Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 158500 | | Number of Logic Elements/Cells | 420000 | | Total RAM Bits | 37888000 | | Number of I/O | 600 | | Number of Gates | - | | Voltage - Supply | 0.82V ~ 0.88V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5sgxma4k1f40c2ln | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Page 12 Electrical Characteristics Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2) (1) | Symbol | Description | V _{CCIO} (V) | Typical | Unit | | |--------|--|-----------------------|---------|------|--| | | | 3.0 | 0.189 | | | | | OCT variation with temperature without recalibration | 2.5 | 0.208 | | | | dR/dT | | 1.8 | 0.266 | %/°C | | | | Willout recalibration | 1.5 | 0.273 | | | | | | 1.2 | 0.317 | | | ### Note to Table 13: (1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to $85^\circ\text{C}.$ ### **Pin Capacitance** Table 14 lists the Stratix V device family pin capacitance. **Table 14. Pin Capacitance for Stratix V Devices** | Symbol | Description | Value | Unit | |--------------------|--|-------|------| | C _{IOTB} | Input capacitance on the top and bottom I/O pins | 6 | pF | | C _{IOLR} | Input capacitance on the left and right I/O pins | 6 | pF | | C _{OUTFB} | Input capacitance on dual-purpose clock output and feedback pins | 6 | pF | ### **Hot Socketing** Table 15 lists the hot socketing specifications for Stratix V devices. Table 15. Hot Socketing Specifications for Stratix V Devices | Symbol | Description | Maximum | |---------------------------|--|---------------------| | I _{IOPIN (DC)} | DC current per I/O pin | 300 μΑ | | I _{IOPIN (AC)} | AC current per I/O pin | 8 mA ⁽¹⁾ | | I _{XCVR-TX (DC)} | DC current per transceiver transmitter pin | 100 mA | | I _{XCVR-RX (DC)} | DC current per transceiver receiver pin | 50 mA | ### Note to Table 15: (1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate. Electrical Characteristics Page 13 ### **Internal Weak Pull-Up Resistor** Table 16 lists the weak pull-up resistor values for Stratix V devices. Table 16. Internal Weak Pull-Up Resistor for Stratix V Devices (1), (2) | Symbol | Description | V _{CC10} Conditions
(V) ⁽³⁾ | Value ⁽⁴⁾ | Unit | |-----------------|---|--|----------------------|------| | | | 3.0 ±5% | 25 | kΩ | | | | 2.5 ±5% | 25 | kΩ | | | Value of the I/O pin pull-up resistor before | 1.8 ±5% | 25 | kΩ | | R _{PU} | and during configuration, as well as user mode if you enable the programmable | 1.5 ±5% | 25 | kΩ | | | pull-up resistor option. | 1.35 ±5% | 25 | kΩ | | | | 1.25 ±5% | 25 | kΩ | | | | 1.2 ±5% | 25 | kΩ | #### Notes to Table 16: - (1) All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins. - (2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω . - (3) The pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} . - (4) These specifications are valid with a ±10% tolerance to cover changes over PVT. ### I/O Standard Specifications Table 17 through Table 22 list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Stratix V devices. These tables also show the Stratix V device family I/O standard specifications. The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively. For an explanation of the terms used in Table 17 through Table 22, refer to "Glossary" on page 65. For tolerance calculations across all SSTL and HSTL I/O standards, refer to Altera knowledge base solution rd07262012_486. Table 17. Single-Ended I/O Standards for Stratix V Devices | 1/0 | | V _{CCIO} (V) | | VII | _(V) | V _{IH} | (V) | V _{OL} (V) | V _{OH} (V) | I _{OL} | I _{OH} | |----------|-------|-----------------------|-------|------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-----------------|-----------------| | Standard | Min | Тур | Max | Min | Max | Min | Max | Max | Min | (mĀ) | (mA) | | LVTTL | 2.85 | 3 | 3.15 | -0.3 | 0.8 | 1.7 | 3.6 | 0.4 | 2.4 | 2 | -2 | | LVCMOS | 2.85 | 3 | 3.15 | -0.3 | 0.8 | 1.7 | 3.6 | 0.2 | V _{CCIO} - 0.2 | 0.1 | -0.1 | | 2.5 V | 2.375 | 2.5 | 2.625 | -0.3 | 0.7 | 1.7 | 3.6 | 0.4 | 2 | 1 | -1 | | 1.8 V | 1.71 | 1.8 | 1.89 | -0.3 | 0.35 *
V _{CCIO} | 0.65 *
V _{CCIO} | V _{CCIO} + 0.3 | 0.45 | V _{CCIO} –
0.45 | 2 | -2 | | 1.5 V | 1.425 | 1.5 | 1.575 | -0.3 | 0.35 *
V _{CCIO} | 0.65 *
V _{CCIO} | V _{CCIO} + 0.3 | 0.25 *
V _{CCIO} | 0.75 *
V _{CCIO} | 2 | -2 | | 1.2 V | 1.14 | 1.2 | 1.26 | -0.3 | 0.35 *
V _{CCIO} | 0.65 *
V _{CCIO} | V _{CCIO} + 0.3 | 0.25 *
V _{CCIO} | 0.75 *
V _{CCIO} | 2 | -2 | Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 2 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
1 | Trai | Transceiver Speed
Grade 2 | | | nsceive
Grade | r Speed
3 | Unit | |---|--|-------|------------------|-----------------------|-------|------------------------------|------|------|----------------------------------|--------------|-------------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Spread-spectrum
downspread | PCle | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | _ | 0 to
-0.5 | _ | % | | On-chip
termination
resistors (21) | _ | _ | 100 | _ | _ | 100 | _ | _ | 100 | _ | Ω | | Absolute V _{MAX} ⁽⁵⁾ | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | _ | _ | 1.6 | V | | | RX reference clock pin | _ | _ | 1.2 | _ | _ | 1.2 | _ | _ | 1.2 | | | Absolute V _{MIN} | _ | -0.4 | | _ | -0.4 | _ | | -0.4 | _ | 1 | V | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | | 1600 | 200 | _ | 1600 | mV | | V _{ICM} (AC coupled) (3) | Dedicated
reference
clock pin | 1050/ | 1000/90 | 00/850 ⁽²⁾ | 1050/ | 1050/1000/900/850 (2) | | | 1050/1000/900/850 ⁽²⁾ | | | | coupled) (9 | RX reference clock pin | 1. | .0/0.9/0 | .85 ⁽⁴⁾ | 1. | 1.0/0.9/0.85 (4) | | | 1.0/0.9/0.85 ⁽⁴⁾ | | | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | 250 | _ | 550 | mV | | | 100 Hz | _ | _ | -70 | _ | _ | -70 | _ | _ | -70 | dBc/Hz | | Transmitter | 1 kHz | _ | _ | -90 | _ | _ | -90 | _ | _ | -90 | dBc/Hz | | REFCLK Phase
Noise | 10 kHz | | _ | -100 | _ | _ | -100 | _ | _ | -100 | dBc/Hz | | (622 MHz) ⁽²⁰⁾ | 100 kHz | _ | _ | -110 | _ | _ | -110 | _ | _ | -110 | dBc/Hz | | | ≥1 MHz | _ | _ | -120 | _ | _ | -120 | _ | _ | -120 | dBc/Hz | | Transmitter
REFCLK Phase
Jitter
(100 MHz) (17) | 10 kHz to
1.5 MHz
(PCle) | _ | _ | 3 | _ | _ | 3 | _ | _ | 3 | ps
(rms) | | R _{REF} (19) | _ | _ | 1800
±1% | _ | _ | 1800
±1% | _ | _ | 180
0
±1% | _ | Ω | | Transceiver Clock | <u> </u> | | | _ | | | _ | | | _ | | | fixedclk clock frequency | PCIe
Receiver
Detect | _ | 100
or
125 | _ | _ | 100
or
125 | _ | _ | 100
or
125 | _ | MHz | Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 4 of 7) | Symbol/ | Conditions | Tra | nsceive
Grade | r Speed
1 | Transceiver Speed
Grade 2 | | | Trai | nsceive
Grade | r Speed
3 | Unit | |---|---|-----|------------------|--------------|------------------------------|-----------------|-----|------|------------------|--------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | 85– Ω setting | _ | 85 ±
30% | _ | _ | 85 ± 30% | _ | _ | 85 ± 30% | _ | Ω | | Differential on- | 100–Ω
setting | _ | 100
±
30% | | _ | 100
±
30% | _ | _ | 100
±
30% | _ | Ω | | chip termination
resistors ⁽²¹⁾ | termination | _ | 120
±
30% | _ | _ | 120
±
30% | _ | _ | 120
±
30% | _ | Ω | | | | _ | 150
±
30% | _ | _ | 150
±
30% | _ | _ | 150
±
30% | _ | Ω | | V _{ICM}
(AC and DC | V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth | _ | 600 | _ | _ | 600 | _ | _ | 600 | _ | mV | | | V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth | _ | 600 | _ | _ | 600 | _ | _ | 600 | _ | mV | | coupled) | $V_{CCR_GXB} = \\ 1.0 \text{ V/1.05 V} \\ \text{full} \\ \text{bandwidth}$ | _ | 700 | _ | _ | 700 | _ | _ | 700 | _ | mV | | | V _{CCR_GXB} = 1.0 V half bandwidth | _ | 750 | _ | _ | 750 | _ | _ | 750 | _ | mV | | t _{LTR} (11) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | t _{LTD} (12) | _ | 4 | _ | | 4 | | | 4 | | | μs | | t _{LTD_manual} (13) | _ | 4 | _ | | 4 | | | 4 | | | μs | | t _{LTR_LTD_manual} (14) | | 15 | | | 15 | | _ | 15 | _ | | μs | | Run Length | | _ | _ | 200 | _ | | 200 | _ | - | 200 | UI | | Programmable equalization (AC Gain) (10) | Full
bandwidth
(6.25 GHz)
Half
bandwidth
(3.125 GHz) | _ | _ | 16 | _ | _ | 16 | _ | _ | 16 | dB | Table 23. Transceiver Specifications for Stratix V GX and GS Devices (1) (Part 6 of 7) | Symbol/ | Conditions | Trai | nsceive
Grade | r Speed
e 1 | Trar | sceive
Grade | r Speed
2 | Tran | sceive
Grade | er Speed
e 3 | Unit | |---|--|------|------------------|-------------------------------|------|-----------------|-------------------------------|------|-----------------|-------------------------------|------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | Inter-transceiver
block transmitter
channel-to-
channel skew | xN PMA
bonded mode | ı | ı | 500 | _ | ı | 500 | _ | _ | 500 | ps | | CMU PLL | | | | | | | | | | | | | Supported Data
Range | _ | 600 | _ | 12500 | 600 | _ | 12500 | 600 | _ | 8500/
10312.5
(24) | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (16) | _ | _ | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | ATX PLL | | | | | | | | | | | | | | VCO
post-divider
L=2 | 8000 | | 14100 | 8000 | | 12500 | 8000 | _ | 8500/
10312.5
(24) | Mbps | | Currented Date | L=4 | 4000 | _ | 7050 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | Supported Data
Rate Range | L=8 | 2000 | _ | 3525 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | G | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | μs | | t _{pll_lock} (16) | _ | | _ | 10 | _ | _ | 10 | _ | _ | 10 | μs | | fPLL | | | | | | | | | | | | | Supported Data
Range | _ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | 600 | _ | 3250/
3125 ⁽²⁵⁾ | Mbps | | t _{pll_powerdown} (15) | _ | 1 | _ | | 1 | _ | | 1 | | | μs | Page 30 Switching Characteristics Table 28. Transceiver Specifications for Stratix V GT Devices (Part 1 of 5) $^{(1)}$ | Symbol/ | Conditions | 5 | Transceive
Speed Grade | | | Transceive
peed Grade | | Unit | |--|--|-----------|---------------------------|--------------|------------------------|--------------------------|--------------|------------| | Description | | Min | Тур | Max | Min | Тур | Max | | | Reference Clock | • | • | • | • | • | • | • | | | Supported I/O
Standards | Dedicated
reference
clock pin | 1.2-V PCN | /IL, 1.4-V PC | ML, 1.5-V P | CML, 2.5-V
and HCSL | PCML, Diffe | rential LVPE | ECL, LVDS, | | Standards | RX reference clock pin | | 1.4-V PCML | ., 1.5-V PCN | IL, 2.5-V PC | ML, LVPEC | L, and LVDS | ; | | Input Reference Clock
Frequency (CMU
PLL) ⁽⁶⁾ | _ | 40 | _ | 710 | 40 | _ | 710 | MHz | | Input Reference Clock
Frequency (ATX PLL) (6) | _ | 100 | _ | 710 | 100 | _ | 710 | MHz | | Rise time | 20% to 80% | _ | _ | 400 | _ | _ | 400 | | | Fall time | 80% to 20% | _ | _ | 400 | _ | <u> </u> | 400 | ps | | Duty cycle | _ | 45 | _ | 55 | 45 | _ | 55 | % | | Spread-spectrum
modulating clock
frequency | PCI Express
(PCIe) | 30 | _ | 33 | 30 | _ | 33 | kHz | | Spread-spectrum
downspread | PCle | _ | 0 to -0.5 | _ | _ | 0 to -0.5 | _ | % | | On-chip termination resistors (19) | _ | _ | 100 | _ | _ | 100 | _ | Ω | | Absolute V _{MAX} (3) | Dedicated
reference
clock pin | _ | _ | 1.6 | _ | _ | 1.6 | V | | | RX reference
clock pin | _ | _ | 1.2 | _ | _ | 1.2 | | | Absolute V _{MIN} | _ | -0.4 | _ | _ | -0.4 | _ | _ | V | | Peak-to-peak
differential input
voltage | _ | 200 | _ | 1600 | 200 | _ | 1600 | mV | | V _{ICM} (AC coupled) | Dedicated
reference
clock pin | | 1050/1000 | 2) | | 1050/1000 | 2) | mV | | | RX reference clock pin | 1 | .0/0.9/0.85 | (22) | 1 | .0/0.9/0.85 | (22) | V | | V _{ICM} (DC coupled) | HCSL I/O
standard for
PCIe
reference
clock | 250 | _ | 550 | 250 | _ | 550 | mV | Table 28. Transceiver Specifications for Stratix V GT Devices (Part 4 of 5) $^{(1)}$ | Symbol/ | Conditions | | Transceive
peed Grade | | | Transceive
Deed Grade | | Unit | | | |--|--|--------|--------------------------|--------------------------------|--------|--------------------------|--------------------------------|------|--|--| | Description | | Min | Тур | Max | Min | Тур | Max | | | | | Data rate | GT channels | 19,600 | _ | 28,050 | 19,600 | _ | 25,780 | Mbps | | | | Differential on-chip | GT channels | _ | 100 | _ | | 100 | <u> </u> | Ω | | | | termination resistors | GX channels | | | • | (8) | | <u>'</u> | | | | | \/ | GT channels | _ | 500 | _ | _ | 500 | _ | mV | | | | V _{OCM} (AC coupled) | GX channels | | | • | (8) | | <u>'</u> | | | | | Diag/Fall time | GT channels | _ | 15 | _ | _ | 15 | _ | ps | | | | Rise/Fall time | GX channels | | <u>I</u> | | (8) | | | | | | | Intra-differential pair
skew | GX channels | | | | (8) | | | | | | | Intra-transceiver block
transmitter channel-to-
channel skew | GX channels | | (8) | | | | | | | | | Inter-transceiver block
transmitter channel-to-
channel skew | GX channels | | (8) | | | | | | | | | CMU PLL | | | | | | | | | | | | Supported Data Range | _ | 600 | _ | 12500 | 600 | _ | 8500 | Mbps | | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | | | ATX PLL | | | | | | | | | | | | | VCO post-
divider L=2 | 8000 | _ | 12500 | 8000 | _ | 8500 | Mbps | | | | | L=4 | 4000 | _ | 6600 | 4000 | _ | 6600 | Mbps | | | | Supported Data Rate | L=8 | 2000 | _ | 3300 | 2000 | _ | 3300 | Mbps | | | | Range for GX Channels | L=8,
Local/Central
Clock Divider
=2 | 1000 | _ | 1762.5 | 1000 | _ | 1762.5 | Mbps | | | | Supported Data Rate
Range for GT Channels | VCO post-
divider L=2 | 9800 | _ | 14025 | 9800 | _ | 12890 | Mbps | | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | | t _{pll_lock} (14) | _ | _ | _ | 10 | _ | _ | 10 | μs | | | | fPLL | | | • | | | | | | | | | Supported Data Range | _ | 600 | _ | 3250/
3.125 ⁽²³⁾ | 600 | _ | 3250/
3.125 ⁽²³⁾ | Mbps | | | | t _{pll_powerdown} (13) | _ | 1 | _ | _ | 1 | _ | _ | μs | | | Page 38 Switching Characteristics - XFI - ASI - HiGig/HiGig+ - HiGig2/HiGig2+ - Serial Data Converter (SDC) - GPON - SDI - SONET - Fibre Channel (FC) - PCIe - QPI - SFF-8431 Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols. ## **Core Performance Specifications** This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications. ### **Clock Tree Specifications** Table 30 lists the clock tree specifications for Stratix V devices. Table 30. Clock Tree Performance for Stratix V Devices (1) | | Performance | | | | | | | | | |------------------------------|--------------------------|--------------------------|--------|------|--|--|--|--|--| | Symbol | C1, C2, C2L, I2, and I2L | C3, I3, I3L, and
I3YY | C4, I4 | Unit | | | | | | | Global and
Regional Clock | 717 | 650 | 580 | MHz | | | | | | | Periphery Clock | 550 | 500 | 500 | MHz | | | | | | ### Note to Table 30: (1) The Stratix V ES devices are limited to 600 MHz core clock tree performance. Page 44 Switching Characteristics ## **Periphery Performance** This section describes periphery performance, including high-speed I/O and external memory interface. I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load. The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system. ### **High-Speed I/O Specification** Table 36 lists high-speed I/O timing for Stratix V devices. Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 1 of 4) | _ | | | | | | | | | | | | | | | |--|---------------------------------------|-----|-----|------------------|-----|-------------------|-----|-------|-----|------------|-----|-----|------------|-------| | Cumbal | Conditions | C1 | | C2, C2L, I2, I2L | | C3, I3, I3L, I3YY | | C4,I4 | | Unit | | | | | | Symbol | Conuntions | Min | Тур | Max | UIIIL | | f _{HSCLK_in} (input
clock
frequency)
True
Differential
I/O Standards | Clock boost factor
W = 1 to 40 (4) | 5 | | 800 | 5 | _ | 800 | 5 | | 625 | 5 | | 525 | MHz | | f _{HSCLK_in} (input
clock
frequency)
Single Ended
I/O
Standards ⁽³⁾ | Clock boost factor
W = 1 to 40 (4) | 5 | | 800 | 5 | _ | 800 | 5 | | 625 | 5 | | 525 | MHz | | f _{HSCLK_in} (input
clock
frequency)
Single Ended
I/O Standards | Clock boost factor
W = 1 to 40 (4) | 5 | | 520 | 5 | _ | 520 | 5 | | 420 | 5 | | 420 | MHz | | f _{HSCLK_OUT}
(output clock
frequency) | _ | 5 | | 800 | 5 | _ | 800 | 5 | | 625
(5) | 5 | | 525
(5) | MHz | Table 38. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate \geq 1.25 Gbps | Jitter F | Sinusoidal Jitter (UI) | | |----------|------------------------|--------| | F1 | 10,000 | 25.000 | | F2 | 17,565 | 25.000 | | F3 | 1,493,000 | 0.350 | | F4 | 50,000,000 | 0.350 | Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps. Figure 9. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate < 1.25 Gbps ### DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices. Table 39. DLL Range Specifications for Stratix V Devices (1) | C1 | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,I4 | Unit | |---------|------------------|-------------------|---------|------| | 300-933 | 300-933 | 300-890 | 300-890 | MHz | ### Note to Table 39: (1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL. Table 40 lists the DQS phase offset delay per stage for Stratix V devices. Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices (1), (2) (Part 1 of 2) | Speed Grade | Min | Max | Unit | |------------------|-----|-----|------| | C1 | 8 | 14 | ps | | C2, C2L, I2, I2L | 8 | 14 | ps | | C3,I3, I3L, I3YY | 8 | 15 | ps | Page 52 Configuration Specification ### **Duty Cycle Distortion (DCD) Specifications** Table 44 lists the worst-case DCD for Stratix V devices. Table 44. Worst-Case DCD on Stratix V I/O Pins (1) | Symbol | C | :1 | C2, C2 | L, I2, I2L | | 3, I3L,
YY | C4 | 1,14 | Unit | |-------------------|-----|-----|--------|------------|-----|---------------|-----|------|------| | | Min | Max | Min | Max | Min | Max | Min | Max | | | Output Duty Cycle | 45 | 55 | 45 | 55 | 45 | 55 | 45 | 55 | % | #### Note to Table 44: # **Configuration Specification** ## **POR Delay Specification** Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration. For more information about the POR delay, refer to the *Hot Socketing and Power-On Reset in Stratix V Devices* chapter. Table 45 lists the fast and standard POR delay specification. Table 45. Fast and Standard POR Delay Specification (1) | POR Delay | Minimum | Maximum | |-----------|---------|---------| | Fast | 4 ms | 12 ms | | Standard | 100 ms | 300 ms | ### Note to Table 45: ## **JTAG Configuration Specifications** Table 46 lists the JTAG timing parameters and values for Stratix V devices. Table 46. JTAG Timing Parameters and Values for Stratix V Devices | Symbol | Description | Min | Max | Unit | |-------------------------|---------------------------------|-----|-----|------| | t _{JCP} | TCK clock period (2) | 30 | _ | ns | | t _{JCP} | TCK clock period ⁽²⁾ | 167 | _ | ns | | t _{JCH} | TCK clock high time (2) | 14 | _ | ns | | t _{JCL} | TCK clock low time (2) | 14 | _ | ns | | t _{JPSU (TDI)} | TDI JTAG port setup time | 2 | _ | ns | | t _{JPSU (TMS)} | TMS JTAG port setup time | 3 | _ | ns | ⁽¹⁾ The DCD numbers do not cover the core clock network. ⁽¹⁾ You can select the POR delay based on the MSEL settings as described in the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. Configuration Specification Page 55 Table 48. Minimum Configuration Time Estimation for Stratix V Devices | | Member | | Active Serial (1) |) | Fast Passive Parallel (2) | | | | |---------|--------|-------|-------------------|------------------------|---------------------------|------------|------------------------|--| | Variant | Code | Width | DCLK (MHz) | Min Config
Time (s) | Width | DCLK (MHz) | Min Config
Time (s) | | | | D3 | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | | D4 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | GS | | 4 | 100 | 0.344 | 32 | 100 | 0.043 | | | us
 | D5 | 4 | 100 | 0.534 | 32 | 100 | 0.067 | | | | D6 | 4 | 100 | 0.741 | 32 | 100 | 0.093 | | | | D8 | 4 | 100 | 0.741 | 32 | 100 | 0.093 | | | E | E9 | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | | E | EB | 4 | 100 | 0.857 | 32 | 100 | 0.107 | | ### Notes to Table 48: ## **Fast Passive Parallel Configuration Timing** This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices. ## DCLK-to-DATA[] Ratio for FPP Configuration FPP configuration requires a different DCLK-to-DATA[] ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[] ratio for each combination. Table 49. DCLK-to-DATA[] Ratio (1) (Part 1 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | | Disabled | Disabled | 1 | | FPP ×8 | Disabled | Enabled | 1 | | FPP ×0 | Enabled | Disabled | 2 | | | Enabled | Enabled | 2 | | | Disabled | Disabled | 1 | | FPP ×16 | Disabled | Enabled | 2 | | FPP × 10 | Enabled | Disabled | 4 | | | Enabled | Enabled | 4 | ⁽¹⁾ DCLK frequency of 100 MHz using external CLKUSR. ⁽²⁾ Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic. Page 56 Configuration Specification Table 49. DCLK-to-DATA[] Ratio (1) (Part 2 of 2) | Configuration
Scheme | Decompression | Design Security | DCLK-to-DATA[]
Ratio | |-------------------------|---------------|-----------------|-------------------------| | | Disabled | Disabled | 1 | | EDD22 | Disabled | Enabled | 4 | | FPP ×32 | Enabled | Disabled | 8 | | | Enabled | Enabled | 8 | #### Note to Table 49: (1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data. If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio -1) clock cycles after the last data is latched into the Stratix V device. Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration. Figure 11. Single Device FPP Configuration Using an External Host ### Notes to Figure 11: - (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM}. - (2) You can leave the nceo pin unconnected or use it as a user I/O pin when it does not feed another device's nce pin. - (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (4) If you use FPP $\times 8$, use DATA [7..0]. If you use FPP $\times 16$, use DATA [15..0]. Configuration Specification Page 57 ### FPP Configuration Timing when DCLK-to-DATA [] = 1 Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1. Figure 12. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1 (1), (2) ### Notes to Figure 12: - (1) Use this timing waveform when the DCLK-to-DATA[] ratio is 1. - (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (3) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (4) After power-up, before and during configuration, CONF DONE is low. - (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required. - (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings. - (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (8) After the option bit to enable the <code>INIT_DONE</code> pin is configured into the device, the <code>INIT_DONE</code> goes low. Page 58 Configuration Specification Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1. Table 50. FPP Timing Parameters for Stratix V Devices (1) | Symbol | Parameter | Minimum | Maximum | Units | |------------------------|---|--|----------------------|-------| | t _{CF2CD} | nCONFIG low to CONF_DONE low | _ | 600 | ns | | t _{CF2ST0} | nconfig low to nstatus low | _ | 600 | ns | | t _{CFG} | nCONFIG low pulse width | 2 | _ | μS | | t _{STATUS} | nstatus low pulse width | 268 | 1,506 ⁽²⁾ | μ\$ | | t _{CF2ST1} | nCONFIG high to nSTATUS high | _ | 1,506 ⁽³⁾ | μ\$ | | t _{CF2CK} (6) | nCONFIG high to first rising edge on DCLK | 1,506 | _ | μ\$ | | t _{ST2CK} (6) | nSTATUS high to first rising edge of DCLK | 2 | _ | μ\$ | | t _{DSU} | DATA[] setup time before rising edge on DCLK | 5.5 | _ | ns | | t _{DH} | DATA[] hold time after rising edge on DCLK | 0 | _ | ns | | t _{CH} | DCLK high time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CL} | DCLK low time | $0.45 \times 1/f_{MAX}$ | _ | S | | t _{CLK} | DCLK period | 1/f _{MAX} | _ | S | | f | DCLK frequency (FPP ×8/×16) | _ | 125 | MHz | | f _{MAX} | DCLK frequency (FPP ×32) | _ | 100 | MHz | | t _{CD2UM} | CONF_DONE high to user mode (4) | 175 | 437 | μS | | + | GOVER DOVER high to GUVERN anabled | 4 × maximum | | | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t _{CD2CU} + (8576 × CLKUSR period) ⁽⁵⁾ | _ | _ | #### Notes to Table 50: - (1) Use these timing parameters when the decompression and design security features are disabled. - (2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width. - (3) This value is applicable if you do not delay configuration by externally holding the nstatus low. - (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device. - (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. - (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification. ## FPP Configuration Timing when DCLK-to-DATA [] > 1 Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1. Configuration Specification Page 61 ## **Active Serial Configuration Timing** Table 52 lists the DCLK frequency specification in the AS configuration scheme. Table 52. DCLK Frequency Specification in the AS Configuration Scheme (1), (2) | Minimum | Typical | Maximum | Unit | |---------|---------|---------|------| | 5.3 | 7.9 | 12.5 | MHz | | 10.6 | 15.7 | 25.0 | MHz | | 21.3 | 31.4 | 50.0 | MHz | | 42.6 | 62.9 | 100.0 | MHz | #### Notes to Table 52: - (1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source. - (2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz. Figure 14 shows the single-device configuration setup for an AS ×1 mode. Figure 14. AS Configuration Timing ### Notes to Figure 14: - (1) If you are using AS ×4 mode, this signal represents the AS_DATA [3..0] and EPCQ sends in 4-bits of data for each DCLK cycle. - (2) The initialization clock can be from internal oscillator or ${\tt CLKUSR}$ pin. - (3) After the option bit to enable the $INIT_DONE$ pin is configured into the device, the $INIT_DONE$ goes low. Table 53 lists the timing parameters for AS $\times 1$ and AS $\times 4$ configurations in Stratix V devices. Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 1 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |-----------------|---|---------|---------|-------| | t _{CO} | DCLK falling edge to AS_DATAO/ASDO output | _ | 2 | ns | | t _{SU} | Data setup time before falling edge on DCLK | 1.5 | _ | ns | | t _H | Data hold time after falling edge on DCLK | 0 | _ | ns | Page 62 Configuration Specification Table 53. AS Timing Parameters for AS \times 1 and AS \times 4 Configurations in Stratix V Devices (1), (2) (Part 2 of 2) | Symbol | Parameter | Minimum | Maximum | Units | |---------------------|---|--|---------|-------| | t _{CD2UM} | CONF_DONE high to user mode (3) | 175 | 437 | μS | | t _{CD2CU} | CONF_DONE high to CLKUSR enabled | 4 × maximum DCLK period | _ | _ | | t _{CD2UMC} | CONF_DONE high to user mode with CLKUSR option on | t_{CD2CU} + (8576 \times CLKUSR period) | _ | _ | #### Notes to Table 53: - (1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device. - $(2) \quad t_{\text{CF2CD}}, t_{\text{CF2ST0}}, t_{\text{CFG}}, t_{\text{STATUS}}, \text{ and } t_{\text{CF2ST1}} \text{ timing parameters are identical to the timing parameters for PS mode listed in Table 54 on page 63}.$ - (3) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter. ## **Passive Serial Configuration Timing** Figure 15 shows the timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host. Figure 15. PS Configuration Timing Waveform (1) #### Notes to Figure 15: - (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins. - (2) After power-up, the Stratix V device holds nSTATUS low for the time of the POR delay. - (3) After power-up, before and during configuration, CONF DONE is low. - (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient. - (5) DATAO is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**. - (6) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. - (7) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low. Glossary Page 65 Table 58. IOE Programmable Delay for Stratix V Devices (Part 2 of 2) | Parameter | Available M | Min | Fast | Slow Model | | | | | | | | | |-----------|-------------|------------|------------|------------|-------|-------|-------|-------|-------|-------------|-------|------| | (1) | Settings | Offset (2) | Industrial | Commercial | C1 | C2 | C3 | C4 | 12 | 13,
13YY | 14 | Unit | | D3 | 8 | 0 | 1.587 | 1.699 | 2.793 | 2.793 | 2.992 | 3.192 | 2.811 | 3.047 | 3.257 | ns | | D4 | 64 | 0 | 0.464 | 0.492 | 0.838 | 0.838 | 0.924 | 1.011 | 0.843 | 0.920 | 1.006 | ns | | D5 | 64 | 0 | 0.464 | 0.493 | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921 | 1.006 | ns | | D6 | 32 | 0 | 0.229 | 0.244 | 0.415 | 0.415 | 0.458 | 0.503 | 0.418 | 0.456 | 0.499 | ns | ### Notes to Table 58: - (1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor. - (2) Minimum offset does not include the intrinsic delay. ## **Programmable Output Buffer Delay** Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps. Table 59. Programmable Output Buffer Delay for Stratix V Devices (1) | Symbol | Parameter | Typical | Unit | | |---------------------|----------------------------------|-------------|------|--| | | | 0 (default) | ps | | | D | Rising and/or falling edge delay | 25 | ps | | | D _{OUTBUF} | | 50 | ps | | | | | 75 | ps | | ### Note to Table 59: # **Glossary** Table 60 lists the glossary for this chapter. Table 60. Glossary (Part 1 of 4) | Letter | Subject | Definitions | | | |--------|--|--|--|--| | Α | | | | | | В | _ | _ | | | | С | | | | | | D | | | | | | E | | | | | | | f _{HSCLK} | Left and right PLL input clock frequency. | | | | F | f_{HSDR} High-speed I/O block—Maximum and minimum LVDS data transfer rate $(f_{HSDR} = 1/TUI)$, non-DPA. | | | | | | f _{HSDRDPA} | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA. | | | ⁽¹⁾ You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment. Document Revision History Page 69 # **Document Revision History** Table 61 lists the revision history for this chapter. Table 61. Document Revision History (Part 1 of 3) | Date Version | | Changes | | | | | | |---------------|-----|---|--|--|--|--|--| | June 2018 | 3.9 | ■ Added the "Stratix V Device Overshoot Duration" figure. | | | | | | | | | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Stratix V Devices" table. | | | | | | | | | ■ Changed the condition for 100-Ω R _D in the "OCT Without Calibration Resistance Tolerance Specifications for Stratix V Devices" table. | | | | | | | April 2017 | 3.8 | ■ Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table | | | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | | | | | | ■ Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Stratix V Devices When the DCLK-to-DATA[] Ratio is >1" table. | | | | | | | | | ■ Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency" table. | | | | | | | June 2016 | 3.7 | ■ Added the V _{ID} minimum specification for LVPECL in the "Differential I/O Standard Specifications for Stratix V Devices" table | | | | | | | Julie 2010 | | ■ Added the I _{OUT} specification to the "Absolute Maximum Ratings for Stratix V Devices" table. | | | | | | | December 2015 | 3.6 | ■ Added a footnote to the "High-Speed I/O Specifications for Stratix V Devices" table. | | | | | | | December 2015 | 3.5 | ■ Changed the transmitter, receiver, and ATX PLL data rate specifications in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | December 2013 | | ■ Changed the configuration .rbf sizes in the "Uncompressed .rbf Sizes for Stratix V Devices" table. | | | | | | | | | ■ Changed the data rate specification for transceiver speed grade 3 in the following tables: | | | | | | | | | "Transceiver Specifications for Stratix V GX and GS Devices" | | | | | | | | | ■ "Stratix V Standard PCS Approximate Maximum Date Rate" | | | | | | | | | ■ "Stratix V 10G PCS Approximate Maximum Data Rate" | | | | | | | July 2015 | 3.4 | ■ Changed the conditions for reference clock rise and fall time, and added a note to the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | - | | ■ Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | | | | ■ Changed the t _{CO} maximum value in the "AS Timing Parameters for AS '1 and AS '4 Configurations in Stratix V Devices" table. | | | | | | | | | ■ Removed the CDR ppm tolerance specification from the "Transceiver Specifications for Stratix V GX and GS Devices" table. | | | | | | Page 72 Document Revision History