# E·XFL

#### Intel - 5SGXMA4K2F35I3LN Datasheet



Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Details                        |                                                             |
|--------------------------------|-------------------------------------------------------------|
| Product Status                 | Obsolete                                                    |
| Number of LABs/CLBs            | 158500                                                      |
| Number of Logic Elements/Cells | 420000                                                      |
| Total RAM Bits                 | 37888000                                                    |
| Number of I/O                  | 600                                                         |
| Number of Gates                | -                                                           |
| Voltage - Supply               | 0.82V ~ 0.88V                                               |
| Mounting Type                  | Surface Mount                                               |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                          |
| Package / Case                 | 1152-BBGA, FCBGA                                            |
| Supplier Device Package        | 1152-FBGA (35x35)                                           |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/5sgxma4k2f35i3In |
|                                |                                                             |

Email: info@E-XFL.COM

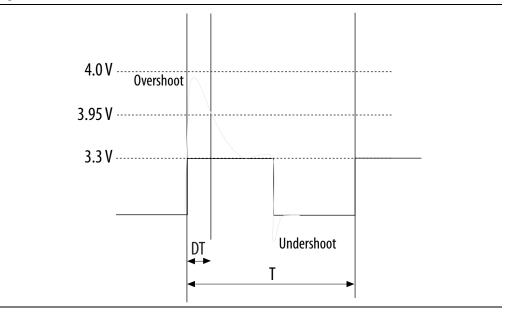

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 3.95 V can be at 3.95 V for only ~21% over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~2 years.

| abic J. Maxi |                  |               |                                                     |      |
|--------------|------------------|---------------|-----------------------------------------------------|------|
| Symbol       | Description      | Condition (V) | Overshoot Duration as %<br>@ T <sub>J</sub> = 100°C | Unit |
|              |                  | 3.8           | 100                                                 | %    |
|              |                  | 3.85          | 64                                                  | %    |
|              |                  | 3.9           | 36                                                  | %    |
|              |                  | 3.95          | 21                                                  | %    |
| Vi (AC)      | AC input voltage | 4             | 12                                                  | %    |
|              |                  | 4.05          | 7                                                   | %    |
|              |                  | 4.1           | 4                                                   | %    |
|              |                  | 4.15          | 2                                                   | %    |
|              |                  | 4.2           | 1                                                   | %    |

Table 5. Maximum Allowed Overshoot During Transitions

#### Figure 1. Stratix V Device Overshoot Duration



| Symbol                | Description                                                  | Devices    | Minimum <sup>(4)</sup> | Typical | Maximum <sup>(4)</sup> | Unit |
|-----------------------|--------------------------------------------------------------|------------|------------------------|---------|------------------------|------|
|                       |                                                              |            | 0.82                   | 0.85    | 0.88                   | V    |
| V <sub>CCR_GXBR</sub> | Receiver analog power supply (right side)                    | GX, GS, GT | 0.87                   | 0.90    | 0.93                   |      |
| (2)                   | Receiver analog power supply (right side)                    | un, us, ui | 0.97                   | 1.0     | 1.03                   | v    |
|                       |                                                              |            | 1.03                   | 1.05    | 1.07                   |      |
| V <sub>CCR_GTBR</sub> | Receiver analog power supply for GT channels (right side)    | GT         | 1.02                   | 1.05    | 1.08                   | V    |
|                       |                                                              |            | 0.82                   | 0.85    | 0.88                   | V    |
| V <sub>CCT_GXBL</sub> | Transmitter analog newer supply (left side)                  | GX, GS, GT | 0.87                   | 0.90    | 0.93                   |      |
|                       | Transmitter analog power supply (left side)                  |            | 0.97                   | 1.0     | 1.03                   |      |
|                       |                                                              |            | 1.03                   | 1.05    | 1.07                   |      |
|                       |                                                              | GX, GS, GT | 0.82                   | 0.85    | 0.88                   | V    |
| V <sub>CCT_GXBR</sub> | Transmitter analog nower supply (right side)                 |            | 0.87                   | 0.90    | 0.93                   |      |
| (2)                   | Transmitter analog power supply (right side)                 |            | 0.97                   | 1.0     | 1.03                   |      |
|                       |                                                              |            | 1.03                   | 1.05    | 1.07                   |      |
| V <sub>CCT_GTBR</sub> | Transmitter analog power supply for GT channels (right side) | GT         | 1.02                   | 1.05    | 1.08                   | V    |
| $V_{CCL\_GTBR}$       | Transmitter clock network power supply                       | GT         | 1.02                   | 1.05    | 1.08                   | V    |
| V <sub>CCH_GXBL</sub> | Transmitter output buffer power supply (left side)           | GX, GS, GT | 1.425                  | 1.5     | 1.575                  | V    |
| V <sub>CCH_GXBR</sub> | Transmitter output buffer power supply (right side)          | GX, GS, GT | 1.425                  | 1.5     | 1.575                  | V    |

| Table 7. | Recommended Transceiver Power Supply Operating Conditions for Stratix V GX, | GS, and GT Devices |
|----------|-----------------------------------------------------------------------------|--------------------|
| (Part 2  | of 2)                                                                       |                    |

#### Notes to Table 7:

(1) This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

(2) Refer to Table 8 to select the correct power supply level for your design.

(3) When using ATX PLLs, the supply must be 3.0 V.

(4) This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

| Symbol | Description                                          | V <sub>CCIO</sub> (V) | Typical | Unit |
|--------|------------------------------------------------------|-----------------------|---------|------|
| dR/dT  |                                                      | 3.0                   | 0.189   |      |
|        | OCT variation with temperature without recalibration | 2.5                   | 0.208   |      |
|        |                                                      | 1.8                   | 0.266   | %/°C |
|        | without robalibration                                | 1.5                   | 0.273   |      |
|        |                                                      | 1.2                   | 0.317   |      |

Table 13. OCT Variation after Power-Up Calibration for Stratix V Devices (Part 2 of 2)<sup>(1)</sup>

#### Note to Table 13:

(1) Valid for a  $V_{CCIO}$  range of  $\pm 5\%$  and a temperature range of 0° to 85°C.

#### **Pin Capacitance**

Table 14 lists the Stratix V device family pin capacitance.

#### Table 14. Pin Capacitance for Stratix V Devices

| Symbol             | Description                                                      | Value | Unit |
|--------------------|------------------------------------------------------------------|-------|------|
| C <sub>IOTB</sub>  | Input capacitance on the top and bottom I/O pins                 | 6     | pF   |
| C <sub>IOLR</sub>  | Input capacitance on the left and right I/O pins                 | 6     | pF   |
| C <sub>OUTFB</sub> | Input capacitance on dual-purpose clock output and feedback pins | 6     | рF   |

#### **Hot Socketing**

Table 15 lists the hot socketing specifications for Stratix V devices.

| Table 15. | Hot Socketing Specifications for Stratix V Devices |
|-----------|----------------------------------------------------|
|-----------|----------------------------------------------------|

| Symbol                    | Description                                | Maximum             |
|---------------------------|--------------------------------------------|---------------------|
| I <sub>IOPIN (DC)</sub>   | DC current per I/O pin                     | 300 μA              |
| I <sub>IOPIN (AC)</sub>   | AC current per I/O pin                     | 8 mA <sup>(1)</sup> |
| I <sub>XCVR-TX (DC)</sub> | DC current per transceiver transmitter pin | 100 mA              |
| I <sub>XCVR-RX (DC)</sub> | DC current per transceiver receiver pin    | 50 mA               |

#### Note to Table 15:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns,  $|I_{10PIN}| = C dv/dt$ , in which C is the I/O pin capacitance and dv/dt is the slew rate.

#### **Internal Weak Pull-Up Resistor**

Table 16 lists the weak pull-up resistor values for Stratix V devices.

| Symbol          | Description                                                                   | V <sub>CCIO</sub> Conditions<br>(V) <sup>(3)</sup> | Value <sup>(4)</sup> | Unit |
|-----------------|-------------------------------------------------------------------------------|----------------------------------------------------|----------------------|------|
|                 |                                                                               | 3.0 ±5%                                            | 25                   | kΩ   |
| R <sub>PU</sub> |                                                                               | 2.5 ±5%                                            | 25                   | kΩ   |
|                 | Value of the I/O pin pull-up resistor before                                  | 1.8 ±5%                                            | 25                   | kΩ   |
|                 | and during configuration, as well as user mode if you enable the programmable | 1.5 ±5%                                            | 25                   | kΩ   |
|                 | pull-up resistor option.                                                      | 1.35 ±5%                                           | 25                   | kΩ   |
|                 |                                                                               | 1.25 ±5%                                           | 25                   | kΩ   |
|                 |                                                                               | 1.2 ±5%                                            | 25                   | kΩ   |

Table 16. Internal Weak Pull-Up Resistor for Stratix V Devices (1), (2)

Notes to Table 16:

(1) All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins.

(2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k $\Omega$ .

- (3) The pin pull-up resistance values may be lower if an external source drives the pin higher than V<sub>CCIO</sub>.
- (4) These specifications are valid with a  $\pm 10\%$  tolerance to cover changes over PVT.

### I/O Standard Specifications

Table 17 through Table 22 list the input voltage (V<sub>IH</sub> and V<sub>IL</sub>), output voltage (V<sub>OH</sub> and V<sub>OL</sub>), and current drive characteristics (I<sub>OH</sub> and I<sub>OL</sub>) for various I/O standards supported by Stratix V devices. These tables also show the Stratix V device family I/O standard specifications. The V<sub>OL</sub> and V<sub>OH</sub> values are valid at the corresponding I<sub>OH</sub> and I<sub>OL</sub>, respectively.

For an explanation of the terms used in Table 17 through Table 22, refer to "Glossary" on page 65. For tolerance calculations across all SSTL and HSTL I/O standards, refer to Altera knowledge base solution rd07262012\_486.

| I/O      | V <sub>CCIO</sub> (V) |     | V <sub>IL</sub> (V) |      | V <sub>IH</sub> (V)         |                             | V <sub>OL</sub> (V)     | V <sub>OH</sub> (V)         | IOL                         | I <sub>oh</sub> |      |
|----------|-----------------------|-----|---------------------|------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-----------------|------|
| Standard | Min                   | Тур | Max                 | Min  | Max                         | x Min Max Max               |                         | Max Min                     |                             | (mĀ)            | (mÅ) |
| LVTTL    | 2.85                  | 3   | 3.15                | -0.3 | 0.8                         | 1.7                         | 3.6                     | 0.4                         | 2.4                         | 2               | -2   |
| LVCMOS   | 2.85                  | 3   | 3.15                | -0.3 | 0.8                         | 1.7                         | 3.6                     | 0.2                         | $V_{CCI0} - 0.2$            | 0.1             | -0.1 |
| 2.5 V    | 2.375                 | 2.5 | 2.625               | -0.3 | 0.7                         | 1.7                         | 3.6                     | 0.4                         | 2                           | 1               | -1   |
| 1.8 V    | 1.71                  | 1.8 | 1.89                | -0.3 | 0.35 *<br>V <sub>CCI0</sub> | 0.65 *<br>V <sub>CCI0</sub> | V <sub>CCI0</sub> + 0.3 | 0.45                        | V <sub>CCI0</sub> –<br>0.45 | 2               | -2   |
| 1.5 V    | 1.425                 | 1.5 | 1.575               | -0.3 | 0.35 *<br>V <sub>CCI0</sub> | 0.65 *<br>V <sub>CCI0</sub> | V <sub>CCI0</sub> + 0.3 | 0.25 *<br>V <sub>CCI0</sub> | 0.75 *<br>V <sub>CCIO</sub> | 2               | -2   |
| 1.2 V    | 1.14                  | 1.2 | 1.26                | -0.3 | 0.35 *<br>V <sub>CCI0</sub> | 0.65 *<br>V <sub>CCIO</sub> | V <sub>CCI0</sub> + 0.3 | 0.25 *<br>V <sub>CCI0</sub> | 0.75 *<br>V <sub>CCI0</sub> | 2               | -2   |

Table 17. Single-Ended I/O Standards for Stratix V Devices

| I/O Standard            |       | V <sub>ccio</sub> (V) |       |                             | V <sub>REF</sub> (V)    |                             | V <sub>Π</sub> (V)          |                            |                             |  |
|-------------------------|-------|-----------------------|-------|-----------------------------|-------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|--|
| i/o Stanuaru            | Min   | Тур                   | Max   | Min                         | Min Typ                 |                             | Min                         | Тур                        | Max                         |  |
| SSTL-2<br>Class I, II   | 2.375 | 2.5                   | 2.625 | 0.49 *<br>V <sub>CCIO</sub> | 0.5 * V <sub>CCIO</sub> | 0.51 *<br>V <sub>CCIO</sub> | V <sub>REF</sub> –<br>0.04  | V <sub>REF</sub>           | V <sub>REF</sub> +<br>0.04  |  |
| SSTL-18<br>Class I, II  | 1.71  | 1.8                   | 1.89  | 0.833                       | 0.9                     | 0.969                       | V <sub>REF</sub> –<br>0.04  | V <sub>REF</sub>           | V <sub>REF</sub> +<br>0.04  |  |
| SSTL-15<br>Class I, II  | 1.425 | 1.5                   | 1.575 | 0.49 *<br>V <sub>CCIO</sub> | 0.5 * V <sub>CCIO</sub> | 0.51 *<br>V <sub>CCIO</sub> | 0.49 *<br>V <sub>CCI0</sub> | 0.5 *<br>VCCIO             | 0.51 *<br>V <sub>CCIO</sub> |  |
| SSTL-135<br>Class I, II | 1.283 | 1.35                  | 1.418 | 0.49 *<br>V <sub>CCIO</sub> | 0.5 * V <sub>CCIO</sub> | 0.51 *<br>V <sub>CCIO</sub> | 0.49 *<br>V <sub>CCI0</sub> | 0.5 *<br>V <sub>CCIO</sub> | 0.51 *<br>V <sub>CCIO</sub> |  |
| SSTL-125<br>Class I, II | 1.19  | 1.25                  | 1.26  | 0.49 *<br>V <sub>CCIO</sub> | 0.5 * V <sub>CCIO</sub> | 0.51 *<br>V <sub>CCI0</sub> | 0.49 *<br>V <sub>CCI0</sub> | 0.5 *<br>VCCIO             | 0.51 *<br>V <sub>CCIO</sub> |  |
| SSTL-12<br>Class I, II  | 1.14  | 1.20                  | 1.26  | 0.49 *<br>V <sub>CCIO</sub> | 0.5 * V <sub>CCIO</sub> | 0.51 *<br>V <sub>CCIO</sub> | 0.49 *<br>V <sub>CCI0</sub> | 0.5 *<br>VCCIO             | 0.51 *<br>V <sub>CCIO</sub> |  |
| HSTL-18<br>Class I, II  | 1.71  | 1.8                   | 1.89  | 0.85                        | 0.9                     | 0.95                        | _                           | V <sub>CCI0</sub> /2       | _                           |  |
| HSTL-15<br>Class I, II  | 1.425 | 1.5                   | 1.575 | 0.68                        | 0.75                    | 0.9                         | _                           | V <sub>CCI0</sub> /2       | _                           |  |
| HSTL-12<br>Class I, II  | 1.14  | 1.2                   | 1.26  | 0.47 *<br>V <sub>CCI0</sub> | 0.5 * V <sub>CCIO</sub> | 0.53 *<br>V <sub>CCIO</sub> | —                           | V <sub>CCI0</sub> /2       |                             |  |
| HSUL-12                 | 1.14  | 1.2                   | 1.3   | 0.49 *<br>V <sub>CCIO</sub> | 0.5 * V <sub>CCIO</sub> | 0.51 *<br>V <sub>CCIO</sub> | —                           | _                          | _                           |  |

| Table 18. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix V Device | es |
|-------------------------------------------------------------------------------------------------------|----|
|-------------------------------------------------------------------------------------------------------|----|

| Table 19. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix V Devices | (Part 1 of 2) |
|-------------------------------------------------------------------------------------------------------|---------------|
|-------------------------------------------------------------------------------------------------------|---------------|

| I/O Standard            | V <sub>IL(D(</sub> | <sub>:)</sub> (V)           | V <sub>IH(D</sub>           | <sub>C)</sub> (V)       | V <sub>IL(AC)</sub> (V)     | V <sub>IH(AC)</sub> (V)     | V <sub>ol</sub> (V)        | V <sub>oh</sub> (V)         | L (mA)               | I <sub>oh</sub> |
|-------------------------|--------------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------|-----------------|
| ijo Stanuaru            | Min                | Max                         | Min                         | Max                     | Max                         | Min                         | Max                        | Min                         | I <sub>ol</sub> (mA) | (mÅ)            |
| SSTL-2<br>Class I       | -0.3               | V <sub>REF</sub> –<br>0.15  | V <sub>REF</sub> +<br>0.15  | V <sub>CCIO</sub> + 0.3 | V <sub>REF</sub> –<br>0.31  | V <sub>REF</sub> + 0.31     | V <sub>TT</sub> –<br>0.608 | V <sub>TT</sub> +<br>0.608  | 8.1                  | -8.1            |
| SSTL-2<br>Class II      | -0.3               | V <sub>REF</sub> –<br>0.15  | V <sub>REF</sub> +<br>0.15  | V <sub>CCI0</sub> + 0.3 | V <sub>REF</sub> –<br>0.31  | V <sub>REF</sub> + 0.31     | V <sub>TT</sub> –<br>0.81  | V <sub>TT</sub> +<br>0.81   | 16.2                 | -16.2           |
| SSTL-18<br>Class I      | -0.3               | V <sub>REF</sub> –<br>0.125 | V <sub>REF</sub> +<br>0.125 | V <sub>CCI0</sub> + 0.3 | V <sub>REF</sub> –<br>0.25  | V <sub>REF</sub> + 0.25     | V <sub>TT</sub> –<br>0.603 | V <sub>TT</sub> +<br>0.603  | 6.7                  | -6.7            |
| SSTL-18<br>Class II     | -0.3               | V <sub>REF</sub> –<br>0.125 | V <sub>REF</sub> +<br>0.125 | V <sub>CCI0</sub> + 0.3 | V <sub>REF</sub> –<br>0.25  | V <sub>REF</sub> + 0.25     | 0.28                       | V <sub>CCI0</sub> –<br>0.28 | 13.4                 | -13.4           |
| SSTL-15<br>Class I      |                    | V <sub>REF</sub> –<br>0.1   | V <sub>REF</sub> + 0.1      | _                       | V <sub>REF</sub> –<br>0.175 | V <sub>REF</sub> +<br>0.175 | 0.2 *<br>V <sub>CCI0</sub> | 0.8 *<br>V <sub>CCI0</sub>  | 8                    | -8              |
| SSTL-15<br>Class II     | _                  | V <sub>REF</sub> –<br>0.1   | V <sub>REF</sub> + 0.1      | _                       | V <sub>REF</sub> –<br>0.175 | V <sub>REF</sub> +<br>0.175 | 0.2 *<br>V <sub>CCI0</sub> | 0.8 *<br>V <sub>CCI0</sub>  | 16                   | -16             |
| SSTL-135<br>Class I, II |                    | V <sub>REF</sub> –<br>0.09  | V <sub>REF</sub> + 0.09     | _                       | V <sub>REF</sub> –<br>0.16  | V <sub>REF</sub> + 0.16     | 0.2 *<br>V <sub>CCI0</sub> | 0.8 *<br>V <sub>CCI0</sub>  | _                    | _               |
| SSTL-125<br>Class I, II |                    | V <sub>REF</sub> –<br>0.85  | V <sub>REF</sub> + 0.85     | _                       | V <sub>REF</sub> –<br>0.15  | V <sub>REF</sub> + 0.15     | 0.2 *<br>V <sub>CCI0</sub> | 0.8 *<br>V <sub>CCI0</sub>  | _                    | _               |
| SSTL-12<br>Class I, II  |                    | V <sub>REF</sub> –<br>0.1   | V <sub>REF</sub> +<br>0.1   |                         | V <sub>REF</sub> –<br>0.15  | V <sub>REF</sub> + 0.15     | 0.2 *<br>V <sub>CCIO</sub> | 0.8 *<br>V <sub>CCIO</sub>  |                      | _               |

# **Switching Characteristics**

This section provides performance characteristics of the Stratix V core and periphery blocks.

These characteristics can be designated as Preliminary or Final.

- Preliminary characteristics are created using simulation results, process data, and other known parameters. The title of these tables show the designation as "Preliminary."
- Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables.

# **Transceiver Performance Specifications**

This section describes transceiver performance specifications.

Table 23 lists the Stratix V GX and GS transceiver specifications.

| Table 23. | <b>Transceiver S</b> | necifications ( | for Stratix | V GX and GS | Devices (1) | (Part 1 of 7)   |
|-----------|----------------------|-----------------|-------------|-------------|-------------|-----------------|
|           | 114113001101 0       | poontoutions    | IOI OUIUUA  |             |             | (1 41 ( 1 01 1) |

| Symbol/<br>Description                                         | Conditions                                                        | Transceiver Speed Transceiver Speed Transceiver S<br>Grade 1 Grade 2 Grade 3 |                                                                                     |     |     |     | Unit |     |     |     |     |  |
|----------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----|-----|-----|------|-----|-----|-----|-----|--|
| Description                                                    |                                                                   | Min                                                                          | Тур                                                                                 | Max | Min | Тур | Max  | Min | Тур | Max |     |  |
| leference Clock                                                |                                                                   |                                                                              |                                                                                     |     |     |     |      |     |     |     |     |  |
| Supported I/O<br>Standards                                     | Dedicated<br>reference<br>clock pin                               | 1.2-V                                                                        | 1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVDS, and HCSL |     |     |     |      |     |     |     |     |  |
| Standards                                                      | RX reference<br>clock pin                                         |                                                                              | 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS                                |     |     |     |      |     |     |     |     |  |
| Input Reference<br>Clock Frequency<br>(CMU PLL) <sup>(8)</sup> | _                                                                 | 40                                                                           | _                                                                                   | 710 | 40  | _   | 710  | 40  | _   | 710 | MHz |  |
| Input Reference<br>Clock Frequency<br>(ATX PLL) <sup>(8)</sup> | _                                                                 | 100                                                                          |                                                                                     | 710 | 100 |     | 710  | 100 | _   | 710 | MHz |  |
| Rise time                                                      | Measure at<br>±60 mV of<br>differential<br>signal <sup>(26)</sup> | _                                                                            | _                                                                                   | 400 | _   | _   | 400  | _   | _   | 400 | ps  |  |
| Fall time                                                      | Measure at<br>±60 mV of<br>differential<br>signal <sup>(26)</sup> | _                                                                            | _                                                                                   | 400 |     |     | 400  | _   |     | 400 | μο  |  |
| Duty cycle                                                     | —                                                                 | 45                                                                           |                                                                                     | 55  | 45  |     | 55   | 45  | —   | 55  | %   |  |
| Spread-spectrum<br>modulating clock<br>frequency               | PCI Express®<br>(PCIe <sup>®</sup> )                              | 30                                                                           |                                                                                     | 33  | 30  |     | 33   | 30  |     | 33  | kHz |  |

### Table 23. Transceiver Specifications for Stratix V GX and GS Devices <sup>(1)</sup> (Part 6 of 7)

| Symbol/                                                               | Conditions                                   | Trai | isceive<br>Grade | r Speed<br>1                  | Trar | isceive<br>Grade | r Speed<br>2                  | Tran | nsceiver Speed<br>Grade 3 |                               | Unit |  |
|-----------------------------------------------------------------------|----------------------------------------------|------|------------------|-------------------------------|------|------------------|-------------------------------|------|---------------------------|-------------------------------|------|--|
| Description                                                           |                                              | Min  | Тур              | Max                           | Min  | Тур              | Max                           | Min  | Тур                       | Max                           |      |  |
| Inter-transceiver<br>block transmitter<br>channel-to-<br>channel skew | xN PMA<br>bonded mode                        |      |                  | 500                           | _    |                  | 500                           | _    |                           | 500                           | ps   |  |
| CMU PLL                                                               |                                              |      |                  |                               |      |                  |                               |      |                           |                               |      |  |
| Supported Data<br>Range                                               | _                                            | 600  |                  | 12500                         | 600  | _                | 12500                         | 600  | _                         | 8500/<br>10312.5<br>(24)      | Mbps |  |
| t <sub>pll_powerdown</sub> <sup>(15)</sup>                            | _                                            | 1    |                  | —                             | 1    | —                | —                             | 1    | —                         | —                             | μs   |  |
| t <sub>pll_lock</sub> (16)                                            | _                                            |      | _                | 10                            | —    | _                | 10                            | —    | —                         | 10                            | μs   |  |
| ATX PLL                                                               | 1                                            |      |                  |                               |      |                  |                               |      |                           |                               |      |  |
|                                                                       | VCO<br>post-divider<br>L=2                   | 8000 |                  | 14100                         | 8000 | _                | 12500                         | 8000 | _                         | 8500/<br>10312.5<br>(24)      | Mbps |  |
| Current and Date                                                      | L=4                                          | 4000 | _                | 7050                          | 4000 | _                | 6600                          | 4000 | —                         | 6600                          | Mbps |  |
| Supported Data<br>Rate Range                                          | L=8                                          | 2000 | _                | 3525                          | 2000 | _                | 3300                          | 2000 | _                         | 3300                          | Mbps |  |
|                                                                       | L=8,<br>Local/Central<br>Clock Divider<br>=2 | 1000 | _                | 1762.5                        | 1000 |                  | 1762.5                        | 1000 |                           | 1762.5                        | Mbps |  |
| t <sub>pll_powerdown</sub> (15)                                       | _                                            | 1    |                  | _                             | 1    |                  |                               | 1    | —                         | _                             | μs   |  |
| t <sub>pll_lock</sub> <sup>(16)</sup>                                 | —                                            |      |                  | 10                            | —    | —                | 10                            | —    | —                         | 10                            | μs   |  |
| fPLL                                                                  | •                                            |      |                  | •                             |      |                  |                               |      | •                         |                               |      |  |
| Supported Data<br>Range                                               | _                                            | 600  | _                | 3250/<br>3125 <sup>(25)</sup> | 600  | _                | 3250/<br>3125 <sup>(25)</sup> | 600  | _                         | 3250/<br>3125 <sup>(25)</sup> | Mbps |  |
| t <sub>pll_powerdown</sub> <sup>(15)</sup>                            | _                                            | 1    | _                | _                             | 1    | _                | —                             | 1    | —                         | —                             | μs   |  |

| Table 28. Transceiver Specifications for Stratix V GT Devices (Part 5 of 5) ( | Fransceiver Specifications for Stratix V GT Devices (Part 5 of 5) <sup>(1)</sup> |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|

| Symbol/<br>Description                | Conditions |     | Transceivei<br>peed Grade |     |     | Fransceive<br>Deed Grade |     | Unit |
|---------------------------------------|------------|-----|---------------------------|-----|-----|--------------------------|-----|------|
| Description                           |            | Min | Тур                       | Max | Min | Тур                      | Max |      |
| t <sub>pll_lock</sub> <sup>(14)</sup> | —          | —   | _                         | 10  | —   | —                        | 10  | μs   |

#### Notes to Table 28:

- (1) Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Stratix V Device Overview.
- (2) The reference clock common mode voltage is equal to the VCCR\_GXB power supply level.
- (3) The device cannot tolerate prolonged operation at this absolute maximum.
- (4) The differential eye opening specification at the receiver input pins assumes that receiver equalization is disabled. If you enable receiver equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.
- (5) Refer to Figure 5 for the GT channel AC gain curves. The total effective AC gain is the AC gain minus the DC gain.
- (6) Refer to Figure 6 for the GT channel DC gain curves.
- (7) CFP2 optical modules require the host interface to have the receiver data pins differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (8) Specifications for this parameter are the same as for Stratix V GX and GS devices. See Table 23 for specifications.
- (9) t<sub>1 TR</sub> is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.
- (10) t<sub>LTD</sub> is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high.
- (11)  $t_{LTD\_manual}$  is the time required for the receiver CDR to start recovering valid data after the rx\_is\_lockedtodata signal goes high when the CDR is functioning in the manual mode.
- (12) t<sub>LTR\_LTD\_manual</sub> is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx\_is\_lockedtoref signal goes high when the CDR is functioning in the manual mode.
- (13) tpll\_powerdown is the PLL powerdown minimum pulse width.
- (14) tpll lock is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.
- (15) To calculate the REFCLK rms phase jitter requirement for PCle at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz × 100/f.
- (16) The maximum peak to peak differential input voltage  $V_{ID}$  after device configuration is equal to 4 × (absolute  $V_{MAX}$  for receiver pin  $V_{ICM}$ ).
- (17) For ES devices, RREF is 2000  $\Omega \pm 1\%$ .
- (18) To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20\*log(f/622).
- (19) SFP/+ optical modules require the host interface to have RD+/- differentially terminated with 100 Ω. The internal OCT feature is available after the Stratix V FPGA configuration is completed. Altera recommends that FPGA configuration is completed before inserting the optical module. Otherwise, minimize unnecessary removal and insertion with unconfigured devices.
- (20) Refer to Figure 4.
- (21) For oversampling design to support data rates less than the minimum specification, the CDR needs to be in LTR mode only.
- (22) This supply follows VCCR\_GXB for both GX and GT channels.
- (23) When you use fPLL as a TXPLL of the transceiver.

Figure 6 shows the Stratix V DC gain curves for GT channels.

Figure 6. DC Gain Curves for GT Channels

#### **Transceiver Characterization**

This section summarizes the Stratix V transceiver characterization results for compliance with the following protocols:

- Interlaken
- 40G (XLAUI)/100G (CAUI)
- 10GBase-KR
- QSGMII
- XAUI
- SFI
- Gigabit Ethernet (Gbe / GIGE)
- SPAUI
- Serial Rapid IO (SRIO)
- CPRI
- OBSAI
- Hyper Transport (HT)
- SATA
- SAS
- CEI

- XFI
- ASI
- HiGig/HiGig+
- HiGig2/HiGig2+
- Serial Data Converter (SDC)
- GPON
- SDI
- SONET
- Fibre Channel (FC)
- PCIe
- QPI
- SFF-8431

Download the Stratix V Characterization Report Tool to view the characterization report summary for these protocols.

# **Core Performance Specifications**

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), memory blocks, configuration, and JTAG specifications.

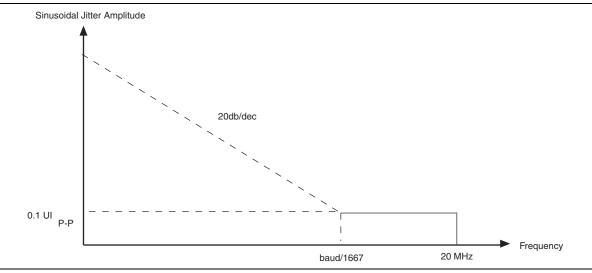
### **Clock Tree Specifications**

Table 30 lists the clock tree specifications for Stratix V devices.

Table 30. Clock Tree Performance for Stratix V Devices (1)

|                              | Performance                 |                          |        |      |  |  |
|------------------------------|-----------------------------|--------------------------|--------|------|--|--|
| Symbol                       | C1, C2, C2L, I2, and<br>I2L | C3, I3, I3L, and<br>I3YY | C4, I4 | Unit |  |  |
| Global and<br>Regional Clock | 717                         | 650                      | 580    | MHz  |  |  |
| Periphery Clock              | 550                         | 500                      | 500    | MHz  |  |  |

#### Note to Table 30:


(1) The Stratix V ES devices are limited to 600 MHz core clock tree performance.

| Jitter Fre | Sinusoidal Jitter (UI) |        |
|------------|------------------------|--------|
| F1         | 10,000                 | 25.000 |
| F2         | 17,565                 | 25.000 |
| F3         | 1,493,000              | 0.350  |
| F4         | 50,000,000             | 0.350  |

| Table 38. | LVDS Soft-CDR/DP/ | Sinusoidal J | itter Mask Value | es for a Data Rat | e > 1.25 Gbps |
|-----------|-------------------|--------------|------------------|-------------------|---------------|
|-----------|-------------------|--------------|------------------|-------------------|---------------|

Figure 9 shows the **LVDS** soft-CDR/DPA sinusoidal jitter tolerance specification for a data rate < 1.25 Gbps.





#### **DLL Range, DQS Logic Block, and Memory Output Clock Jitter Specifications**

Table 39 lists the DLL range specification for Stratix V devices. The DLL is always in 8-tap mode in Stratix V devices.

Table 39. DLL Range Specifications for Stratix V Devices (1)

| C1      | C2, C2L, I2, I2L | C3, I3, I3L, I3YY | C4,14   | Unit |
|---------|------------------|-------------------|---------|------|
| 300-933 | 300-933          | 300-890           | 300-890 | MHz  |

#### Note to Table 39:

(1) Stratix V devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL.

Table 40 lists the DQS phase offset delay per stage for Stratix V devices.

Table 40. DQS Phase Offset Delay Per Setting for Stratix V Devices <sup>(1), (2)</sup> (Part 1 of 2)

| Speed Grade      | Min | Max | Unit |
|------------------|-----|-----|------|
| C1               | 8   | 14  | ps   |
| C2, C2L, I2, I2L | 8   | 14  | ps   |
| C3,I3, I3L, I3YY | 8   | 15  | ps   |

| Clock<br>Network | Parameter                       | Symbol                        | C     | 1    | C2, C2L | , 12, 12L | C3, I3<br>I3 |     | C4  | ,14 | Unit |
|------------------|---------------------------------|-------------------------------|-------|------|---------|-----------|--------------|-----|-----|-----|------|
| NELWURK          |                                 |                               | Min   | Max  | Min     | Max       | Min          | Max | Min | Max |      |
| PHY<br>Clock     | Clock period jitter             | $t_{JIT(per)}$                | -25   | 25   | -25     | 25        | -30          | 30  | -35 | 35  | ps   |
|                  | Cycle-to-cycle period<br>jitter | $t_{\text{JIT(cc)}}$          | -50   | 50   | -50     | 50        | -60          | 60  | -70 | 70  | ps   |
|                  | Duty cycle jitter               | $t_{\text{JIT}(\text{duty})}$ | -37.5 | 37.5 | -37.5   | 37.5      | -45          | 45  | -56 | 56  | ps   |

#### Table 42. Memory Output Clock Jitter Specification for Stratix V Devices (1), (Part 2 of 2) (2), (3)

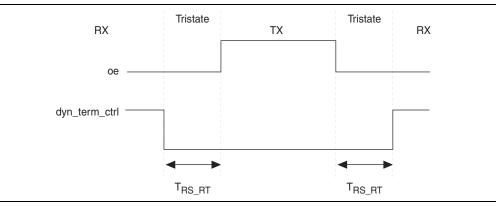
#### Notes to Table 42:

(1) The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

(2) The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

(3) The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

## **OCT Calibration Block Specifications**


Table 43 lists the OCT calibration block specifications for Stratix V devices.

#### Table 43. OCT Calibration Block Specifications for Stratix V Devices

| Symbol                | Description                                                                                  | Min | Тур  | Max | Unit   |
|-----------------------|----------------------------------------------------------------------------------------------|-----|------|-----|--------|
| OCTUSRCLK             | OCTUSRCLK Clock required by the OCT calibration blocks                                       |     | _    | 20  | MHz    |
| T <sub>OCTCAL</sub>   | Number of OCTUSRCLK clock cycles required for OCT R <sub>S</sub> /R <sub>T</sub> calibration |     | 1000 | _   | Cycles |
| T <sub>OCTSHIFT</sub> | Number of OCTUSRCLK clock cycles required for the OCT code to shift out                      | —   | 32   | _   | Cycles |
| T <sub>RS_RT</sub>    | Time required between the dyn_term_ctrl and oe signal                                        |     | 2.5  |     | ns     |

Figure 10 shows the timing diagram for the oe and dyn\_term\_ctrl signals.

#### Figure 10. Timing Diagram for oe and dyn\_term\_ctrl Signals



| Symbol            | Description                              | Min | Max                       | Unit |
|-------------------|------------------------------------------|-----|---------------------------|------|
| t <sub>JPH</sub>  | JTAG port hold time                      | 5   | —                         | ns   |
| t <sub>JPCO</sub> | JTAG port clock to output                | —   | 11 <sup>(1)</sup>         | ns   |
| t <sub>JPZX</sub> | JTAG port high impedance to valid output | —   | 14 <sup>(1)</sup>         | ns   |
| t <sub>JPXZ</sub> | JTAG port valid output to high impedance | —   | <b>1</b> 4 <sup>(1)</sup> | ns   |

Table 46. JTAG Timing Parameters and Values for Stratix V Devices

Notes to Table 46:

(1) A 1 ns adder is required for each V<sub>CCI0</sub> voltage step down from 3.0 V. For example,  $t_{JPC0} = 12$  ns if V<sub>CCI0</sub> of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

(2) The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

# **Raw Binary File Size**

For the POR delay specification, refer to the "POR Delay Specification" section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices".

Table 47 lists the uncompressed raw binary file (.rbf) sizes for Stratix V devices.

| Family       | -      |                              | Configuration .rbf Size (bits) | IOCSR .rbf Size (bits) <sup>(4), (5)</sup> |  |
|--------------|--------|------------------------------|--------------------------------|--------------------------------------------|--|
|              | ECCVA2 | H35, F40, F35 <sup>(2)</sup> | 213,798,880                    | 562,392                                    |  |
|              | 5SGXA3 | H29, F35 <sup>(3)</sup>      | 137,598,880                    | 564,504                                    |  |
|              | 5SGXA4 | _                            | 213,798,880                    | 563,672                                    |  |
|              | 5SGXA5 | _                            | 269,979,008                    | 562,392                                    |  |
|              | 5SGXA7 | _                            | 269,979,008                    | 562,392                                    |  |
| Stratix V GX | 5SGXA9 | _                            | 342,742,976                    | 700,888                                    |  |
|              | 5SGXAB | _                            | 342,742,976                    | 700,888                                    |  |
|              | 5SGXB5 | _                            | 270,528,640                    | 584,344                                    |  |
|              | 5SGXB6 | _                            | 270,528,640                    | 584,344                                    |  |
|              | 5SGXB9 | _                            | 342,742,976                    | 700,888                                    |  |
|              | 5SGXBB | _                            | 342,742,976                    | 700,888                                    |  |
| Stratix V GT | 5SGTC5 | _                            | 269,979,008                    | 562,392                                    |  |
|              | 5SGTC7 | —                            | 269,979,008                    | 562,392                                    |  |
|              | 5SGSD3 | _                            | 137,598,880                    | 564,504                                    |  |
|              | 5SGSD4 | F1517                        | 213,798,880                    | 563,672                                    |  |
| Ctratic V CC | 556504 | _                            | 137,598,880                    | 564,504                                    |  |
| Stratix V GS | 5SGSD5 | _                            | 213,798,880                    | 563,672                                    |  |
|              | 5SGSD6 | _                            | 293,441,888                    | 565,528                                    |  |
|              | 5SGSD8 | _                            | 293,441,888                    | 565,528                                    |  |

Table 47. Uncompressed .rbf Sizes for Stratix V Devices

|         | Member | Active Serial <sup>(1)</sup> |            |                        | Fast Passive Parallel <sup>(2)</sup> |            |                        |  |
|---------|--------|------------------------------|------------|------------------------|--------------------------------------|------------|------------------------|--|
| Variant | Code   | Width                        | DCLK (MHz) | Min Config<br>Time (s) | Width                                | DCLK (MHz) | Min Config<br>Time (s) |  |
|         | D3     | 4                            | 100        | 0.344                  | 32                                   | 100        | 0.043                  |  |
|         | D4     | 4                            | 100        | 0.534                  | 32                                   | 100        | 0.067                  |  |
| GS      | D4     | 4                            | 100        | 0.344                  | 32                                   | 100        | 0.043                  |  |
| 65      | D5     | 4                            | 100        | 0.534                  | 32                                   | 100        | 0.067                  |  |
|         | D6     | 4                            | 100        | 0.741                  | 32                                   | 100        | 0.093                  |  |
|         | D8     | 4                            | 100        | 0.741                  | 32                                   | 100        | 0.093                  |  |
| Е       | E9     | 4                            | 100        | 0.857                  | 32                                   | 100        | 0.107                  |  |
|         | EB     | 4                            | 100        | 0.857                  | 32                                   | 100        | 0.107                  |  |

Table 48. Minimum Configuration Time Estimation for Stratix V Devices

#### Notes to Table 48:

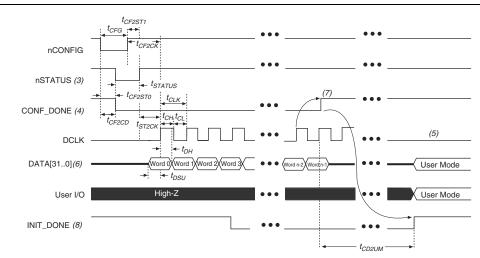
(1) DCLK frequency of 100 MHz using external CLKUSR.

(2) Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

# **Fast Passive Parallel Configuration Timing**

This section describes the fast passive parallel (FPP) configuration timing parameters for Stratix V devices.

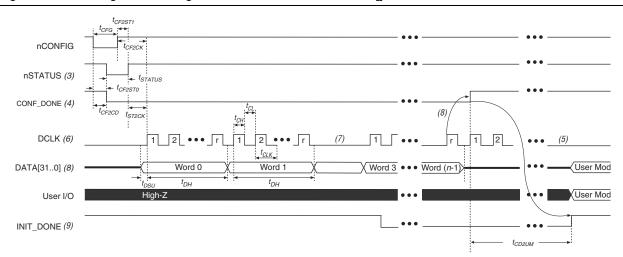
## DCLK-to-DATA[] Ratio for FPP Configuration


FPP configuration requires a different DCLK-to-DATA[]ratio when you enable the design security, decompression, or both features. Table 49 lists the DCLK-to-DATA[]ratio for each combination.

| Configuration<br>Scheme | Decompression | Design Security | DCLK-to-DATA[]<br>Ratio |
|-------------------------|---------------|-----------------|-------------------------|
|                         | Disabled      | Disabled        | 1                       |
| FPP ×8                  | Disabled      | Enabled         | 1                       |
| FFF X0                  | Enabled       | Disabled        | 2                       |
|                         | Enabled       | Enabled         | 2                       |
|                         | Disabled      | Disabled        | 1                       |
| FPP ×16                 | Disabled      | Enabled         | 2                       |
|                         | Enabled       | Disabled        | 4                       |
|                         | Enabled       | Enabled         | 4                       |

 Table 49. DCLK-to-DATA[] Ratio <sup>(1)</sup> (Part 1 of 2)

### FPP Configuration Timing when DCLK-to-DATA [] = 1


Figure 12 shows the timing waveform for FPP configuration when using a MAX II or MAX V device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1.





#### Notes to Figure 12:

- (1) Use this timing waveform when the DCLK-to-DATA [] ratio is 1.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF\_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nstatus low for the time of the POR delay.
- (4) After power-up, before and during configuration, CONF\_DONE is low.
- (5) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- (6) For FPP ×16, use DATA [15..0]. For FPP ×8, use DATA [7..0]. DATA [31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- (7) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF\_DONE is released high when the Stratix V device receives all the configuration data successfully. After CONF\_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (8) After the option bit to enable the INIT\_DONE pin is configured into the device, the INIT DONE goes low.



#### Figure 13. FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1 (1), (2)

#### Notes to Figure 13:

- (1) Use this timing waveform and parameters when the DCLK-to-DATA [] ratio is >1. To find out the DCLK-to-DATA [] ratio for your system, refer to Table 49 on page 55.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF\_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power-up, the Stratix V device holds nSTATUS low for the time as specified by the POR delay.
- (4) After power-up, before and during configuration, CONF\_DONE is low.
- (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (6) "r" denotes the DCLK-to-DATA [] ratio. For the DCLK-to-DATA [] ratio based on the decompression and the design security feature enable settings, refer to Table 49 on page 55.
- (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [31..0] pins prior to sending the first DCLK rising edge.
- (8) To ensure a successful configuration, send the entire configuration data to the Stratix V device. CONF\_DONE is released high after the Stratix V device receives all the configuration data successfully. After CONF\_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (9) After the option bit to enable the INIT DONE pin is configured into the device, the INIT DONE goes low.

Page 60

Table 51 lists the timing parameters for Stratix V devices for FPP configuration when the DCLK-to-DATA[] ratio is more than 1.

| Symbol                            | Parameter                                         | Minimum                                             | Maximum              | Units |
|-----------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------|-------|
| t <sub>CF2CD</sub>                | nCONFIG low to CONF_DONE low                      | —                                                   | 600                  | ns    |
| t <sub>CF2ST0</sub>               | nCONFIG low to nSTATUS low                        | —                                                   | 600                  | ns    |
| t <sub>CFG</sub>                  | nCONFIG low pulse width                           | 2                                                   | _                    | μS    |
| t <sub>STATUS</sub>               | nSTATUS low pulse width                           | 268                                                 | 1,506 <sup>(2)</sup> | μS    |
| t <sub>CF2ST1</sub>               | nCONFIG high to nSTATUS high                      | —                                                   | 1,506 <sup>(2)</sup> | μS    |
| t <sub>CF2CK</sub> <sup>(5)</sup> | nCONFIG high to first rising edge on DCLK         | 1,506                                               | _                    | μS    |
| t <sub>ST2CK</sub> <sup>(5)</sup> | nSTATUS high to first rising edge of DCLK         | 2                                                   | —                    | μS    |
| t <sub>DSU</sub>                  | DATA [] setup time before rising edge on DCLK     | 5.5                                                 |                      | ns    |
| t <sub>DH</sub>                   | DATA [] hold time after rising edge on DCLK       | N-1/f <sub>DCLK</sub> <sup>(5)</sup>                |                      | S     |
| t <sub>CH</sub>                   | DCLK high time                                    | $0.45 	imes 1/f_{MAX}$                              |                      | S     |
| t <sub>CL</sub>                   | DCLK low time                                     | $0.45\times1/f_{MAX}$                               |                      | S     |
| t <sub>CLK</sub>                  | DCLK period                                       | 1/f <sub>MAX</sub>                                  |                      | S     |
| f                                 | DCLK frequency (FPP ×8/×16)                       | —                                                   | 125                  | MHz   |
| f <sub>MAX</sub>                  | DCLK frequency (FPP ×32)                          | —                                                   | 100                  | MHz   |
| t <sub>R</sub>                    | Input rise time                                   | —                                                   | 40                   | ns    |
| t <sub>F</sub>                    | Input fall time                                   | —                                                   | 40                   | ns    |
| t <sub>CD2UM</sub>                | CONF_DONE high to user mode <sup>(3)</sup>        | 175                                                 | 437                  | μS    |
| t <sub>CD2CU</sub>                | CONF_DONE high to CLKUSR enabled                  | 4 × maximum<br>DCLK period                          | _                    | _     |
| t <sub>CD2UMC</sub>               | CONF_DONE high to user mode with CLKUSR option on | $t_{CD2CU}$ + (8576 × CLKUSR period) <sup>(4)</sup> | _                    | _     |

#### Notes to Table 51:

- (1) Use these timing parameters when you use the decompression and design security features.
- (2) You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
- (3) The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.
- (4) To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the Initialization section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (5) N is the  ${\tt DCLK}\mbox{-to-DATA}$  ratio and  $f_{{\tt DCLK}}$  is the  ${\tt DCLK}$  frequency the system is operating.
- (6) If nSTATUS is monitored, follow the t<sub>ST2CK</sub> specification. If nSTATUS is not monitored, follow the t<sub>CF2CK</sub> specification.

# **Remote System Upgrades**

Table 56 lists the timing parameter specifications for the remote system upgrade circuitry.

| Table 56. Remote System Upgrade Circuitry Timing Specifications | Table 56. | <b>Remote System</b> | Upgrade Circuitry | y Timing S | <b>Specifications</b> |
|-----------------------------------------------------------------|-----------|----------------------|-------------------|------------|-----------------------|
|-----------------------------------------------------------------|-----------|----------------------|-------------------|------------|-----------------------|

| Parameter                               | Minimum | Maximum | Unit |
|-----------------------------------------|---------|---------|------|
| t <sub>RU_nCONFIG</sub> <sup>(1)</sup>  | 250     | —       | ns   |
| t <sub>RU_nRSTIMER</sub> <sup>(2)</sup> | 250     | —       | ns   |

#### Notes to Table 56:

- (1) This is equivalent to strobing the reconfiguration input of the ALTREMOTE\_UPDATE megafunction high for the minimum timing specification. For more information, refer to the Remote System Upgrade State Machine section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.
- (2) This is equivalent to strobing the reset\_timer input of the ALTREMOTE\_UPDATE megafunction high for the minimum timing specification. For more information, refer to the User Watchdog Timer section of the "Configuration, Design Security, and Remote System Upgrades in Stratix V Devices" chapter.

# **User Watchdog Internal Circuitry Timing Specification**

Table 57 lists the operating range of the 12.5-MHz internal oscillator.

#### Table 57. 12.5-MHz Internal Oscillator Specifications

| Minimum | Typical | Maximum | Units |
|---------|---------|---------|-------|
| 5.3     | 7.9     | 12.5    | MHz   |

# I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

 You can download the Excel-based I/O Timing spreadsheet from the Stratix V Devices Documentation web page.

# **Programmable IOE Delay**

Table 58 lists the Stratix V IOE programmable delay settings.

Table 58. IOE Programmable Delay for Stratix V Devices (Part 1 of 2)

| Deremeter        | Available             | Min           | Fast       | Model      |       |       |       | Slow N | lodel |             |       |      |
|------------------|-----------------------|---------------|------------|------------|-------|-------|-------|--------|-------|-------------|-------|------|
| Parameter<br>(1) | Available<br>Settings | Offset<br>(2) | Industrial | Commercial | C1    | C2    | C3    | C4     | 12    | 13,<br>13YY | 14    | Unit |
| D1               | 64                    | 0             | 0.464      | 0.493      | 0.838 | 0.838 | 0.924 | 1.011  | 0.844 | 0.921       | 1.006 | ns   |
| D2               | 32                    | 0             | 0.230      | 0.244      | 0.415 | 0.415 | 0.459 | 0.503  | 0.417 | 0.456       | 0.500 | ns   |

| Parameter | Available | Min                  | Fast       | Slow Model |       |       |       |       |       |             |       |      |
|-----------|-----------|----------------------|------------|------------|-------|-------|-------|-------|-------|-------------|-------|------|
| (1)       | Settings  | <b>Offset</b><br>(2) | Industrial | Commercial | C1    | C2    | C3    | C4    | 12    | 13,<br>13YY | 14    | Unit |
| D3        | 8         | 0                    | 1.587      | 1.699      | 2.793 | 2.793 | 2.992 | 3.192 | 2.811 | 3.047       | 3.257 | ns   |
| D4        | 64        | 0                    | 0.464      | 0.492      | 0.838 | 0.838 | 0.924 | 1.011 | 0.843 | 0.920       | 1.006 | ns   |
| D5        | 64        | 0                    | 0.464      | 0.493      | 0.838 | 0.838 | 0.924 | 1.011 | 0.844 | 0.921       | 1.006 | ns   |
| D6        | 32        | 0                    | 0.229      | 0.244      | 0.415 | 0.415 | 0.458 | 0.503 | 0.418 | 0.456       | 0.499 | ns   |

#### Notes to Table 58:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D5, and D6 in the Assignment Name column of Assignment Editor.

(2) Minimum offset does not include the intrinsic delay.

# **Programmable Output Buffer Delay**

Table 59 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

| Table 59. Programmable Output Buffer Delay for Stratix V Devices ( | Table 59. | Programmable Out | put Buffer Delay | y for Stratix V Devices ( |
|--------------------------------------------------------------------|-----------|------------------|------------------|---------------------------|
|--------------------------------------------------------------------|-----------|------------------|------------------|---------------------------|

| Symbol              | Parameter                        | Typical     | Unit |
|---------------------|----------------------------------|-------------|------|
|                     |                                  | 0 (default) | ps   |
| D                   | Rising and/or falling edge delay | 25          | ps   |
| D <sub>OUTBUF</sub> |                                  | 50          | ps   |
|                     |                                  | 75          | ps   |

Note to Table 59:

(1) You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

# Glossary

Table 60 lists the glossary for this chapter.

Table 60. Glossary (Part 1 of 4)

| Letter | Subject              | Definitions                                                                                                   |  |  |
|--------|----------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| Α      |                      |                                                                                                               |  |  |
| В      | —                    | —                                                                                                             |  |  |
| С      |                      |                                                                                                               |  |  |
| D      | _                    | _                                                                                                             |  |  |
| E      |                      |                                                                                                               |  |  |
|        | f <sub>HSCLK</sub>   | Left and right PLL input clock frequency.                                                                     |  |  |
| F      | f <sub>HSDR</sub>    | High-speed I/O block—Maximum and minimum <b>LVDS</b> data transfer rate (f <sub>HSDR</sub> = 1/TUI), non-DPA. |  |  |
|        | f <sub>hsdrdpa</sub> | High-speed I/O block—Maximum and minimum <b>LVDS</b> data transfer rate (f <sub>HSDRDPA</sub> = 1/TUI), DPA.  |  |  |

Table 61. Document Revision History (Part 3 of 3)

| Date          | Version | Changes                                                                                                                                                                                                                             |  |  |  |
|---------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|               |         | Updated Table 2, Table 6, Table 7, Table 20, Table 23, Table 27, Table 47, Table 60                                                                                                                                                 |  |  |  |
| May 2013      | 2.7     | ■ Added Table 24, Table 48                                                                                                                                                                                                          |  |  |  |
|               |         | <ul> <li>Updated Figure 9, Figure 10, Figure 11, Figure 12</li> </ul>                                                                                                                                                               |  |  |  |
| February 2013 | 2.6     | <ul> <li>Updated Table 7, Table 9, Table 20, Table 23, Table 27, Table 30, Table 31, Table 35,<br/>Table 46</li> </ul>                                                                                                              |  |  |  |
|               |         | <ul> <li>Updated "Maximum Allowed Overshoot and Undershoot Voltage"</li> </ul>                                                                                                                                                      |  |  |  |
|               |         | <ul> <li>Updated Table 3, Table 6, Table 7, Table 8, Table 23, Table 24, Table 25, Table 27,<br/>Table 30, Table 32, Table 35</li> </ul>                                                                                            |  |  |  |
| December 2012 |         | Added Table 33                                                                                                                                                                                                                      |  |  |  |
|               |         | <ul> <li>Added "Fast Passive Parallel Configuration Timing"</li> </ul>                                                                                                                                                              |  |  |  |
|               | 0.5     | <ul> <li>Added "Active Serial Configuration Timing"</li> </ul>                                                                                                                                                                      |  |  |  |
|               | 2.5     | <ul> <li>Added "Passive Serial Configuration Timing"</li> </ul>                                                                                                                                                                     |  |  |  |
|               |         | <ul> <li>Added "Remote System Upgrades"</li> </ul>                                                                                                                                                                                  |  |  |  |
|               |         | <ul> <li>Added "User Watchdog Internal Circuitry Timing Specification"</li> </ul>                                                                                                                                                   |  |  |  |
|               |         | <ul> <li>Added "Initialization"</li> </ul>                                                                                                                                                                                          |  |  |  |
|               |         | <ul> <li>Added "Raw Binary File Size"</li> </ul>                                                                                                                                                                                    |  |  |  |
|               |         | <ul> <li>Added Figure 1, Figure 2, and Figure 3.</li> </ul>                                                                                                                                                                         |  |  |  |
| June 2012     | 2.4     | <ul> <li>Updated Table 1, Table 2, Table 3, Table 6, Table 11, Table 22, Table 23, Table 27, Table 29, Table 30, Table 31, Table 32, Table 35, Table 38, Table 39, Table 40, Table 41, Table 43, Table 56, and Table 59.</li> </ul> |  |  |  |
|               |         | <ul> <li>Various edits throughout to fix bugs.</li> </ul>                                                                                                                                                                           |  |  |  |
|               |         | <ul> <li>Changed title of document to Stratix V Device Datasheet.</li> </ul>                                                                                                                                                        |  |  |  |
|               |         | Removed document from the Stratix V handbook and made it a separate document.                                                                                                                                                       |  |  |  |
| February 2012 | 2.3     | Updated Table 1–22, Table 1–29, Table 1–31, and Table 1–31.                                                                                                                                                                         |  |  |  |
| December 2011 | 2.2     | ■ Added Table 2–31.                                                                                                                                                                                                                 |  |  |  |
|               |         | ■ Updated Table 2–28 and Table 2–34.                                                                                                                                                                                                |  |  |  |
|               | 2.1     | <ul> <li>Added Table 2–2 and Table 2–21 and updated Table 2–5 with information about<br/>Stratix V GT devices.</li> </ul>                                                                                                           |  |  |  |
| November 2011 |         | <ul> <li>Updated Table 2–11, Table 2–13, Table 2–20, and Table 2–25.</li> </ul>                                                                                                                                                     |  |  |  |
|               |         | <ul> <li>Various edits throughout to fix SPRs.</li> </ul>                                                                                                                                                                           |  |  |  |
|               |         | <ul> <li>Updated Table 2–4, Table 2–18, Table 2–19, Table 2–21, Table 2–22, Table 2–23, and<br/>Table 2–24.</li> </ul>                                                                                                              |  |  |  |
| May 2011      | 2.0     | <ul> <li>Updated the "DQ Logic Block and Memory Output Clock Jitter Specifications" title.</li> </ul>                                                                                                                               |  |  |  |
|               |         | <ul> <li>Chapter moved to Volume 1.</li> </ul>                                                                                                                                                                                      |  |  |  |
|               |         | <ul> <li>Minor text edits.</li> </ul>                                                                                                                                                                                               |  |  |  |
|               |         | ■ Updated Table 1–2, Table 1–4, Table 1–19, and Table 1–23.                                                                                                                                                                         |  |  |  |
| December 2010 | 1.1     | <ul> <li>Converted chapter to the new template.</li> </ul>                                                                                                                                                                          |  |  |  |
|               |         | <ul> <li>Minor text edits.</li> </ul>                                                                                                                                                                                               |  |  |  |
| July 2010     | 1.0     | Initial release.                                                                                                                                                                                                                    |  |  |  |