E·XFL

Intel - 5SGXMA4K2F35C2N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	158500
Number of Logic Elements/Cells	420000
Total RAM Bits	37888000
Number of I/O	600
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5sgxma4k2f35c2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V
VI	DC input voltage	-0.5	3.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 3. Absolute Maximum Ratings for Stratix V Devices (Part 2 of 2)

Table 4 lists the absolute conditions for the transceiver power supply for Stratix V GX, GS, and GT devices.

Table 4. Transceiver Power Supply Absolute Conditions for Stratix V GX, GS, and GT Devices

Symbol	Description	Devices	Minimum	Maximum	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	GX, GS, GT	-0.5	3.75	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	GX, GS	-0.5	3.75	V
V _{CCA_GTBR}	Transceiver channel PLL power supply (right side)	GT	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHIP_R}	Transceiver hard IP power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCR_GTBR}	Receiver analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	GX, GS, GT	-0.5	1.35	V
V _{CCT_GTBR}	Transmitter analog power supply for GT channels (right side)	GT	-0.5	1.35	V
V _{CCL_GTBR}	Transmitter clock network power supply (right side)	GT	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	GX, GS, GT	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	GX, GS, GT	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 5 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

abic J. Maxi				
Symbol	Description	Condition (V)	Overshoot Duration as % @ T _J = 100°C	Unit
		3.8	100	%
		3.85	64	%
		3.9	36	%
	AC input voltage	3.95	21	%
Vi (AC)		4	12	%
		4.05	7	%
		4.1	4	%
		4.15	2	%
		4.2	1	%

Table 5. Maximum Allowed Overshoot During Transitions

Figure 1. Stratix V Device Overshoot Duration

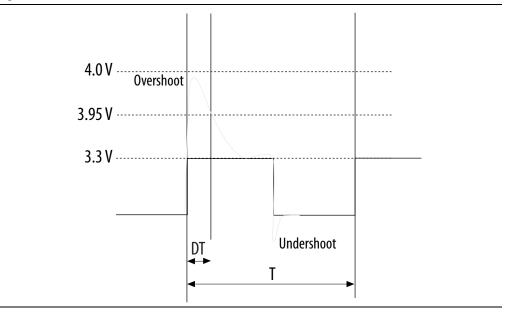


Table 8 shows the transceiver power supply voltage requirements for various conditions.

Table 8. Transceiver Power Supply Voltage Requirements

Conditions	Core Speed Grade	VCCR_GXB & VCCT_GXB ⁽²⁾	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:	All	1.05			
 Data rate > 10.3 Gbps. DFE is used. 	All	1.05			
If ANY of the following conditions are true ⁽¹⁾ :			3.0		
ATX PLL is used.					
■ Data rate > 6.5Gbps.	All	1.0			
■ DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used.				1.5	V
If ALL of the following	C1, C2, I2, and I3YY	0.90	2.5		
conditions are true:ATX PLL is not used.					
■ Data rate ≤ 6.5Gbps.	C2L, C3, C4, I2L, I3, I3L, and I4	0.85	2.5		
 DFE, AEQ, and EyeQ are not used. 					

Notes to Table 8:

(1) Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.

(2) If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to either 0.90 V or 0.85 V, they can be shared with the VCC core supply.

DC Characteristics

This section lists the supply current, I/O pin leakage current, input pin capacitance, on-chip termination tolerance, and hot socketing specifications.

Supply Current

Supply current is the current drawn from the respective power rails used for power budgeting. Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Symbol	Description	V _{CCIO} (V)	Typical	Unit
dR/dT		3.0	0.189	
	OCT variation with temperature without recalibration	2.5	0.208	
		1.8	0.266	%/°C
		1.5	0.273	
		1.2	0.317	

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2)⁽¹⁾

Note to Table 13:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to 85°C.

Pin Capacitance

Table 14 lists the Stratix V device family pin capacitance.

Table 14. Pin Capacitance for Stratix V Devices

Symbol	Description	Value	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	6	рF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	6	рF

Hot Socketing

Table 15 lists the hot socketing specifications for Stratix V devices.

Table 15.	Hot Socketing Specifications for Stratix V Devices
-----------	--

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μA
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Note to Table 15:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{10PIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Symbol/ Description	Conditions	Transceiver Speed Transceiver Speed Grade 1 Grade 2			Transceiver Speed Grade 3			Unit			
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Differential on-	85– Ω setting		85 ± 30%		—	85 ± 30%			85 ± 30%		Ω
	100–Ω setting	_	100 ± 30%		_	100 ± 30%		_	100 ± 30%		Ω
chip termination resistors ⁽²¹⁾	120–Ω setting	_	120 ± 30%		_	120 ± 30%		_	120 ± 30%		Ω
	150-Ω setting	_	150 ± 30%	_	_	150 ± 30%		_	150 ± 30%		Ω
V _{ICM} (AC and DC	V _{CCR_GXB} = 0.85 V or 0.9 V full bandwidth		600		_	600	_		600		mV
	V _{CCR_GXB} = 0.85 V or 0.9 V half bandwidth	_	600	_	_	600	_	_	600	_	mV
coupled)	V _{CCR_GXB} = 1.0 V/1.05 V full bandwidth	_	700		_	700			700		mV
	V _{CCR_GXB} = 1.0 V half bandwidth	_	750	_	_	750	_	_	750	_	mV
t _{LTR} ⁽¹¹⁾	_	—	—	10	—	—	10	—	—	10	μs
t _{LTD} (12)	_	4			4			4			μs
t _{LTD_manual} ⁽¹³⁾		4			4			4	_		μs
t _{LTR_LTD_manual} ⁽¹⁴⁾		15			15	—		15	—		μs
Run Length	_	_		200		—	200		—	200	UI
Programmable equalization (AC Gain) ⁽¹⁰⁾	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)			16	_		16	_		16	dB

 Table 23. Transceiver Specifications for Stratix V GX and GS Devices ⁽¹⁾ (Part 4 of 7)

Table 27 shows the V_{OD} settings for the GX channel.

Symbol	V _{op} Setting	V _{op} Value (mV)	V _{op} Setting	V _{op} Value (mV)
	0 (1)	0	32	640
	1 ⁽¹⁾	20	33	660
	2 (1)	40	34	680
	3 (1)	60	35	700
	4 (1)	80	36	720
	5 (1)	100	37	740
	6	120	38	760
	7	140	39	780
	8	160	40	800
	9	180	41	820
	10	200	42	840
	11	220	43	860
	12	240	44	880
	13	260	45	900
	14	280	46	920
V _{op} differential peak to peak	15	300	47	940
typical ⁽³⁾	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

Table 27. Typical V_{0D} Setting for GX Channel, TX Termination = 100 $\Omega^{\left(2\right)}$

Note to Table 27:

(1) If TX termination resistance = 100Ω , this VOD setting is illegal.

(2) The tolerance is +/-20% for all VOD settings except for settings 2 and below.

(3) Refer to Figure 2.

- XFI
- ASI
- HiGig/HiGig+
- HiGig2/HiGig2+
- Serial Data Converter (SDC)
- GPON
- SDI
- SONET
- Fibre Channel (FC)
- PCIe
- QPI
- SFF-8431

Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols.

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications.

Clock Tree Specifications

Table 30 lists the clock tree specifications for Stratix V devices.

Table 30. Clock Tree Performance for Stratix V Devices (1)

	Performance					
Symbol	C1, C2, C2L, I2, and I2L	C3, I3, I3L, and I3YY	C4, I4	Unit		
Global and Regional Clock	717	650	580	MHz		
Periphery Clock	550	500	500	MHz		

Note to Table 30:

(1) The Stratix V ES devices are limited to 600 MHz core clock tree performance.

Symbol	Parameter	Min	Тур	Max	Unit
+ (3) (4)	Input clock cycle-to-cycle jitter ($f_{REF} \ge 100 \text{ MHz}$)	_	—	0.15	UI (p-p)
t _{INCCJ} ^{(3),} ⁽⁴⁾	Input clock cycle-to-cycle jitter (f _{REF} < 100 MHz)	-750	_	+750	ps (p-p)
t	Period Jitter for dedicated clock output (f_{OUT} \geq 100 MHz)	_	_	175 ⁽¹⁾	ps (p-p)
t _{outpj_dc} ⁽⁵⁾	Period Jitter for dedicated clock output (f _{OUT} < 100 MHz)	_		17.5 ⁽¹⁾	mUI (p-p)
+ (5)	Period Jitter for dedicated clock output in fractional PLL ($f_{0UT} \geq 100 \mbox{ MHz})$	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{foutpj_dc} ⁽⁵⁾	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
+	Cycle-to-Cycle Jitter for a dedicated clock output ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{outccj_dc} ⁽⁵⁾	Cycle-to-Cycle Jitter for a dedicated clock output (f _{0UT} < 100 MHz)	_	_	17.5	mUI (p-p)
+ <i>(5)</i>	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL (f_{OUT} \geq 100 MHz)	_	_	250 ⁽¹¹⁾ , 175 ⁽¹²⁾	ps (p-p)
t _{FOUTCCJ_DC} ⁽⁵⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)+	_	_	25 ⁽¹¹⁾ , 17.5 ⁽¹²⁾	mUI (p-p)
t _{outpj_io} (5),	Period Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} \geq 100 MHz)	_	_	600	ps (p-p)
(8)	Period Jitter for a clock output on a regular I/O (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{FOUTPJ_IO} (5),	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600 (10)	ps (p-p)
(8), (11)	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{outccj_io} (5),	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} \geq 100 MHz)	_	_	600	ps (p-p)
(8)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz)	_	_	60 ⁽¹⁰⁾	mUI (p-p)
t _{foutccj_10} ^{(5),}	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{0UT} \geq 100 \mbox{ MHz})$	_	_	600 ⁽¹⁰⁾	ps (p-p)
(8), (11)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)	_	_	60	mUI (p-p)
t _{casc_outpj_dc}	Period Jitter for a dedicated clock output in cascaded PLLs (f_{0UT} \geq 100 MHz)		_	175	ps (p-p)
(5), (6)	Period Jitter for a dedicated clock output in cascaded PLLs (f _{OUT} < 100 MHz)		_	17.5	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits
k _{value}	Numerator of Fraction	128	8388608	2147483648	

Table 31. PLL Specifications for Stratix V Devices (Part 2 of 3)

Periphery Performance

This section describes periphery performance, including high-speed I/O and external memory interface.

I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load.

The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 36 lists high-speed I/O timing for Stratix V devices.

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 1 of 4)

Sumbol	Conditiono		C1		C2,	C2L, I	2, I2L	C3,	13, 13L	., I 3YY	C4,14			Unit
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards	Clock boost factor W = 1 to 40 $^{(4)}$	5		800	5		800	5		625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards ⁽³⁾	Clock boost factor W = 1 to 40 $^{(4)}$	5		800	5	_	800	5		625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(4)}$	5		520	5	_	520	5		420	5		420	MHz
f _{HSCLK_OUT} (output clock frequency)	_	5	_	800	5	_	800	5	_	625 (5)	5	_	525 (5)	MHz

0b.al	Oanditiana		C1		C2,	C2L, I	2, I2L	C3,	13, 131	., I 3YY	C4,14			11 14
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Transmitter				<u>.</u>						<u>.</u>				
	SERDES factor J = 3 to 10 ⁽⁹⁾ , ⁽¹¹⁾ , ⁽¹²⁾ , ⁽¹³⁾ , ⁽¹⁴⁾ , ⁽¹⁵⁾ , ⁽¹⁶⁾	(6)		1600	(6)		1434	(6)		1250	(6)		1050	Mbps
	SERDES factor J ≥ 4													
True Differential I/O Standards	LVDS TX with DPA ⁽¹²⁾ , ⁽¹⁴⁾ , ⁽¹⁵⁾ , ⁽¹⁶⁾	(6)	_	1600	(6)	_	1600	(6)	_	1600	(6)	_	1250	Mbps
- f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) ⁽¹⁰⁾	SERDES factor J = 4 to 10 (17)	(6)		1100	(6)		1100	(6)		840	(6)		840	Mbps
t _{x Jitter} - True Differential	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_		160	_	_	160			160	_	_	160	ps
I/O Standards	Total Jitter for Data Rate < 600 Mbps	_	_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - Emulated Differential I/O Standards	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_		300	_		300	_	_	300	_		325	ps
with Three External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_		0.2			0.2			0.2	_		0.25	UI

Table 36. High-Speed I/O Specifications for Stratix V Devices ^{(1), (2)} (Part 2 of 4)

i ani o o o i i i i gii	-Speed I/U Specifica		C1				2, I2L		-	., I3YY		C4,I	A	
Symbol	Conditions				-	-	-		-	-		-		Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{duty}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards	_	_	160	_	_	160	_	_	200	_	_	200	ps
t _{rise} & t _{fall}	Emulated Differential I/O Standards with three external output resistor networks			250			250			250			300	ps
	True Differential I/O Standards	_	_	150	_	_	150	_	_	150	_	_	150	ps
TCCS	Emulated Differential I/O Standards	_		300	_	_	300	_	_	300	_	_	300	ps
Receiver														
	SERDES factor J = 3 to 10 (11), (12), (13), (14), (15), (16)	150		1434	150	_	1434	150	_	1250	150	_	1050	Mbps
True Differential I/O Standards	SERDES factor J ≥ 4 LVDS RX with DPA (12), (14), (15), (16)	150		1600	150		1600	150		1600	150		1250	Mbps
- f _{HSDRDPA} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)	_	(7)	(6)	_	(7)	(6)	_	(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)		(7)	(6)		(7)	(6)		(7)	(6)		(7)	Mbps

Table 36. High-Speed I/O Specifications for Stratix V Devices (1), (2) (Part 3 of 4)

Gumbal	Oenditione		C1		C2,	C2L, I	2, I2L	C3,	13, I3L	., I 3 YY		C4,I	4	11
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	SERDES factor J = 3 to 10	(6)	_	(8)	(6)	_	(8)	(6)		(8)	(6)		(8)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(6)		(7)	(6)	_	(7)	(6)		(7)	(6)		(7)	Mbps
	SERDES factor J = 1, uses SDR Register	(6)	_	(7)	(6)	_	(7)	(6)		(7)	(6)		(7)	Mbps
DPA Mode														
DPA run length	—			1000 0		_	1000 0		_	1000 0		_	1000 0	UI
Soft CDR mode)													
Soft-CDR PPM tolerance	_	_	_	300	_	—	300	_		300	_		300	± PPM
Non DPA Mode	•	•		-		-		•		-			-	-
Sampling Window	_			300			300			300			300	ps

Table 36. High-Speed I/O Specifications for Stratix V Devices ^{(1), (2)} (Part 4 of 4)

Notes to Table 36:

(1) When J = 3 to 10, use the serializer/deserializer (SERDES) block.

(2) When J = 1 or 2, bypass the SERDES block.

(3) This only applies to DPA and soft-CDR modes.

(4) Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.

(5) This is achieved by using the **LVDS** clock network.

(6) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

(7) The maximum ideal frequency is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.

(8) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

(9) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.

(10) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.

(11) The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design-dependent and requires timing analysis.

(12) Stratix V RX LVDS will need DPA. For Stratix V TX LVDS, the receiver side component must have DPA.

(13) Stratix V LVDS serialization and de-serialization factor needs to be x4 and above.

(14) Requires package skew compensation with PCB trace length.

(15) Do not mix single-ended I/O buffer within LVDS I/O bank.

(16) Chip-to-chip communication only with a maximum load of 5 pF.

(17) When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

Clock Network	Parameter Symbol		C1		C2, C2L, I2, I2L		C3, I3, I3L, I3YY		C4,14		Unit
NELWURK		-	Min	Max	Min	Max	Min	Max	Min	Max	
	Clock period jitter	$t_{JIT(per)}$	-25	25	-25	25	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	$t_{\text{JIT(cc)}}$	-50	50	-50	50	-60	60	-70	70	ps
	Duty cycle jitter	$t_{\text{JIT}(\text{duty})}$	-37.5	37.5	-37.5	37.5	-45	45	-56	56	ps

Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3)

Notes to Table 42:

(1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

(2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

(3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

OCT Calibration Block Specifications

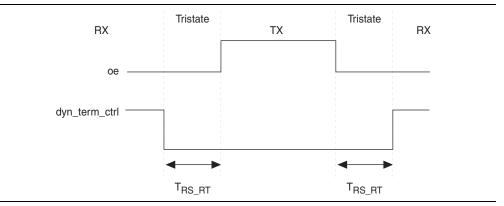
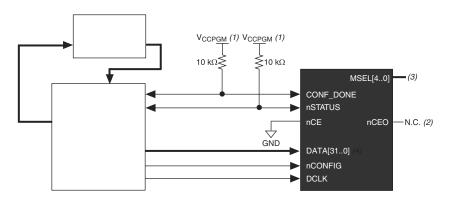

Table 43 lists the OCT calibration block specifications for Stratix V devices.

Table 43. OCT Calibration Block Specifications for Stratix V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks		_	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT $\rm R_S/R_T$ calibration	_	1000	_	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	—	32	_	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (Figure 10)	_	2.5		ns

Figure 10 shows the timing diagram for the oe and dyn_term_ctrl signals.

Figure 10. Timing Diagram for oe and dyn_term_ctrl Signals


Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FPP ×32	Disabled	Enabled	4
FFF X02	Enabled	Disabled	8
	Enabled	Enabled	8

Note to Table 49:

(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA [] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Stratix V devices use the additional clock cycles to decrypt and decompress the configuration data.

Figure 11 shows the configuration interface connections between the Stratix V device and a MAX II or MAX V device for single device configuration.

Figure 11. Single Device FPP Configuration Using an External Host

Notes to Figure 11:

- (1) Connect the resistor to a supply that provides an acceptable input signal for the Stratix V device. V_{CCPGM} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V_{CCPGM} .
- (2) You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device's nCE pin.
- (3) The MSEL pin settings vary for different data width, configuration voltage standards, and POR delay. To connect MSEL, refer to the MSEL Pin Settings section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (4) If you use FPP ×8, use DATA [7..0]. If you use FPP ×16, use DATA [15..0].

IF the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio – 1) clock cycles after the last data is latched into the Stratix V device.

Table 50 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is 1.

Table 50. FPP Timing Parameters for Stratix V Devices (1)

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μS
t _{status}	nSTATUS low pulse width	268	1,506 ⁽²⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽³⁾	μS
t _{CF2CK} (6)	nCONFIG high to first rising edge on DCLK	1,506	_	μS
t _{ST2CK} ⁽⁶⁾	nSTATUS high to first rising edge of DCLK	2	_	μS
t _{DSU}	DATA [] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA [] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45\times1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45\times1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f	DCLK frequency (FPP ×8/×16)	—	125	MHz
f _{MAX}	DCLK frequency (FPP ×32)	—	100	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁴⁾	175	437	μS
+	CONTRACT high to an union analysis	4 × maximum		
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	DCLK period	—	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	$\begin{array}{c} t_{\text{CD2CU}} + \\ (8576 \times \text{CLKUSR} \\ \text{period}) \ ^{(5)} \end{array}$	_	_

Notes to Table 50:

(1) Use these timing parameters when the decompression and design security features are disabled.

(2) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(3) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

- (4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.
- (5) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (6) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

FPP Configuration Timing when DCLK-to-DATA [] > 1

Figure 13 shows the timing waveform for FPP configuration when using a MAX II device, MAX V device, or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1.

Table 54 lists the PS configuration timing parameters for Stratix V devices.

Table 54. PS Timing Parameters for Stratix V Devices

Symbol	Parameter	Minimum	Maximum	Units
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μS
t _{status}	nSTATUS low pulse width	268	1,506 ⁽¹⁾	μS
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 ⁽²⁾	μS
t _{CF2CK} (5)	nCONFIG high to first rising edge on DCLK	1,506	—	μS
t _{ST2CK} ⁽⁵⁾	nSTATUS high to first rising edge of DCLK	2	—	μS
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	—	ns
t _{CH}	DCLK high time	$0.45\times 1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45\times 1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f _{MAX}	DCLK frequency	—	125	MHz
t _{CD2UM}	CONF_DONE high to user mode (3)	175	437	μS
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) ⁽⁴⁾	_	_

Notes to Table 54:

(1) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(2) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

(3) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

(4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section.

(5) If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Initialization

Table 55 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency.

Table 55. Initialization Clock Source Option and the Maximu	m Frequency
---	-------------

Initialization Clock Source	Configuration Schemes	Maximum Frequency	Minimum Number of Clock Cycles ⁽¹⁾
Internal Oscillator	AS, PS, FPP	12.5 MHz	
CLKUSR	AS, PS, FPP ⁽²⁾	125 MHz	8576
DCLK	PS, FPP	125 MHz	

Notes to Table 55:

(1) The minimum number of clock cycles required for device initialization.

(2) To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box.

Remote System Upgrades

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 56. Remote System Upgrade Circuitry Timing Specifications

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} ⁽¹⁾	250	—	ns
t _{RU_nRSTIMER} ⁽²⁾	250	—	ns

Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

User Watchdog Internal Circuitry Timing Specification

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

Table 57. 12.5-MHz Internal Oscillator Specifications

Minimum Typical		Maximum	Units	
5.3 7.9		12.5	MHz	

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

 You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

Programmable IOE Delay

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

Deremeter	Available Settings	Availabla	Min	Fast	Model				Slow N	lodel			
Parameter (1)		Offset (2)	Industrial	Commercial	C1	C2	C3	C4	12	13, 13YY	14	Unit	
D1	64	0	0.464	0.493	0.838	0.838	0.924	1.011	0.844	0.921	1.006	ns	
D2	32	0	0.230	0.244	0.415	0.415	0.459	0.503	0.417	0.456	0.500	ns	

Table 60. Glossary (Part 2 of 4)

Letter	Subject	Definitions
G		
Н	_	_
Ι		
J	J JTAG Timing Specifications	High-speed I/O block—Deserialization factor (width of parallel data bus). JTAG Timing Specifications: TMS
K L M N O	_	_
Ρ	PLL Specifications	Diagram of PLL Specifications (1)
Q		_
	1	

Letter	tter Subject Definitions			
	V _{CM(DC)}	DC common mode input voltage.		
	V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.		
	V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.		
	V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.		
	V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.		
	V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.		
	V _{IH(AC)}	High-level AC input voltage		
	V _{IH(DC)}	High-level DC input voltage		
V	V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.		
	V _{IL(AC)}	Low-level AC input voltage		
	V _{IL(DC)}	Low-level DC input voltage		
	V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.		
	V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.		
	V _{SWING}	Differential input voltage		
	V _X	Input differential cross point voltage		
	V _{OX}	Output differential cross point voltage		
W	N W High-speed I/O block—clock boost factor			
X				
Y	_	_		
Z				

Table 60. Glossary (Part 4 of 4)

Table 61. Document Revision History (Part 3 of 3)

Date	Version	Changes
		■ Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60
May 2013	2.7	■ Added Table 24, Table 48
		 Updated Figure 9, Figure 10, Figure 11, Figure 12
February 2013	2.6	 Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35, Table 46
		 Updated "Maximum Allowed Overshoot and Undershoot Voltage"
		 Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27, Table 30, Table 32, Table 35
		Added Table 33
		 Added "Fast Passive Parallel Configuration Timing"
December 0010	0.5	 Added "Active Serial Configuration Timing"
December 2012	2.5	 Added "Passive Serial Configuration Timing"
		 Added "Remote System Upgrades"
		 Added "User Watchdog Internal Circuitry Timing Specification"
		 Added "Initialization"
		 Added "Raw Binary File Size"
	2.4	 Added Figure 1, Figure 2, and Figure 3.
June 2012		 Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59.
		 Various edits throughout to fix bugs.
		 Changed title of document to Stratix V Device Datasheet.
		 Removed document from the Stratix V handbook and made it a separate document.
February 2012	2.3	■ Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31.
December 2011	2.2	■ Added Table 2–31.
	2.2	■ Updated Table 2–28 and Table 2–34.
Neurometren 0011	0.1	 Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about Stratix V GT devices.
November 2011	2.1	■ Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25.
		 Various edits throughout to fix SPRs.
		 Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and Table 2–24.
May 2011	2.0	 Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title.
		 Chapter moved to Volume 1.
		 Minor text edits.
		■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23.
December 2010	1.1	 Converted chapter to the new template.
		 Minor text edits.
July 2010	1.0	Initial release.