shift		_	±50	ps
ARESET	Minimum pulse width on the areset signal	10	_	_	ns

Page 40 Switching Characteristics

Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
→ (3) (4)	Input clock cycle-to-cycle jitter (f _{REF} ≥ 100 MHz)	_	_	0.15	UI (p-p)
t _{INCCJ} (3), (4)	Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz)	-750		+750	ps (p-p)
+ (5)	Period Jitter for dedicated clock output ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175 ⁽¹⁾	ps (p-p)
t _{OUTPJ_DC} (5)	Period Jitter for dedicated clock output (f _{OUT} < 100 MHz)	_	_	17.5 ⁽¹⁾	mUI (p-p)
+ (5)	Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{FOUTPJ_DC} (5)	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
+ (5)	Cycle-to-Cycle Jitter for a dedicated clock output $(f_{OUT} \ge 100 \text{ MHz})$	_	_	175	ps (p-p)
t _{outccj_dc} (5)	Cycle-to-Cycle Jitter for a dedicated clock output (f _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
+ (5)	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)+	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
t _{OUTPJ_IO} (5),	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
(8)	Period Jitter for a clock output on a regular I/O (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{FOUTPJ 10} (5),	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600 (10)	ps (p-p)
(8), (11)	Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz)	_	_	60 (10)	mUI (p-p)
t _{outccj_10} (5),	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100$ MHz)	_	_	600	ps (p-p)
(8)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz)	_	_	60 (10)	mUI (p-p)
t _{FOUTCCJ_IO}	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100$ MHz)	_	_	600 (10)	ps (p-p)
(8), (11)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{CASC_OUTPJ_DC}	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
(5), (6)	Period Jitter for a dedicated clock output in cascaded PLLs (f _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits
k _{VALUE}	Numerator of Fraction	128	8388608	2147483648	_

Table 33. Memory Block Performance Specifications for Stratix V Devices (1), (2) (Part 2 of 2)

		Resour	ces Used			Pe	erforman	ce			
Memory	Mode	ALUTS	Memory	C1	C2, C2L	C3	C4	12, 12L	13, 13L, 13YY	14	Unit
	Single-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	525	525	455	400	525	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512 × 32	0	1	450	450	400	350	450	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	600	600	500	450	600	500	450	MHz
	True dual port, all supported widths	0	1	700	700	650	550	700	500	450	MHz
	ROM, all supported widths	0	1	700	700	650	550	700	500	450	MHz

Notes to Table 33:

Temperature Sensing Diode Specifications

Table 34 lists the internal TSD specification.

Table 34. Internal Temperature Sensing Diode Specification

Tei	mperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°	°C to 100°C	±8°C	No	1 MHz, 500 KHz	< 100 ms	8 bits	8 bits

Table 35 lists the specifications for the Stratix V external temperature sensing diode.

Table 35. External Temperature Sensing Diode Specifications for Stratix V Devices

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	_	200	μΑ
V _{bias,} voltage across diode	0.3	_	0.9	V
Series resistance	_	_	<1	Ω
Diode ideality factor	1.006	1.008	1.010	_

⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

⁽²⁾ When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

⁽³⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled.

Page 44 Switching Characteristics

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load.

The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 36 lists high-speed I/O timing for Stratix V devices.

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 1 of 4)

_														
Cumbal	Conditions	C1		C2,	C2L, I	2, I2L	C3, I3, I3L, I3YY		., I3YY	C4,I4			Unit	
Symbol	Conuntions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards	Clock boost factor W = 1 to 40 (4)	5		800	5	_	800	5		625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards (3)	Clock boost factor W = 1 to 40 (4)	5		800	5	_	800	5		625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 (4)	5		520	5	_	520	5		420	5		420	MHz
f _{HSCLK_OUT} (output clock frequency)	_	5		800	5	_	800	5		625 (5)	5		525 (5)	MHz

Page 46 Switching Characteristics

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4)

	0 1111		C1		C2,	C2L, I	2, I2L	C3,	13, I3L	., I3YY	C4,I4			
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{DUTY}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards	_	_	160	_	_	160	_	_	200	_	_	200	ps
t _{RISE} & t _{FALL}	Emulated Differential I/O Standards with three external output resistor networks	_		250	_	_	250	_		250	_		300	ps
	True Differential I/O Standards	_	_	150	_		150		_	150		_	150	ps
TCCS	Emulated Differential I/O Standards	_	_	300	_	_	300	_		300	_		300	ps
Receiver														
	SERDES factor J = 3 to 10 (11), (12), (13), (14), (15), (16)	150	_	1434	150	_	1434	150	_	1250	150	_	1050	Mbps
True Differential I/O Standards	SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16)	150	_	1600	150	_	1600	150	_	1600	150	_	1250	Mbps
- f _{HSDRDPA} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)	_	(7)	(6)	_	(7)	(6)		(7)	(6)		(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)		(7)	(6)	_	(7)	Mbps

Configuration Specification Page 53

Table 46.	JTAG Timino	Parameters ar	nd Values	for Stratix V Devices
-----------	-------------	---------------	-----------	-----------------------

Symbol	Description	Min	Max	Unit
t _{JPH}	JTAG port hold time	5	_	ns
t _{JPCO}	JTAG port clock to output	_	11 ⁽¹⁾	ns
t _{JPZX}	JTAG port high impedance to valid output	_	14 ⁽¹⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽¹⁾	ns

Notes to Table 46:

- (1) A 1 ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, t_{JPCO} = 12 ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.
- (2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

Raw Binary File Size

For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices".

Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices.

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

Family	Device	Package	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) (4), (5)
	ECCVAO	H35, F40, F35 ⁽²⁾	213,798,880	562,392
	5SGXA3	H29, F35 ⁽³⁾	137,598,880	564,504
	5SGXA4	_	213,798,880	563,672
	5SGXA5	_	269,979,008	562,392
	5SGXA7	_	269,979,008	562,392
Stratix V GX	5SGXA9	_	342,742,976	700,888
	5SGXAB	_	342,742,976	700,888
	5SGXB5	_	270,528,640	584,344
	5SGXB6	_	270,528,640	584,344
	5SGXB9	_	342,742,976	700,888
	5SGXBB	_	342,742,976	700,888
Chrotin V CT	5SGTC5	_	269,979,008	562,392
Stratix V GT	5SGTC7	_	269,979,008	562,392
	5SGSD3	_	137,598,880	564,504
	FCCCD4	F1517	213,798,880	563,672
Ctrativ V CC	5SGSD4	_	137,598,880	564,504
Stratix V GS	5SGSD5	_	213,798,880	563,672
	5SGSD6	_	293,441,888	565,528
	5SGSD8	_	293,441,888	565,528

Configuration Specification Page 63

Table 54 lists the PS configuration timing parameters for Stratix V devices.

Table 54. PS Timing Parameters for Stratix V Devices

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2		μS
t _{STATUS}	nstatus low pulse width	268	1,506 ⁽¹⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1,506 ⁽²⁾	μS
t _{CF2CK} (5)	nCONFIG high to first rising edge on DCLK	1,506		μS
t _{ST2CK} (5)	nstatus high to first rising edge of DCLK	2	_	μS
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0		ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f _{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) $^{(4)}$	_	_

Notes to Table 54:

- (1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.
- (3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.
- (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section.
- (5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Initialization

Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency.

Table 55. Initialization Clock Source Option and the Maximum Frequency

Initialization Clock Source	Configuration Schemes	Maximum Frequency	Minimum Number of Clock Cycles ⁽¹⁾
Internal Oscillator	AS, PS, FPP	12.5 MHz	
CLKUSR	AS, PS, FPP (2)	125 MHz	8576
DCLK	PS, FPP	125 MHz	

Notes to Table 55:

- $(1) \quad \text{The minimum number of clock cycles required for device initialization}.$
- (2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box.

Glossary Page 67

Table 60. Glossary (Part 3 of 4)

Letter	Subject	Definitions							
	SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window (SW) 0.5 x TCCS							
S	Single-ended voltage referenced I/O standard	The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard VCCIO VIH(DC) VREF VIL(DC) VIL(AC) VSSS							
	t _C TCCS (channel-	High-speed receiver and transmitter input and output clock period. The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS							
	to-channel-skew)	measurement (refer to the <i>Timing Diagram</i> figure under SW in this table).							
		High-speed I/O block—Duty cycle on the high-speed transmitter output clock. Timing Unit Interval (TUI)							
T	t _{DUTY}	The timing budget allowed for skew, propagation delays, and the data sampling window. $(TUI = 1/(receiver input clock frequency multiplication factor) = t_c/w$							
	t _{FALL}	Signal high-to-low transition time (80-20%)							
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.							
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.							
	t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.							
	t _{RISE}	Signal low-to-high transition time (20-80%)							
U	_	_							

Page 68 Glossary

Table 60. Glossary (Part 4 of 4)

Letter	Subject	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
	V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
	V _{IH(AC)}	High-level AC input voltage
	V _{IH(DC)}	High-level DC input voltage
V	V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
	V _{IL(AC)}	Low-level AC input voltage
	V _{IL(DC)}	Low-level DC input voltage
	V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
	V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
	V _{SWING}	Differential input voltage
	V _X	Input differential cross point voltage
	V _{OX}	Output differential cross point voltage
W	W	High-speed I/O block—clock boost factor
Χ		
Υ		_
Z		

Document Revision History Page 69

Document Revision History

Table 61 lists the revision history for this chapter.

Table 61. Document Revision History (Part 1 of 3)

Date	Version	Changes
June 2018	3.9	■ Added the "Stratix V Device Overshoot Duration" figure.
		■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.
		■ Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table.
		■ Changed the condition for 100-Ω R _D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table.
April 2017	3.8	■ Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table
		■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.
		■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table.
		■ Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table.
June 2016	3.7	■ Added the V _{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table
Julie 2010		■ Added the I _{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table.
December 2015	3.6	■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table.
December 2015	3.5	■ Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table.
December 2013	0.0	■ Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table.
		■ Changed the data rate specification for transceiver speed grade 3 in the following tables:
		"Transceiver Specifications for Stratix V GX and GS Devices"
		■ "Stratix V Standard PCS Approximate Maximum Date Rate"
		■ "Stratix V 10G PCS Approximate Maximum Data Rate"
July 2015	3.4	■ Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table.
-		■ Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table.
		■ Changed the t _{CO} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table.
		■ Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table.